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Optimality conditions using convexifactors for a

multiobjective fractional bilevel programming
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Abstract. In this paper, a multiobjective fractional bilevel programming prob-

lem is considered and optimality conditions using the concept of convexifactors are

established for it. For this purpose, a suitable constraint qualification in terms of

convexifactors is introduced for the problem. Further in the paper, notions of asymp-

totic pseudoconvexity and asymptotic quasiconvexity in terms of convexifactors are

given and using them sufficient optimality conditions are derived.
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1 Introduction

Bilevel programming problem (BLPP) consists of two optimization problems where variables of
the first (or upper-level or leader’s) problem are the parameters of the second (or lower-level or
follower’s) problem and the optimal solution of the second is needed to calculate the objective
function value of the first problem. They play an important role not only theoretically but also
practically. During past many years, researchers like Bard [1, 2], Dempe [12, 13], Outrata [31],
Suneja and Kohli [32] and many others have worked for the development of optimality conditions
for this problem. For applications and recent developments on bilevel programming problems
one can see Bard [3], Dempe [14].

Multiobjective bilevel programming problem, where one of the objective functions of the
upper-level problem and/or the lower-level problem is a vector function, needs to be investigated
intensively as it is demanded from the point-of-view of applications. They have been studied in
the literature by authors such as Bouibed et al. [8], Ye [36], Bonnel [5], Bonnel and Morgan [6, 7],
Tung [35], Luu and Mai [29] and others. Recently, Luu and Mai [29] developed necessary and
sufficient efficiency conditions for multiobjective bilevel programming problem via convexifactors.

Fractional programming problems are of great importance in transportation, production,
information theory and numerical analysis. Fractional bilevel programming problems have been
studied in the literature by Calvete and Gale [9, 10, 11]. Very recently, Luu and Linh [30] obtained
optimality and duality results for multiobjective fractional problems using convexifactors. In this
paper, we have combined these two important problems, multiobjective fractional programming
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problem and bilevel programming problem to develop optimality conditions for multiobjective
fractional bilevel programming problem where the upper-level problem is a multiobjective frac-
tional programming problem and the lower-level problem is a scalar optimization problem.

Bilevel programming problems do not satisfy the usual constraint qualifications (CQs) such
as Slater CQ, Mangasarian-Fromovitz CQ etc. It has been a subject of great challenge towards
researchers to find a suitable CQ so as to develop Karush-Kuhn-Tucker (KKT) type necessary
optimality conditions. Work has been done in this direction. Ye [37] introduced CQs in terms of
Michel-Penot subdifferential and used them to obtain optimality conditions for bilevel program-
ming problem. Later, Ye [38] introduced nonsmooth constraint qualifications for bilevel program-
ming problem and used them to derive KKT type necessary optimality conditions. Dempe et
al. [15] obtained KKT type optimality conditions for optimistic bilevel programming problem
under the assumption of partial calmness CQ. Kohli [25] introduced two versions of Abadie CQ
in terms of convexifactors and Clarke subdifferential and employed the weaker one to develop
new necessary KKT type optimality conditions for optimistic bilevel programming problem using
an upper estimate of Clarke subdifferential of value function and the concept of convexifactors.

In this paper, our aim is to prove KKT type optimality conditions for multiobjective frac-
tional bilevel programming problem (MOFBLPP). For that, we have introduced a nonsmooth CQ
namely ∂∗-MOFBLPP CQ in terms of convexifactors on the lines of Jourani [21]. Using weighted
sum scalarization method, first we transform multiobjective fractional bilevel programming prob-
lem to a scalar optimization problem and after that we derive necessary optimality conditions.
Further in the paper, we define asymptotic pseudoconvex and asymptotic quasiconvex functions
in terms of convexifactors. Finally, under the assumption of these functions, we derive sufficient
optimality conditions for the problem. Optimality conditions developed in terms of generalized
subdifferential, convexifactor are more general since in the form of a convexifactor we get a
smaller set. These convexifactors are tools of nonsmooth analysis and were given by Demyanov
[16]. They were further studied by Jeyakumar and Luc [20], Dutta and Chandra [17, 18], Li and
Zhang [27], Luu [28], Suneja and Kohli [32, 33, 34], Kohli [26], Kabgani and Soleimani-damaneh
[22, 23], Kabgani et al. [24] and others. Since for locally Lipschitz functions, many well known
subdifferentials such as Clarke subdifferential, Michel-Penot subdifferential etc may often contain
convex hull of a convexifactor (Example 2.1 [17, 20]), hence using convexifactors, we obtain sharp
optimality conditions than those using Clarke, Michel-Penot subdifferentials etc.

The paper is organized as follows. In Section 2, we give definitions of convexifactors along
with some basic results which will be used in the proof of main results. MOFBLPP has been
studied in Section 3. In Section 4, we define asymptotic pseudoconvex and asymptotic quasi-
convex functions in terms of convexifactors and also we give a constraint qualification using the
concept of convexifactors. Section 5 is devoted to the study of necessary optimality conditions
for MOFBLPP. Finally, in Section 6, we give sufficient optimality conditions for the problem.

2 Convexifactors

We begin by defining upper and lower Dini derivatives as follows:

Definition 1. Let F : Rn1 → R ∪ {±∞} be an extended real valued function and let x ∈ Rn1

where F (x) is finite. Then the upper and lower Dini derivatives of F at x in the direction v are
defined respectively by

(F )+d (x, v) := lim sup
t→0+

F (x+ tv)− F (x)

t
and (F )−d (x, v) := lim inf

t→0+

F (x+ tv)− F (x)

t
.
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Dini derivatives may be finite as well as infinite. In particular, if F is locally Lipschitz, both
the upper and lower Dini derivatives are finite. For any set A ⊂ Rn1 , the closure, convex hull
and the closed convex hull of A are denoted respectively by clA, convA and clconvA. We now
give the definitions of convexifactors as given by Dutta and Chandra [17].

Definition 2. Let F : Rn1 → R ∪ {±∞} be an extended real valued function and let x ∈ Rn1

where F (x) is finite.

(i) F is said to admit an upper convexifactor (UCF) ∂u F (x) at x iff ∂uF (x) ⊆ Rn1 is a closed
set and

(F )−d (x, v) ≤ sup
x∗∈∂uF (x)

⟨x∗, v⟩, for all v ∈ Rn1 .

(ii) F is said to admit a lower convexifactor (LCF) ∂l F (x) at x iff ∂lF (x) ⊆ Rn1 is a closed
set and

(F )+d (x, v) ≥ inf
x∗∈∂lF (x)

⟨x∗, v⟩, for all v ∈ Rn1 .

(iii) F is said to admit a convexifactor (CF) ∂∗ F (x) at x iff ∂∗ F (x) is both an (UCF) and
(LCF) of F at x.

(iv) F is said to admit an upper semiregular convexifactor (USRCF) ∂us F (x) at x iff ∂usF (x) ⊆
Rn1 is a closed set and

(F )+d (x, v) ≤ sup
x∗∈∂usF (x)

⟨x∗, v⟩, for all v ∈ Rn1 .

In particular, if equality holds in above, then, ∂us F (x) is called an upper regular convexi-
factor (URCF) of F at x.

(v) F is said to admit a lower semiregular convexifactor (LSRCF) ∂ls F (x) at x iff ∂lsF (x) ⊆ Rn1

is a closed set and

(F )−d (x, v) ≥ inf
x∗∈∂lsF (x)

⟨x∗, v⟩, for all v ∈ Rn1 .

In particular, if equality holds in above, then, ∂ls F (x) is called a lower regular convexifactor
(LRCF) of F at x.

It may be noted that convexifactors are always closed sets but not necessarily convex or
compact (Jeyakumar and Luc [20], Dutta and Chandra [17, 18]) though the most well known
subdifferentials such as Clarke, Michel-Penot etc are always convex and compact. Because of
these relaxations, convexifactors can be easily applied to a large class of nonsmooth problems.

We now give one of the calculus rules given by Jeyakumar and Luc [20] for convexifactors in
the form of the following remark.

Remark 1. Assume that the functions f, g : Rn1 → R admit UCFs ∂u f(x) and ∂ug(x) at x,
respectively, and that one of the CFs is upper regular at x, then ∂uf(x) + ∂ug(x) is an UCF of
f + g at x.

Similarly, if the functions f, g : Rn1 → R admit LCFs ∂lf(x) and ∂lg(x) at x, respectively,
and that one of the CFs is lower regular at x, then ∂lf(x) + ∂lg(x) is a LCF of f + g at x.

The following lemma is crucial for our investigations.
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Lemma 2.1 (Lemma 2.1 (b) and (c), Li and Zhang [27]). Let ∂uf(x), ∂lf(x) and ∂∗f(x) re-
spectively be UCF, LCF and CF of f at x. Then,

(i) ∀ λ < 0, λ∂uf(x) and λ∂lf(x) respectively are LCF and UCF of λf at x.

(ii) ∀ λ ∈ R, λ∂∗f(x) is a CF of λf at x.

Lemma 2.1(i) is valid for semiregular and regular CFs also.

Remark 2. Let ∂usf(x) and ∂lsf(x) respectively be USRCF and LSRCF of f at x. Then,
∀ λ < 0, λ∂usf(x) and λ∂lsf(x) respectively are LSRCF and USRCF of λf at x.

Same holds for URCF and LRCF of λf at x also.

Proof. Using definitions of upper (lower) dini derivatives and of limit superior (limit inferior), we
can see that ∀ λ < 0,

(i) (λf)−d (x, v) = λ(f)+d (x, v), and

(ii) (λf)+d (x, v) = λ(f)−d (x, v), for all v ∈ Rn1 .

Since ∂usf(x) is an USRCF of f at x, we have

(f)+d (x, v) ≤ sup
x∗∈∂usf(x)

⟨x∗, v⟩, for all v ∈ Rn1

⇒ λ(f)+d (x, v) ≥ λ sup
x∗∈∂usf(x)

⟨x∗, v⟩, as λ < 0

Using (i), we get

(λf)−d (x, v) ≥ −µ sup
x∗∈∂usf(x)

⟨x∗, v⟩, as λ = −µ, µ > 0

= − sup
x∗∈∂usf(x)

⟨µx∗, v⟩

= inf
x∗∈∂usf(x)

−⟨µx∗, v⟩

= inf
ξ∈λ∂usf(x)

⟨ξ, v⟩ .

That is,

(λf)−d (x, v) ≥ inf
ξ∈λ∂usf(x)

⟨ξ, v⟩, for all v ∈ Rn1 .

Thus λ∂usf(x) is a LSRCF of λf at x.

Similarly, using (ii) we can prove that λ∂lsf(x) is an USRCF of λf at x.

Lemma 2.2 (Proposition 4.1, Jeyakumar and Luc [20]). Suppose that the function f : Rn1 → R
admits a CF ∂∗f(x) at x ∈ Rn1 . If f attains its extremum at x, then

0 ∈ cl conv(∂∗f(x))
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3 Multiobjective fractional bilevel programming problem

In this section, we study the multiobjective fractional bilevel programming problem (MOFBLPP)
which is defined as follows:

(MOFBLPP) Minimize
x,y

(
F1(x, y)

F ′
1(x, y)

, . . . ,
Fp(x, y)

F ′
p(x, y)

)
subject to Gj(x, y) ≤ 0, j ∈ J, y ∈ ψ(x),

where, for each x ∈ Rn1 , ψ(x) is the set of the optimal solutions to the following optimization
problem

Minimize
y

f(x, y)

subject to gi(x, y) ≤ 0, i ∈ I,

where Fk, F
′
k : Rn1 × Rn2 → R, k = 1, . . . , p, f : Rn1 × Rn2 → R, Gj : Rn1 × Rn2 → R,

j ∈ J := {1, 2, . . . ,m2} and gi : Rn1 × Rn2 → R, i ∈ I := {1, 2, . . . ,m1}; ni and mi, i := 1, 2
are integers with ni ≥ 1 and mi ≥ 1. Fk(x, y) ≥ 0, F ′

k(x, y) > 0 for all k = 1, . . . , p and
(x, y) ∈ Rn1 × Rn2 , f and gi, i ∈ I are continuous, convex and

ψ(x) := argmin
y

{f(x, y) : gi(x, y) ≤ 0, i ∈ I}.

So, the idea is that, first, the leader fixes his choice x, and after that, the follower minimizes
his objective function based on this choice and returns the solution y = y(x) to the leader, who
then uses it to minimize his objective function. If the lower-level problem has a unique optimal
solution for all x ∈ Rn1 , MOFBLPP is well defined, but if it has multiple solutions for a given x,
then the upper-level objective becomes a set-valued map. To overcome this difficulty, two solution
concepts namely the optimistic solution and the pessimistic solution have been discussed in the
literature. In this paper, we follow optimistic approach. According to this approach, the leader
presupposes cooperation of the follower in the sense that the latter will choose, each time that
solution in ψ(x) which is best suited with respect to the leader’s objective function.

To convert BLPP into a single level programming problem, commonly three approaches
have been discussed in the literature. Here, we adopt the optimal value reformulation initiated
by Outrata [31] according to which multiobjective fractional bilevel programming problem can
be converted into a single level mathematical programming problem with the help of the value
function of the lower-level problem given by

V (x) := min
y

{f(x, y) : gi(x, y) ≤ 0, i ∈ I, y ∈ Rn2}.

Then the reformulated multiobjective fractional bilevel programming problem (RMOFBLPP)
is given as:

(RMOFBLPP) Minimize
x,y

(
F1(x, y)

F ′
1(x, y)

, . . . ,
Fp(x, y)

F ′
p(x, y)

)
subject to f(x, y)− V (x) ≤ 0,

gi(x, y) ≤ 0, i ∈ I,

Gj(x, y) ≤ 0, j ∈ J,

(x, y) ∈ Rn1 × Rn2 .
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Let ϕ(x, y) :=

(
F1(x, y)

F ′
1(x, y)

, . . . ,
Fp(x, y)

F ′
p(x, y)

)
.

Let E ⊆ Rn1 × Rn2 denote the feasible set for RMOFBLPP, that is,

E := {(x, y) ∈ Rn1 × Rn2 |f(x, y)− V (x) ≤ 0, gi(x, y) ≤ 0, i ∈ I, Gj(x, y) ≤ 0, j ∈ J}.

Remark 3. On the lines of the remark made by Gadhi and Dempe [19], we can say that the
problems MOFBLPP and RMOFBLPP are fully equivalent both with respect to local and global
weak efficient solutions.

Now we define the notions of weak efficient and local weak efficient solutions of MOFBLPP.

Definition 3. (x̄, ȳ) ∈ E is a weak efficient solution of MOFBLPP if there does not exist any
feasible solution (x, y) ∈ E such that

Fk(x, y)

F ′
k(x, y)

<
Fk(x̄, ȳ)

F ′
k(x̄, ȳ)

, k = 1, 2, . . . , p.

Definition 4. (x̄, ȳ) ∈ E is a local weak efficient solution of MOFBLPP if there exist neighbour-
hoods U0 of x̄ and V0 of ȳ such that for any feasible solution (x, y) ∈ (U0 ×V0)∩E, the following
does not hold

Fk(x, y)

F ′
k(x, y)

<
Fk(x̄, ȳ)

F ′
k(x̄, ȳ)

, k = 1, 2, . . . , p.

4 ∂∗-Asymptotic generalized convexity

Let F : Rn1 × Rn2 → R be a function. Let F admits a (CF)∂∗ F (x̄, ȳ) at (x̄, ȳ).

We now define the notions of ∂∗-asymptotic generalized convex functions in terms of con-
vexifactors on the lines of Luu [28]:

Definition 5. The function F is said to be ∂∗-asymptotic pseudoconvex at (x̄, ȳ) iff for all
(x, y) ∈ Rn1 × Rn2

F (x, y) < F (x̄, ȳ) ⇒ ⟨ξ∗, (x− x̄, y − ȳ)⟩ < 0 for all ξ∗ ∈ clconv ∂∗F (x̄, ȳ).

Remark 4. (i) If F is a differentiable function and ∂∗F (x̄, ȳ) is an upper regular convexifac-
tor of F at (x̄, ȳ), then, ∂∗F (x̄, ȳ) = {∇F (x̄, ȳ)} and the above definition reduces to the
definition of pseudoconvex function.

(ii) If F is a locally Lipschitz function and clconv ∂∗F (x̄, ȳ) = ∂cF (x̄, ȳ), where ∂cF (x̄, ȳ)
is the Clarke subdifferential, then, the above definition reduces to the definition of ∂c-
pseudoconvex function given by Bector et al. [4].

Definition 6. The function F is said to be ∂∗-asymptotic quasiconvex at (x̄, ȳ) iff for all (x, y) ∈
Rn1 × Rn2

F (x, y) ≤ F (x̄, ȳ) ⇒ ⟨ξ∗, (x− x̄, y − ȳ)⟩ ≤ 0 for all ξ∗ ∈ clconv ∂∗F (x̄, ȳ).

Remark 5. (i) If F is a differentiable function and ∂∗F (x̄, ȳ) is an upper regular convexifac-
tor of F at (x̄, ȳ), then, ∂∗F (x̄, ȳ) = {∇F (x̄, ȳ)} and the above definition reduces to the
definition of quasiconvex function.
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(ii) If F is a locally Lipschitz function and clconv ∂∗F (x̄, ȳ) = ∂cF (x̄, ȳ), then, the above
definition reduces to the definition of ∂c-quasiconvex function given by Bector et al. [4].

Now we give an example of ∂∗-asymptotic quasiconvex function.

Example 1. Let F : R× R → R be a function defined by

F (x, y) =



√
x2y, x ≥ 0, y > 0,

x, x ≥ 0, y = 0,
√
−xy, x ≥ 0, y < 0,

−
√
−xy2, x < 0, y ≤ 0,√

x2y, x < 0, y > 0.

Convexifactor of F at (0, 0) is given by

∂∗F (0, 0) =

{(
x∗ +

1

n
,
1

n

)
: x∗ ≥ 0, n ∈ N

}
∪ {(x∗, 0) : x∗ ≥ 0}.

F is ∂∗-asymptotic quasiconvex at (x̄, ȳ) = (0, 0).

Following is the example of ∂∗-asymptotic pseudoconvex function.

Example 2. Let F : R× R → R be a function defined by

F (x, y) =


−
√
−x−

√
−y, x ≤ 0, y ≤ 0

0, x > 0, y < 0
√
−x, x < 0, y > 0

√
x+

√
y, x ≥ 0, y ≥ 0 ∼ {x = 0, y = 0}

Convexifactor of F at (0, 0) is given by

∂∗F (0, 0) =

{(
x∗ +

1

n
, y∗ +

1

n

)
: x∗ > 0, y∗ > 0, n ∈ N

}
.

F is ∂∗-asymptotic pseudoconvex at (x̄, ȳ) = (0, 0) as

F (x, y) < F (0, 0) ⇒(i) x < 0, y < 0

or

(ii) x < 0, y = 0

or

(iii) x = 0, y < 0

To show
⟨ξ, (x− 0, y − 0)⟩ < 0, for all ξ ∈ clconv ∂∗F (0, 0)

where

ξ = lim
n→∞

ξn, for some ξn ∈ conv ∂∗F (0, 0)

ξn = (ξ1n, ξ2n) = λ

(
x∗ +

1

n
, y∗ +

1

n

)
+ (1− λ)

(
x∗1 +

1

n
, y∗1 +

1

n

)
, 0 ≤ λ ≤ 1
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Taking limit, we get

ξ = lim
n→∞

ξn = (λx∗ + (1− λ)x∗1, λy
∗ + (1− λ)y∗1)

Now

⟨ξ, (x, y)⟩ = (λx∗ + (1− λ)x∗1, λy
∗ + (1− λ)y∗1)

(
x

y

)
= λx∗x+ (1− λ)x∗1x+ λy∗y + (1− λ)y∗1y

< 0 for all cases (i), (ii) and (iii)

Hence
F (x, y) < F (0, 0) ⇒ ⟨ξ, (x, y)⟩ < 0 for all ξ ∈ cl conv ∂∗F (0, 0).

We now introduce a nonsmooth CQ on the lines of CQ3 Jourani [21] in terms of convexifactors
for RMOFBLPP. Let us define the following sets.

I(x̄, ȳ) = {i ∈ I : gi(x̄, ȳ) = 0} , J(x̄, ȳ) = {j ∈ J : Gj(x̄, ȳ) = 0} .

Let (x̄, ȳ) ∈ E be feasible for RMOFBLPP. We assume that the functions f, gi, i ∈ I(x̄, ȳ), Gj ,
j ∈ J(x̄, ȳ) admit convexifactors ∂∗f(x̄, ȳ), ∂∗gi(x̄, ȳ), i ∈ I(x̄, ȳ) and ∂∗Gj(x̄, ȳ), j ∈ J(x̄, ȳ)
respectively at (x̄, ȳ).

The problem RMOFBLPP is said to satisfy ∂∗-MOFBLPP CQ at (x̄, ȳ) if for every γ ≥ 0,
τj ≥ 0, j ∈ J(x̄, ȳ), µi ≥ 0, i ∈ I(x̄, ȳ) (not all zero)

(0, 0) /∈ cl

 γ conv(∂∗f(x̄, ȳ)− ∂∗V (x̄)× {0}) +
∑

j∈J(x̄,ȳ)

τj conv ∂
∗Gj(x̄, ȳ)

+
∑

i∈I(x̄,ȳ)

µi conv ∂
∗gi(x̄, ȳ)

 .

5 Necessary optimality conditions

In this section, we derive KKT type necessary optimality conditions for MOFBLPP in the form
of the following theorem.

Here, we define ϕk(x̄, ȳ) =
Fk(x̄, ȳ)

F ′
k(x̄, ȳ)

, φk(x, y) = Fk(x, y)− ϕk(x̄, ȳ)F
′
k(x, y), k = 1, 2, . . . , p.

Theorem 5.1. Let (x̄, ȳ) be a local weak efficient solution of MOFBLPP. Suppose that Fk,
k = 1, 2, . . . , p admit bounded convexifactors ∂∗Fk(x̄, ȳ), k = 1, 2, . . . , p at (x̄, ȳ) which are up-
per regular and F ′

k, k = 1, 2, . . . , p admit bounded convexifactors ∂∗F ′
k(x̄, ȳ), k = 1, 2, . . . , p at

(x̄, ȳ) which are upper regular if ϕk(x̄, ȳ) > 0 and lower regular if ϕk(x̄, ȳ) < 0. Let f admits
a bounded convexifactor ∂∗f(x̄, ȳ) at (x̄, ȳ) which is upper regular and Gj, j ∈ J , gi, i ∈ I
admit bounded convexifactors ∂∗Gj(x̄, ȳ), j ∈ J and ∂∗gi(x̄, ȳ), i ∈ I respectively at (x̄, ȳ). Sup-
pose that ∂∗φk, k = 1, 2, . . . , p, ∂∗f , ∂∗Gj, j ∈ J , ∂∗gi, i ∈ I are upper semicontinuous at
(x̄, ȳ). Also, assume that the functions Fk, F

′
k, k = 1, 2, . . . , p, Gj, j ∈ J are continuous and

convex. Let ∂∗-MOFBLPP CQ be satisfied at (x̄, ȳ). Assume that for some k, k = 1, 2, . . . , p,
∂∗Fk(x̄, ȳ)− ϕk(x̄, ȳ)∂

∗F ′
k(x̄, ȳ) is an upper regular convexifactor of Fk − ϕkF

′
k at (x̄, ȳ) and for

some k0 ̸= k, ∂∗Fk0(x̄, ȳ)− ϕk0(x̄, ȳ)∂
∗F ′

k0
(x̄, ȳ) is a lower regular convexifactor of Fk0 − ϕk0F

′
k0

at (x̄, ȳ). Suppose that

∂∗

(
p∑

k=1

wk(Fk − ϕkF
′
k)

)
(x̄, ȳ) =

p∑
k=1

∂∗(wk(Fk − ϕkF
′
k))(x̄, ȳ)
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=

p∑
k=1

wk(∂
∗Fk(x̄, ȳ)− ϕk(x̄, ȳ)∂

∗F ′
k(x̄, ȳ))

where wk > 0, k = 1, 2, . . . , p and
p∑

k=1

wk = 1. Also, assume that ∂∗(f(x̄, ȳ)−V (x̄)) = ∂∗f(x̄, ȳ)−

∂∗V (x̄) × {0}. Then, there exist scalars w′
k ≥ 0, (not all zero), k = 1, 2, . . . , p, γ ≥ 0, τj ≥ 0,

j ∈ J , µi ≥ 0, i ∈ I with
p∑

k=1

w′
k + γ +

∑
j∈J

τj +
∑
i∈I

µi = 1 such that

(0, 0) ∈ cl



p∑
k=1

w′
k {conv ∂∗Fk(x̄, ȳ)− ϕk(x̄, ȳ) conv ∂

∗F ′
k(x̄, ȳ)}

+ γ conv(∂∗f(x̄, ȳ)− ∂∗V (x̄)× {0})

+
∑
j∈J

τj conv ∂
∗Gj(x̄, ȳ) +

∑
i∈I

µi conv ∂
∗gi(x̄, ȳ)

 .

Proof. Since (x̄, ȳ) is a local weak efficient solution of MOFBLPP, hence by Remark 3, (x̄, ȳ) is
a local weak efficient solution of RMOFBLPP.

Our proof consists of the following steps.

At first we will prove that (x̄, ȳ) is a local weak efficient solution of (P1)

(P1) Minimize
x,y

(
F1(x, y)− ϕ1(x̄, ȳ)F

′
1(x, y), . . . , Fp(x, y)− ϕp(x̄, ȳ)F

′
p(x, y)

)
subject to (x, y) ∈ E.

On contrary suppose that there exists (x1, y1) ∈ (U0 × V0)
⋂
E such that

Fk(x1, y1)− ϕk(x̄, ȳ)F
′
k(x1, y1) < Fk(x̄, ȳ)− ϕk(x̄, ȳ)F

′
k(x̄, ȳ), k = 1, 2, . . . , p.

Now
Fk(x̄, ȳ)− ϕk(x̄, ȳ)F

′
k(x̄, ȳ) = 0, k = 1, 2, . . . , p.

Therefore, we have

Fk(x1, y1)− ϕk(x̄, ȳ)F
′
k(x1, y1) < 0, k = 1, 2, . . . , p.

That is,
Fk(x1, y1)

F ′
k(x1, y1)

<
Fk(x̄, ȳ)

F ′
k(x̄, ȳ)

, k = 1, 2, . . . , p,

which is contradiction to the fact that (x̄, ȳ) is a local weak efficient solution of RMOFBLPP.

Hence (x̄, ȳ) is a local weak efficient solution of (P1).

Next, we prove that (x̄, ȳ) is a local optimal solution of the scalar problem (P2).

By weighted sum approach, we have

(P2) Minimize
x,y

(
p∑

k=1

wk(Fk(x, y)− ϕk(x̄, ȳ)F
′
k(x, y))

)

wk > 0, k = 1, 2, . . . , p,

p∑
k=1

wk = 1
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subject to (x, y) ∈ E.

Since (x̄, ȳ) is a local weak efficient solution of (P1), there does not exist any feasible solution
(x, y) ∈ (U0 × V0) ∩ E such that the following hold

Fk(x, y)− ϕk(x̄, ȳ)F
′
k(x, y) < Fk(x̄, ȳ)− ϕk(x̄, ȳ)F

′
k(x̄, ȳ), k = 1, 2, . . . , p,

where F ′
k(x, y) > 0, for all k = 1, 2, . . . , p and (x, y) ∈ Rn1 × Rn2 ,

⇒ wk(Fk(x, y)− ϕk(x̄, ȳ)F
′
k(x, y)) < wk(Fk(x̄, ȳ)− ϕk(x̄, ȳ)F

′
k(x̄, ȳ)),

as wk > 0, k = 1, 2, . . . , p.

Thus, for any feasible solution (x, y) ∈ (U0 × V0) ∩ E, following does not hold

p∑
k=1

wk(Fk(x, y)− ϕk(x̄, ȳ)F
′
k(x, y)) <

p∑
k=1

wk(Fk(x̄, ȳ)− ϕk(x̄, ȳ)F
′
k(x̄, ȳ)).

Therefore (x̄, ȳ) is a local optimal solution of (P2).

Since (x̄, ȳ) solves (P2), it solves the following unconstrained problem

Minimize
x,y

H(x, y) = max


p∑

k=1

wkφk(x, y)−
p∑

k=1

wkφk(x̄, ȳ), f(x, y)− V (x),

G1(x, y), . . . , Gm2(x, y),
g1(x, y), . . . , gm1(x, y)

 .

Now,
p∑

k=1

wkφk(x̄, ȳ) = 0.

By Lemma 2.2, we have
(0, 0) ∈ clconv ∂∗H(x̄, ȳ)

where using Theorem 3.2 [17],

∂∗H(x̄, ȳ) = conv

 ∂∗
(

p∑
k=1

wkφk(x̄, ȳ)

)
∪ ∂∗(f(x̄, ȳ)− V (x̄)) ∪

⋃
j∈J(x̄,ȳ) ∂

∗Gj(x̄, ȳ)

∪
⋃

i∈I(x̄,ȳ) ∂
∗gi(x̄, ȳ)

 .

Thus,

(0, 0) ∈ clconv

conv

 ∂∗
(

p∑
k=1

wkφk(x̄, ȳ)

)
∪ ∂∗(f(x̄, ȳ)− V (x̄)) ∪

⋃
j∈J(x̄,ȳ) ∂

∗Gj(x̄, ȳ)

∪
⋃

i∈I(x̄,ȳ) ∂
∗gi(x̄, ȳ)


 ,

which implies that there exists a sequence

(xn, yn) ∈ conv

conv

 ∂∗
(

p∑
k=1

wkφk(x̄, ȳ)

)
∪ ∂∗(f(x̄, ȳ)− V (x̄)) ∪

⋃
j∈J(x̄,ȳ) ∂

∗Gj(x̄, ȳ)

∪
⋃

i∈I(x̄,ȳ) ∂
∗gi(x̄, ȳ)


 ,

such that (xn, yn) → (0, 0) as n→ ∞.
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Since convexifactors are in general nonconvex sets, and there exist sequences of scalars

{λ
′n}, λ

′n ≥ 0, {γn}, γn ≥ 0, {τnj }, τnj ≥ 0, j ∈ J(x̄, ȳ), {µn
i }, µn

i ≥ 0, i ∈ I(x̄, ȳ), n ∈ N

with lim
n→∞

[
λ

′n + γn +
∑

j∈J(x̄,ȳ)

τnj +
∑

i∈I(x̄,ȳ)

µn
i

]
= 1 such that

(xn, yn) ∈ λ
′n conv ∂∗

(
p∑

k=1

wkφk(x̄, ȳ)

)
+ γn(conv ∂∗(f(x̄, ȳ)− V (x̄)))

+
∑

j∈J(x̄,ȳ)

τnj conv ∂∗Gj(x̄, ȳ) +
∑

i∈I(x̄,ȳ)

µn
i conv ∂

∗gi(x̄, ȳ).

That is,

(xn, yn) ∈ λ
′n conv

(
p∑

k=1

wk(∂
∗Fk(x̄, ȳ)− ϕk(x̄, ȳ)∂

∗F ′
k(x̄, ȳ))

)
+ γn(conv(∂∗f(x̄, ȳ)− ∂∗V (x̄)× {0}))

+
∑

j∈J(x̄,ȳ)

τnj conv ∂∗Gj(x̄, ȳ) +
∑

i∈I(x̄,ȳ)

µn
i conv ∂

∗gi(x̄, ȳ).

Using convex hull property of subsets A1 and A2 of Rn1 , conv(A1 +A2) = conv(A1) + conv(A2)
and of a subset A of Rn1 , conv(λA) = λ conv(A), λ ∈ R, we get

(xn, yn) ∈
p∑

k=1

w
′n
k conv {∂∗Fk(x̄, ȳ)− ϕk(x̄, ȳ)∂

∗F ′
k(x̄, ȳ)}

+γn(conv(∂∗f(x̄, ȳ)− ∂∗V (x̄)× {0}))

+
∑

j∈J(x̄,ȳ)

τnj conv ∂∗Gj(x̄, ȳ) +
∑

i∈I(x̄,ȳ)

µn
i conv ∂

∗gi(x̄, ȳ)

where

w
′n
k = λ

′nwk, k = 1, 2, . . . , p, lim
n→∞

 p∑
k=1

w
′n
k + γn +

∑
j∈J(x̄,ȳ)

τnj +
∑

i∈I(x̄,ȳ)

µn
i

 = 1.

Since {w′n
k }, {γn}, {τnj }, j ∈ J(x̄, ȳ), {µn

i }, i ∈ I(x̄, ȳ) are bounded sequences, we may assume

that w
′n
k → w′

k, γ
n → γ, τnj → τj , µ

n
i → µi as n→ ∞.

Thus, we have

(0, 0) ∈ cl



p∑
k=1

w′
k conv {∂∗Fk(x̄, ȳ)− ϕk(x̄, ȳ)∂

∗F ′
k(x̄, ȳ)}

+ γ(conv(∂∗f(x̄, ȳ)− ∂∗V (x̄)× {0}))

+
∑

j∈J(x̄,ȳ)

τj conv ∂
∗Gj(x̄, ȳ) +

∑
i∈I(x̄,ȳ)

µi conv ∂
∗gi(x̄, ȳ)

 ,

with
p∑

k=1

w′
k + γ +

∑
j∈J(x̄,ȳ)

τj +
∑

i∈I(x̄,ȳ)

µi = 1.
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Again, using the convex hull property of subsets A1 and A2 of Rn1 , conv(A1 + A2) =
conv(A1) + conv(A2) and of a subset A of Rn1 , conv(λA) = λ conv(A), λ ∈ R, we get

(0, 0) ∈ cl



p∑
k=1

w′
k {conv ∂∗Fk(x̄, ȳ)− ϕk(x̄, ȳ) conv ∂

∗F ′
k(x̄, ȳ)}

+γ(conv(∂∗f(x̄, ȳ)− ∂∗V (x̄)× {0}))

+
∑

j∈J(x̄,ȳ)

τj conv ∂
∗Gj(x̄, ȳ) +

∑
i∈I(x̄,ȳ)

µi conv ∂
∗gi(x̄, ȳ)

 ,

with
p∑

k=1

w′
k + γ +

∑
j∈J(x̄,ȳ)

τj +
∑

i∈I(x̄,ȳ)

µi = 1.

Thus, there exist

ξnk ∈ conv ∂∗Fk(x̄, ȳ), ξ
′n
k ∈ conv ∂∗F ′

k(x̄, ȳ), k = 1, 2, . . . , p,

ζn ∈ conv(∂∗f(x̄, ȳ)− ∂∗V (x̄)× {0}),
ηni ∈ conv ∂∗gi(x̄, ȳ), i ∈ I(x̄, ȳ), γnj ∈ conv ∂∗Gj(x̄, ȳ), j ∈ J(x̄, ȳ)

such that

lim
n→∞

 p∑
k=1

w′
k(ξ

n
k − ϕk(x̄, ȳ)ξ

′n
k ) + γζn +

∑
i∈I(x̄,ȳ)

µiη
n
i +

∑
j∈J(x̄,ȳ)

τjγ
n
j

 = (0, 0),

with
p∑

k=1

w′
k + γ +

∑
j∈J(x̄,ȳ)

τj +
∑

i∈I(x̄,ȳ)

µi = 1.

For any arbitrary (v1, v2) ∈ Rn1 × Rn2 , we have

lim
n→∞


p∑

k=1

w′
k

〈
(ξnk − ϕk(x̄, ȳ)ξ

′n
k ), (v1, v2)

〉
+ γ ⟨ζn, (v1, v2)⟩

+
∑

i∈I(x̄,ȳ)

µi ⟨ηni , (v1, v2)⟩+
∑

j∈J(x̄,ȳ)

τj
〈
γnj , (v1, v2)

〉
 = 0, (5.1)

with
p∑

k=1

w′
k + γ +

∑
j∈J(x̄,ȳ)

τj +
∑

i∈I(x̄,ȳ)

µi = 1.

Suppose that w′ = (w′
1, . . . , w

′
p) = 0.

Then, we have, from (5.1),

lim
n→∞

γ ⟨ζn, (v1, v2)⟩+ ∑
i∈I(x̄,ȳ)

µi ⟨ηni , (v1, v2)⟩+
∑

j∈J(x̄,ȳ)

τj
〈
γnj , (v1, v2)

〉 = 0, (5.2)

with γ +
∑

j∈J(x̄,ȳ)

τj +
∑

i∈I(x̄,ȳ)

µi = 1.

From ∂∗-MOFBLPP CQ, for every γ ≥ 0, τj ≥ 0, j ∈ J(x̄, ȳ), µi ≥ 0, i ∈ I(x̄, ȳ) (not
all zero), for all, in particular for ζn ∈ conv(∂∗f(x̄, ȳ) − ∂∗V (x̄) × {0}), ηni ∈ conv ∂∗gi(x̄, ȳ),
i ∈ I(x̄, ȳ), γnj ∈ conv ∂∗Gj(x̄, ȳ), j ∈ J(x̄, ȳ), we have

lim
n→∞

γζn +
∑

j∈J(x̄,ȳ)

τjγ
n
j +

∑
i∈I(x̄,ȳ)

µiη
n
i

 ̸= (0, 0).
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Thus, there exists (v1, v2) ∈ Rn1 × Rn2 such that

lim
n→∞

γ ⟨ζn, (v1, v2)⟩+ ∑
i∈I(x̄,ȳ)

µi ⟨ηni , (v1, v2)⟩+
∑

j∈J(x̄,ȳ)

τj
〈
γnj , (v1, v2)

〉 ̸= 0,

which contradicts (5.2). Hence w′ ̸= 0. Putting µi = 0 for i /∈ I(x̄, ȳ) and τj = 0 for j /∈ J(x̄, ȳ)
we establish the result.

Remark 6. If ∂∗Fk(x̄, ȳ) are convexifactors of Fk, k = 1, 2, . . . , p at (x̄, ȳ) which are upper
regular and ∂∗F ′

k(x̄, ȳ) are convexifactors of F ′
k, k = 1, 2, . . . , p at (x̄, ȳ) which are upper regular

if ϕk(x̄, ȳ) > 0 and lower regular if ϕk(x̄, ȳ) < 0, k = 1, . . . , p, then, using Remark 1 and Remark
2, we have that ∂∗Fk(x̄, ȳ) − ϕk(x̄, ȳ)∂

∗F ′
k(x̄, ȳ), k = 1, 2, . . . , p is a convexifactor of Fk − ϕkF

′
k,

k = 1, 2, . . . , p at (x̄, ȳ). Also, if we assume that for some k, k = 1, 2, . . . , p, ∂∗Fk(x̄, ȳ) −
ϕk(x̄, ȳ)∂

∗F ′
k(x̄, ȳ) is an upper regular convexifactor of Fk − ϕkF

′
k at (x̄, ȳ) and for some k0 ̸= k,

∂∗Fk0
(x̄, ȳ)−ϕk0

(x̄, ȳ)∂∗F ′
k0
(x̄, ȳ) is a lower regular convexifactor of Fk0

−ϕk0
F ′
k0

at (x̄, ȳ), then,
using Remark 1, Lemma 2.1(ii) and above mentioned fact, we have that

∂∗

(
p∑

k=1

wk(Fk − ϕkF
′
k)

)
(x̄, ȳ) =

p∑
k=1

∂∗(wk(Fk − ϕkF
′
k))(x̄, ȳ)

=

p∑
k=1

wk(∂
∗Fk(x̄, ȳ)− ϕk(x̄, ȳ)∂

∗F ′
k(x̄, ȳ))

is a convexifactor of
p∑

k=1

wk (Fk − ϕkF
′
k) at (x̄, ȳ).

Remark 7. If f admits a convexifactor ∂∗f(x̄, ȳ) which is upper regular, then V will also have
an upper regular convexifactor ∂∗V (x̄), and using Remark 2, −∂∗V (x̄) will be a lower regular
convexifactor of −V at x̄. Then, using Remark 1 and Lemma 2.1(ii), ∂∗(f(x̄, ȳ) − V (x̄)) =
∂∗f(x̄, ȳ)− ∂∗V (x̄)× {0} is a convexifactor of f − V at (x̄, ȳ).

Now we give an example to illustrate above theorem.

Example 3. Consider the problem

Minimize
x,y

[
F1(x, y)

F ′
1(x, y)

,
F2(x, y)

F ′
2(x, y)

]
subject to G(x, y) ≤ 0, y ∈ ψ(x),

where for each x ∈ R, ψ(x) is the set of optimal solutions to the following optimization problem

Minimize
y

f(x, y)

subject to g(x, y) ≤ 0,

where F1, F2, F
′
1, F

′
2, G, f, g : R× R → R are defined by

F1(x, y) :=


x+ y, x ≥ 0, y ≥ 0,

x+ y2, x ≥ 0, y < 0,

|x|+ y2, x < 0, y ≤ 0,

y, x < 0, y > 0,
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F2(x, y) :=

{
x+ |y|, x ≥ 0, y ∈ R,
x2 + |y|, x < 0, y ∈ R,

F ′
1(x, y) :=


1 + x2, x ∈ R, y ≥ 0 ∼ {x < 0, y > 0 & x = 0, y > 0}
1 + 2y + 3y2, x ∈ R, y < 0,

1 + 2y2, x ≤ 0, y > 0,

F ′
2(x, y) :=

{
1 + x+ y2, x ≥ 0, y ≥ 0; x > 0, y < 0,

1 + 2x+ 3x2, x < 0, y ∈ R; x = 0, y < 0

G(x, y) := y,

f(x, y) :=

{
ex + y + y2, x ∈ R, y ≤ 0

x+ y, x ∈ R, y > 0

g(x, y) := y2 + y

The corresponding value function for lower-level problem is given by V (x) := ex, for all x ∈ R
and the set ψ(x) of optimal solutions to the lower-level problem is given by

ψ(x) := {0}, for all x ∈ R.

There exists no feasible solution (x, y) ∈ E such that the following hold

F1(x, y)

F ′
1(x, y)

<
F1(x̄, ȳ)

F ′
1(x̄, ȳ)

and
F2(x, y)

F ′
2(x, y)

<
F2(x̄, ȳ)

F ′
2(x̄, ȳ)

,

where E :=
{
(x, y) : x ∈ R,− 1

2 ≤ y ≤ 0
}
.

Thus, (x̄, ȳ) = (0, 0) is a weak efficient solution of the problem.

It can be seen that F1, F2 admit CFs ∂∗F1(0, 0) = {(1, 1), (0, 1), (1, 0), (−1, 0)}, ∂∗F2(0, 0) =
{(1, 1), (0,−1), (1,−1), (0, 1)} respectively at (0, 0) which are upper regular and F ′

1, F
′
2 admit

CFs ∂∗F ′
1(0, 0) = {(0, 0), (0, 1), (0, 2)}, ∂∗F ′

2(0, 0) = {(1, 0), (2, 0)} respectively at (0, 0) which are
lower regular. G and g admit CFs ∂∗G(0, 0) = {(0, 1)}, ∂∗g(0, 0) = {(0, 1)} respectively at (0, 0).
f admits a CF ∂∗f(0, 0) = {(1, 1)} at (0, 0) which is upper regular. ∂∗V (0) × {0} = {(1, 0)},
conv(∂∗f(0, 0)− ∂∗V (0)× {0}) = {(0, 1)}.

ϕ1(0, 0) = 0, ϕ2(0, 0) = 0.

∂∗-MOFBLPP CQ is satisfied at (x̄, ȳ) = (0, 0).

Then, there exist scalars w′
1 = 1

3 , w
′
2 = 1

3 , γ = 1
3 , µ = 0, τ = 0 with w′

1 +w′
2 + γ+µ+ τ = 1

such that

(0, 0) ∈ cl


2∑

k=1

w′
k {conv ∂∗Fk(x̄, ȳ)− ϕk(x̄, ȳ) conv ∂

∗F ′
k(x̄, ȳ)}

+ γ(conv(∂∗f(x̄, ȳ)− ∂∗V (x̄)× {0}))

+τ conv ∂∗G(x̄, ȳ) + µ conv ∂∗g(x̄, ȳ)

 .

6 Sufficient optimality conditions

Now we prove sufficient optimality conditions for MOFBLPP. We shall now onwards assume that
MOFBLPP has at least one optimal solution.
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Theorem 6.1. Let (x̄, ȳ) ∈ E. Assume that ∂∗Fk(x̄, ȳ) are convexifactors of Fk, k = 1, 2, . . . , p
at (x̄, ȳ) which are upper regular and ∂∗F ′

k(x̄, ȳ) are convexifactors of F ′
k, k = 1, 2, . . . , p at (x̄, ȳ)

which are upper regular if ϕk(x̄, ȳ) > 0 and lower regular if ϕk(x̄, ȳ)< 0, k=1, 2, . . . , p. Suppose
that ∂∗φk(x, y) = ∂∗(Fk − ϕkF

′
k)(x, y) = ∂∗Fk(x, y) − ϕk(x̄, ȳ)∂

∗F ′
k(x, y), k = 1, 2, . . . , p. Let

φk, k = 1, 2, . . . , p be ∂∗-asymptotic pseudoconvex, f − V , gi, i ∈ I(x̄, ȳ) and Gj, j ∈ J(x̄, ȳ)
be ∂∗-asymptotic quasiconvex at (x̄, ȳ). Suppose that there exist scalars w′

k ≥ 0 (not all zero),

k = 1, 2, . . . , p, γ ≥ 0, τj ≥ 0, j ∈ J , µi ≥ 0, i ∈ I with
p∑

k=1

w′
k + γ +

∑
j∈J

τj +
∑
i∈I

µi = 1 such that

the following condition is satisfied

(0, 0) ∈ cl



p∑
k=1

w′
k {conv ∂∗Fk(x̄, ȳ)− ϕk(x̄, ȳ) conv ∂

∗F ′
k(x̄, ȳ)}

+ γ(conv(∂∗f(x̄, ȳ)− ∂∗V (x̄)× {0}))

+
∑
j∈J

τj conv ∂
∗Gj(x̄, ȳ) +

∑
i∈I

µi conv ∂
∗gi(x̄, ȳ)

 . (6.1)

Then, (x̄, ȳ)is a weak efficient solution of MOFBLPP.

Proof. Suppose that (x̄, ȳ) is not a weak efficient solution of MOFBLPP, then by Remark 3, (x̄, ȳ)
is not a weak efficient solution of RMOFBLPP.

Thus, there exists a feasible solution (x, y) ∈ E such that

Fk(x, y)

F ′
k(x, y)

<
Fk(x̄, ȳ)

F ′
k(x̄, ȳ)

, k = 1, 2, . . . , p,

which implies that Fk(x, y)− ϕk(x̄, ȳ)F
′
k(x, y) < 0, k = 1, 2, . . . , p.

Since Fk(x̄, ȳ)− ϕk(x̄, ȳ)F
′
k(x̄, ȳ) = 0, k = 1, 2, . . . , p, we have

Fk(x, y)− ϕk(x̄, ȳ)F
′
k(x, y) < Fk(x̄, ȳ)− ϕk(x̄, ȳ)F

′
k(x̄, ȳ), k = 1, 2, . . . , p.

That is, we have
φk(x, y) < φk(x̄, ȳ), k = 1, 2, . . . , p.

Using ∂∗-asymptotic pseudoconvexity of φk, k = 1, 2, . . . , p, we get〈
ξ0k, (x− x̄, y − ȳ)

〉
< 0 for all ξ0k ∈ clconv ∂∗φk(x̄, ȳ), k = 1, 2, . . . , p. (6.2)

Now,

conv ∂∗φk(x̄, ȳ) = conv ∂∗(Fk − ϕkF
′
k)(x̄, ȳ)

= conv{∂∗Fk(x̄, ȳ)− ϕk(x̄, ȳ)∂
∗F ′

k(x̄, ȳ)}, k = 1, 2, . . . , p. (6.3)

Using the convex hull property of subsets A1 and A2 of Rn1 , conv(A1+A2) = conv(A1)+conv(A2)
and of a subset A of Rn1 , conv(λA) = λ conv(A), λ ∈ R, we get

conv{∂∗Fk(x̄, ȳ)− ϕk(x̄, ȳ)∂
∗F ′

k(x̄, ȳ)}
= conv ∂∗Fk(x̄, ȳ)− ϕk(x̄, ȳ) conv ∂

∗F ′
k(x̄, ȳ), k = 1, 2, . . . , p. (6.4)

Thus, combining (6.3) and (6.4), we get

conv ∂∗φk(x̄, ȳ) = conv ∂∗Fk(x̄, ȳ)− ϕk(x̄, ȳ) conv ∂
∗F ′

k(x̄, ȳ), k = 1, 2, . . . , p. (6.5)
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Now, by (6.1), there exist

ξnk ∈ conv ∂∗Fk(x̄, ȳ), ξ
′n
k ∈ conv ∂∗F ′

k(x̄, ȳ), k = 1, 2, . . . , p,

ζn ∈ conv(∂∗f(x̄, ȳ)− ∂∗V (x̄)× {0}),
ηni ∈ conv ∂∗gi(x̄, ȳ), i ∈ I, γnj ∈ conv ∂∗Gj(x̄, ȳ), j ∈ J such that

lim
n→∞

 p∑
k=1

w′
k(ξ

n
k − ϕk(x̄, ȳ)ξ

′n
k ) + γζn +

∑
i∈I

µiη
n
i +

∑
j∈J

τjγ
n
j

 = (0, 0).

Then, for all (x, y) ∈ E, we have

lim
n→∞


p∑

k=1

w′
k

〈
(ξnk − ϕk(x̄, ȳ)ξ

′n
k ), (x− x̄, y − ȳ)

〉
+ γ ⟨ζn, (x− x̄, y − ȳ)⟩

+
∑
i∈I

µi ⟨ηni , (x− x̄, y − ȳ)⟩+
∑
j∈J

τj
〈
γnj , (x− x̄, y − ȳ)

〉
= 0. (6.6)

Now, from (6.2), since ξ0k ∈ clconv ∂∗φk(x̄, ȳ), k = 1, 2, . . . , p, there exists ξ0nk ∈ conv ∂∗φk(x̄, ȳ),
k = 1, 2, . . . , p such that

lim
n→∞

ξ0nk = ξ0k, k = 1, 2, . . . , p. (6.7)

Using above in (6.2), we get

lim
n→∞

〈
ξ0nk , (x− x̄, y − ȳ)

〉
< 0, for some ξ0nk ∈ conv ∂∗φk(x̄, ȳ), k = 1, 2, . . . , p.

Thus, for every ξ0k ∈ clconv ∂∗φk(x̄, ȳ), k = 1, 2, . . . , p, there exists ξ0nk ∈ conv ∂∗φk(x̄, ȳ), k =
1, 2, . . . , p such that (6.7) holds.

In particular, it is true for ξ0k ∈ clconv ∂∗φk(x̄, ȳ), k = 1, 2, . . . , p for which there exists
ξ0nk ∈ conv ∂∗φk(x̄, ȳ) such that

ξ0k = lim
n→∞

ξ0nk = lim
n→∞

(ξnk − ϕk(x̄, ȳ)ξ
′n
k ),

where ξnk ∈ conv ∂∗Fk(x̄, ȳ), ξ
′n
k ∈ conv ∂∗F ′

k(x̄, ȳ), k = 1, 2, . . . , p.

Thus, we get

lim
n→∞

[
p∑

k=1

w′
k

〈
(ξnk − ϕk(x̄, ȳ)ξ

′n
k ), (x− x̄, y − ȳ)

〉]
< 0 as ξnk ∈ conv ∂∗Fk(x̄, ȳ),

ξ
′n
k ∈ conv ∂∗F ′

k(x̄, ȳ), w
′
k ≥ 0 (not all zero). (6.8)

Since (x, y) is feasible for RMOFBLPP, we have

f(x, y)− V (x) ≤ 0 ≤ f(x̄, ȳ)− V (x̄).

By ∂∗-asymptotic quasiconvexity of f − V , we get

⟨ζ, (x− x̄, y − ȳ)⟩ ≤ 0, for all ζ ∈ cl(conv(∂∗f(x̄, ȳ)− ∂∗V (x̄)× {0})).

In particular, it is true for ζ such that ζ = lim
n→∞

ζn, where ζn ∈ conv(∂∗f(x̄, ȳ)− ∂∗V (x̄)× {0}).
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That is,

lim
n→∞

⟨ζn, (x− x̄, y − ȳ)⟩ ≤ 0, as ζn ∈ conv(∂∗f(x̄, ȳ)− ∂∗V (x̄)× {0}),

which gives

lim
n→∞

γ ⟨ζn, (x− x̄, y − ȳ)⟩ ≤ 0, as ζn ∈ conv(∂∗f(x̄, ȳ)− ∂∗V (x̄)× {0}) and γ ≥ 0. (6.9)

Now, for each i ∈ I(x̄, ȳ), gi(x, y) ≤ 0 = gi(x̄, ȳ).

Using ∂∗-asymptotic quasiconvexity of gi, i ∈ I(x̄, ȳ), we have

⟨ηi, (x− x̄, y − ȳ)⟩ ≤ 0, for all ηi ∈ clconv ∂∗gi(x̄, ȳ), i ∈ I(x̄, ȳ).

Then, as earlier, we have

lim
n→∞

⟨ηni , (x− x̄, y − ȳ)⟩ ≤ 0, as ηni ∈ conv ∂∗gi(x̄, ȳ), for i ∈ I(x̄, ȳ).

Thus, we have

lim
n→∞

〈 ∑
i∈I(x̄,ȳ)

µiη
n
i , (x− x̄, y − ȳ)

〉
≤ 0, as µi ≥ 0 and ηni ∈ conv ∂∗gi(x̄, ȳ).

Taking µi = 0, i /∈ I(x̄, ȳ), we get

lim
n→∞

〈∑
i∈I

µiη
n
i , (x− x̄, y − ȳ)

〉
≤ 0, as µi ≥ 0 and ηni ∈ conv ∂∗gi(x̄, ȳ). (6.10)

Similarly, we have
Gj(x, y) ≤ 0 = Gj(x̄, ȳ), for each j ∈ J(x̄, ȳ).

Using ∂∗-asymptotic quasiconvexity of Gj , j ∈ J(x̄, ȳ), taking τj = 0, j /∈ J(x̄, ȳ) and proceeding
as above, we get

lim
n→∞

〈∑
j∈J

τjγ
n
j , (x− x̄, y − ȳ)

〉
≤ 0 as τj ≥ 0, j ∈ J(x̄, ȳ) and γnj ∈ conv ∂∗Gj(x̄, ȳ). (6.11)

Adding (6.8), (6.9), (6.10) and (6.11), we get

lim
n→∞


p∑

k=1

w′
k

〈
(ξnk − ϕk(x̄, ȳ)ξ

′n
k ), (x− x̄, y − ȳ)

〉
+ γ ⟨ζn, (x− x̄, y − ȳ)⟩

+
∑
i∈I

µi ⟨ηni , (x− x̄, y − ȳ)⟩+
∑
j∈J

τj
〈
γnj , (x− x̄, y − ȳ)

〉
 < 0,

which is contradiction to (6.6). Hence (x̄, ȳ) is a weak efficient solution of MOFBLPP.

Following example illustrates the above theorem.

Example 4. Consider the problem

Minimize
x,y

[
F1(x, y)

F ′
1(x, y)

,
F2(x, y)

F ′
2(x, y)

]
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subject to G(x, y) ≤ 0, y ∈ ψ(x),

where for each x ∈ R, ψ(x) is the set of optimal solutions to the following optimization problem

Minimize
y

f(x, y)

subject to g(x, y) ≤ 0,

where F1, F2, F
′
1, F

′
2, G, f, g : R× R → R are defined by

F1(x, y) :=


−|y|
2 , x ≥ 0, y ≥ 0,

−x−y
2 , x < 0, y ∈ R; x = 0, y < 0,

|y|
2 , x > 0, y < 0

F2(x, y) :=


−|y|
2 , x > 0, y > 0; x = 0, y ≥ 0,

|y|
2 , x ≥ 0, y < 0,
x2+y2

2 , x > 0, y = 0,
−x−y

2 , x < 0, y ∈ R

F ′
1(x, y) :=


1− |x| − y, x ≥ 0, y ≥ 0,

1 + |x| − y, x < 0, y ≥ 0,

1 + |x|, x ≤ 0, y < 0,

1− |x|, x > 0, y < 0

F ′
2(x, y) :=


1− x− y, x ≥ 0, y ≥ 0,

1− x− y, x < 0, y > 0,

1− x, x < 0, y ≤ 0,

1− x, x ≥ 0, y < 0

G(x, y) := x,

f(x, y) :=

{
x+ y2, x ∈ R, y ≤ 0 ∼ {x < 0, y = 0}
x+ y, x ≥ 0, y > 0; x < 0, y ≥ 0

g(x, y) := y2 + y.

The corresponding value function for lower-level problem is given by

V (x) := x for all x ∈ R

and the set ψ(x) of optimal solutions to the lower-level problem is given by

ψ(x) := {0}, for all x ∈ R .

There exists no feasible solution (x, y) ∈ E such that the following hold

F1(x, y)

F ′
1(x, y)

<
F1(x̄, ȳ)

F ′
1(x̄, ȳ)

and
F2(x, y)

F ′
2(x, y)

<
F2(x̄, ȳ)

F ′
2(x̄, ȳ)

,

where E := {(x, 0) : x ≤ 0}. Thus, (x̄, ȳ) = (0, 0) is a weak efficient solution of the problem.

It can be seen that φ1, φ2 are ∂∗-asymptotic pseudoconvex at (0, 0) with respect to

∂∗φ1(0, 0) = ∂∗F1(0, 0)
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=

{(
−1

2
+

1

n
,
−1

2
+

1

n

)
,

(
0 +

1

n
,
−1

2
+

1

n

)}
∪
{(

−1

2
,−1

2

)
,

(
0,−1

2

)}
,

∂∗φ2(0, 0) = ∂∗F2(0, 0)

=

{(
0 +

1

n
,
−1

2
+

1

n

)
,

(
−1

2
+

1

n
,
−1

2
+

1

n

)}
∪
{(

0,
−1

2

)
,

(
−1

2
,
−1

2

)}
respectively. ϕ1(0, 0) = 0, ϕ2(0, 0) = 0. G and g are ∂∗-asymptotic quasiconvex at (0, 0) with
respect to ∂∗G(0, 0) = {(1 + 1

n , 0)} ∪ {(1, 0)} and ∂∗g(0, 0) = {(0, 1 + 1
n )} ∪ {(0, 1)} respec-

tively. f − V is ∂∗-asymptotic quasiconvex at (0, 0) with respect to ∂∗f(0, 0)− ∂∗V (0)× {0} ={(
0 + 1

n , 1 +
1
n

)
,
(
0 + 1

n , 0 +
1
n

)}
∪ {(0, 1), (0, 0)}.

Then, there exist scalars w′
1 = 1

4 , w
′
2 = 1

4 , γ = 1
4 , µ = 1

4 , τ = 0 with w′
1 +w′

2 + γ+µ+ τ = 1
such that

(0, 0) ∈ cl


2∑

k=1

w′
k {conv ∂∗Fk(x̄, ȳ)− ϕk(x̄, ȳ) conv ∂

∗F ′
k(x̄, ȳ)}

+ γ(conv(∂∗f(x̄, ȳ)− ∂∗V (x̄)× {0}))

+τ conv ∂∗G(x̄, ȳ) + µ conv ∂∗g(x̄, ȳ)

 .

7 Conclusions

In this article, necessary and sufficient optimality conditions using the concept of convexifactors
are developed for multiobjective fractional bilevel programming problem. For that, a suitable
CQ in terms of convexifactors has been introduced.Under the assumptions of asymptotic pseu-
doconvexity and asymptotic quasiconvexity on the functions, sufficient optimality conditions are
established for the problem.
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