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AN ORDINARY DIFFERENTIAL EQUATION

ARISES IN PLANE CURVE EVOLUTION

YUNG-JEN LIN GUO

Abstract. Under some conditions on f , we prove that any nontrivial positive solution of the

ordinary differential equation u′′ + f(u) = 0 in R is periodic.

1. Introduction

In this paper, we consider the following ordinary differential equation

u′′ + f(u) = 0 in R. (1.1)

We are interested in studying the existence of positive periodic solutions of the equation

(1.1). Under some conditions on f , we prove that any positive solution of (1.1) is preiodic.

Throughout this paper, we assume that f ∈ C1(0,∞), f ′ > 0 in (0,∞), f(u) has a

unique zero at u = 1, and that

∫ 1

0

f(s)ds = −∞,

∫ ∞

1

f(s)ds = ∞. (1.2)

Typical examples are

f(s) = s − s−β , β ≥ 1; f(s) = s − e1/s/e.

The motivation for studying this problem is from the study the self-similar solutions

of plane curve evolution equations, including curve shortening equation (cf. [1, 6, 7]) and

affine curve evolution equation (cf. [3, 4, 9]).

Let Γ(t) be a family of convex embedded curves in R2. Let κ be the inward curvature

of Γ(t) and let V be the inward velocity of Γ(t) in the direction of its inward normal

vector. In the generalized isotropic curvature flow equation, it is assumed that

V = κα, 0 < α ≤ 1. (1.3)
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Let θ be the angle parameter. Then V = V (θ, t) and κ = κ(θ, t). From (1.3) and the

equation

Vt = αV 1+1/α(Vθθ + V ),

we obtain that κ satisfies the evolution equation

κt = κ2[(κα)θθ + κα]. (1.4)

Given any finite T > 0. We consider the backward self-similar solution of (1.4) in the

form

κ(θ, t) = (T − t)−1/(α+1)φ(θ). (1.5)

Then φ satisfies
1

α + 1
φ−1 = (φα)′′ + φα. (1.6)

Set u = (α + 1)α/(α+1)φα. Then u satisfies the equation (1.1) with f(u) = u − u−β ,

where β = 1/α ≥ 1.

It is trivial that u ≡ 1 is a solution of (1.1). We shall refer it as a trivial solution and

only consider the positive classical solutions of (1.1).

We remark that a similar study of self-similar solutions for anisotropic curvature

flow equations can be found in [2, 5, 8]. For more references for the affine plane curve

evolution, we refer the readers to the paper of Angenent et al. [4] and references cited

therein.

2. Periodicity

In this section, we shall prove that under the assumptions on f stated in Section 1

any nontrivial solution of (1.1) is periodic. We shall only consider the nontrivial positive

solutions.

Let

F (u) =

∫ u

1

f(s)ds. (2.1)

Note that F (1) = 0 and F (u) > 0, ∀u > 0, u 6= 1. Also, it follows from (1.2) that

F (u) → ∞ as u → 0+ and u → ∞. (2.2)

Lemma 2.1. Any local solution u of (1.1) can be continued to be a global solution in

R. Moreover, there are two positive constants m and M such that m ≤ u ≤ M .

Proof. Multiplying the equation (1.1) by u′, we obtain that the quantity

1

2
(u′(x))2 + F (u(x))
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is a constant, independent of x. Let x0 be any point in the existence interval of u. Then
we have

F (u(x)) ≤ 1

2
(u′(x0))

2 + F (u(x0))

for any x in the existence interval of u. It follows from (2.2) that there are two positive
constants m and M such that

m ≤ u(x) ≤ M.

From this estimate we conclude that any local solution can be continued to be a global
solution in R.

We say a function u(x) is monotone ultimately at ∞ (or, −∞) if there is a constant
C such that u is monotone for all x ≥ C (or, for all x ≤ C).

Lemma 2.2. Suppose that u is a solution of (1.1). If u is monotone ultimately at

∞, then u(x) → 1 as x → ∞. Similar result holds for the case of −∞.

Proof. Suppose that u is monotone increasing ultimately at ∞. Then the limit

l = lim
x→∞

u(x)

exists and l ∈ (0,∞) by Lemma 2.1.

Suppose that u′(x) ≥ 0 for all x ≥ C for some C > 0. Since the integral

∫ ∞

C

u′(x)dx

is finite, there is a sequence {xn} ⊂ (C,∞) such that xn → ∞ and u′(xn) → 0.
If l 6= 1, then the integral

∫ xn

C

f(u(x))

x
dx

is unbounded as n → ∞. But, the integral
∫ xn

C

u′′(x)

x
dx = [

u′(xn)

xn
− u′(C)

C
] +

∫ xn

C

u′(x)

x2
dx

is uniformly bounded for all n, a contradiction. This proves the lemma.
From Lemma 2.2, we see that any solution of (1.1) have at least one critical point.

Note that any critical point is a maximum point if u > 1 and is a minimum point if
u < 1. Also, there is no critical point with u = 1, unless it is the trivial solution.
Since the equation (1.1) is autonomous, we may assume without loss of generality that
u′(0) = 0. Furthermore, since u(−x) is also a solution if u(x) is, it follows from the
uniqueness theorem for the initial value problem of ordinary differential equation that
any solution u of (1.1) must be an even function.

Lemma 2.3. Any nontrivial positive solution u of (1.1) must be oscilatory at both

∞ and −∞.
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Proof. Otherwise, if u is monotone ultimately at ∞, then u(x) → 1 as x → ∞.
Recall that

1

2
(u′(x))2 + F (u(x)) = F (u(0)). (2.3)

It follows that
1

2
(u′(x))2 → F (u(0)) > 0

as x → ∞, a contradiction.
We now state and prove the main theorem of this paper as follows.

Theorem 2.1. Any nontrivial positive solution of (1.1) is periodic.

Proof. Since any two adjacent critical points cannot be both maximum points, we
may assume that x = 0 is a minimum point. Let {xn}n≥0 be the increasing sequence of
critical points of u with x0 = 0. Note that xn is a minimum point if n is an even integer;
and is a maximum point if n is an odd integer. Let η = u(0). Note that η ∈ (0, 1). From
the assumptions on f it follows that for each η ∈ (0, 1) there is a unique µ ∈ (1,∞) such
that F (µ) = F (η). Then by (2.3)

u(x2k) = η, u(x2k−1) = µ, ∀k ≥ 1.

For any k ≥ 1, since the function u(x−x2k) is also a solution of (1.1) with the same initial
value as u(x) at x = 0, it follows from the uniqueness of solutions of the initial value
problem for ordinary differential equation that u(x) = u(x − x2k). Hence we conclude
that u is periodic with minimal period x2.

3. An Example

Let u be a nontrivial solution of (1.1) with u′(0) = 0 and u(0) = η ∈ (0, 1). Then by
the result of Section 2 we see that u is a periodic solution. Let ω be the minimal period
of u. It is interesting to know how the period varies with the initial value.

Let x1 ∈ (0, ω) be the maximum point of u. Then u(x1) = µ. Recall that F (η) =
F (µ). From (2.3) it follows that

u′(x)
√

2[F (η) − F (u(x))]
= 1, 0 < x < x1,

−u′(x)
√

2[F (η) − F (u(x))]
= 1, x1 < x < ω.

Hence by integrating the above two equations we obtain that
∫ µ

η

du
√

2[F (η) − F (u)]
= x1,

−
∫ η

µ

du
√

2[F (η) − F (u)]
= ω − x1.
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Hence x1 = ω/2 and so xn = nω/2. We conclude that

ω(η) =
√

2

∫ µ

η

du
√

F (η) − F (u)
. (3.1)

In general, it is very difficult to analyze the behavior of the improper integral (3.1).

Some remarks are made on the case f(u) = u − u−β, β ≥ 1, as follows.

In [1], the authors proved with computer aided that ω(η) is monotone increasing in

η with range (π,
√

2π) for f(u) = u − u−1.

For f(u) = u − u−3 (the affine curve evolution case), set G(u) = u2 + u−2. Then we

have µ = 1/η and

ω(η) = 2

∫ 1/η

η

du
√

G(η) − G(u)
.

Since by a change of variable v = 1/u

∫ 1/η

1

du
√

G(η) − G(u)
=

∫ 1

η

v−2dv
√

G(η) − G(v)
,

we obtain

ω = 2

∫ 1

η

(1 + u−2)du
√

G(η) − G(u)
. (3.2)

Introduce the variables

σ2 = 1 − G(u)

G(η)
, a2 = 1 − 2

G(η)
.

We compute that

2σdσ = −2
u − u−3

G(η)
du,

1 + u−2

u − u−3
=

1

u − u−1
,

(u − u−1)2 = G(u) − 2 = (1 − σ2)G(η) − 2 = G(η)(a2 − σ2).

Since u ∈ (0, 1), we have

u − u−1 = −
√

G(η)
√

a2 − σ2.

It follows from (3.2) that

ω = 2

∫ a

0

dσ√
a2 − σ2

= π.

We conclude that any nontrivial solution of (1.1) with f(u) = u − u−3 is periodic with

minimal period π. It is independent of the initial value η.
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Indeed, this has also been observed in [3]. Since any solution u satisfies the first

integral

u2 + (u′)2 + u−2 = 2C,

where C is a positive constant. Hence v = u2 satisfies the equation

v′′ + 4v = 4C,

and we obtain the explicit solution formula

v(x) = C +
√

C2 − 1 sin[2(x − x0)],

for some x0 ∈ R. Therefore, u has period π.
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