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Quenching for PorousMedium Equations

Burhan Selcuk

Abstract. This paper studies the following two porous medium equations with singular
boundary conditions. First, we obtain that finite time quenching on the boundary, as well as
kt blows up at the same finite time and lower bound estimates of the quenching time of the
equation

kt = (kn)xx + (1− k)−α, (x, t) ∈ (0, L)× (0, T )

with (kn)x (0, t) = 0, (kn)x (L, t) = (1 − k(L, t))−β , t ∈ (0, T ) and initial function
k (x, 0) = k0 (x), x ∈ [0, L]where n > 1, α and β are positive constants. Second, we obtain
that finite time quenching on the boundary, as well as kt blows up at the same finite time and
a local existence result by the help of steady state of the equation

kt = (kn)xx, (x, t) ∈ (0, L)× (0, T )

with (kn)x (0, t) = (1− k(0, t))−α, (kn)x (L, t) = (1− k(L, t))−β , t ∈ (0, T ) and initial
function k (x, 0) = k0 (x), x ∈ [0, L] where n > 1, α and β are positive constants.

1 Introduction

The porous medium equations appear in different branches of applied sciences where this simple
model appears in a natural way. It has been used to model fluid flow, chemical reactions, heat
transfer, diffusion, population dynamics, and so on. Nonlinear diffusion equations involving the
porous medium equations have been considered comprehensively (cf. the book by Vazquez [10]
and [2], [3], [6], [9], [11]). In literature, blow-up problem is studied rather than quenching prob-
lem for porous medium equations. Jiang, et. al. [3] studied to get blow-up properties in the
following porous medium equation

kt = (kn)xx + kα, (x, t) ∈ (0, 1)× (0, T ),

(kn)x (0, t) = 0, (kn)x (1, t) = kβ(1, t), t ∈ (0, T ),

k (x, 0) = k0 (x) , x ∈ [0, 1],

(1.1)
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where n > 1, α, β > 0, and T ∈ (0,∞). They obtained that finite-time blow up occurred
if and only if max(α, β) > 1, and blow up rate by using certain conditions. Recently, it has
been considered to get quenching properties of various reaction-diffusion equations with two
singular boundary conditions ([1], [4], [5], [7], [8], [9], [12], [13]). Among them, in [1], Chan
and Yuen studied the following problem

kt = kxx, (x, t) ∈ (0, a)× (0, T ),

kx (0, t) = (1− k(0, t))−α, kx (a, t) = (1− k(a, t))−β, t ∈ (0, T ),

k (x, 0) = k0 (x) , 0 ≤ k0 (x) < 1, x ∈ [0, a],

(1.2)

where T ≤ ∞ and α, β > 0. They showed that the finite-time quenching occured on the bound-
ary and kt blowed up by using certain assumptions. Further, they achieved to get non-quenching
criteria and quenching criteria using steady state. Selcuk and Ozalp [5] studied the following
problem: 

kt = kxx + (1− k)−α, (x, t) ∈ (0, 1)× (0, T ),

kx (0, t) = 0, kx (1, t) = (1− k(1, t))−β, t ∈ (0, T ),

k (x, 0) = k0 (x) , x ∈ [0, 1],

(1.3)

where T ≤ ∞ and a, α, β > 0. They showed that the finite-time quenching occured on the
boundary and kt blowed up by using certain assumptions as in [1]. Further, they achieved es-
timates for the quenching time. Zhi and Mu [12] studied the following problem with different
sources

kt = kxx + (1− k)−α, (x, t) ∈ (0, 1)× (0, T ),

kx (0, t) = k−β(0, t), kx (1, t) = 0, t ∈ (0, T ),

k (x, 0) = k0 (x) , x ∈ [0, 1],

where T ≤ ∞ and α, β > 0. They showed that the finite-time quenching occurred on the
boundary and achieved the quenching rate estimates is (T−t)1/2(β+1) ifT denotes the quenching
time. Zhu [13] studied the following problem with same sources as in [5]:

kt =
(
|kx|p−2 kx

)
x
− k−α, (x, t) ∈ (0, 1)× (0, T ),

kx (0, t) = k−β(0, t), kx (1, t) = 0, t ∈ (0, T ),

k (x, 0) = k0 (x) , x ∈ [0, 1],

where T ≤ ∞ and p > 1, α, β > 0. They showed that the finite-time quenching occurred on the
boundary. They also achieved estimates for the quenching rate and the quenching time.

In this paper, we consider the following two porous medium equations with two singular
sources to obtain quenching properties extracted from the solutions:

kt = (kn)xx + (1− k)−α, (x, t) ∈ (0, L)× (0, T ),

(kn)x (0, t) = 0, (kn)x (L, t) = (1− k(L, t))−β, t ∈ (0, T ),

k (x, 0) = k0 (x) , x ∈ [0, L],

(1.4)
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and 
kt = (kn)xx, (x, t) ∈ (0, L)× (0, T ),

(kn)x (0, t) = (1− k(0, t))−α, (kn)x (L, t) = (1− k(L, t))−β, t ∈ (0, T ),

k (x, 0) = k0 (x) , x ∈ [0, L],

(1.5)

where n > 1, α, β, L > 0 and T ∈ (0,∞). Let k0(x) be a positive initial function satisfying the
compatability conditions for (1.4) and (1.5).

Now, we give definition of quenching for the solution of (1.4) and (1.5). Let, Tβ be a finite
quenching time and γ be a quenching point with γ ∈ [0, L]. The solution of (1.4) and (1.5) are
called quenching such that

lim
t→T−

β

sup k(γ, t) → 1.

Motivated by (1.1),(1.2) and (1.3), we consider to get the quenching properties of (1.4) and (1.5).
In Section 2, we obtain that single quenching point is x = L in finite time and kt blows up at the
same time by using the certain assumptions in (1.4). Also, we obtain that lower bound estimates
for quenching time by using lower solutions of (1.4). In Section 3, we obtain that single quenching
point is x = L in finite time and kt blows up at the same time by using certain assumptions (1.5).
Finally, we get a result for local existence using steady state of (1.5).

2 Quenching for (1.4)

In this section, we assume that k0(x) (h0(x)) satisfies the following inequalities

knxx(x, 0) + (1− k(x, 0))−α ≥ 0 (hxx(x, 0) +
(
1− h1/n(x, 0)

)−α
≥ 0), (2.1)

kx(x, 0) > 0 (hx(x, 0) > 0). (2.2)

Also, we can easily prove the existence of positive local solution of (1.4) for some T > 0 using
assumption (2.2) as proved in [6].

2.1 Quenching properties

Firstly, one can easily show that k0(x) satisfying (2.1), (2.2) and compatibility conditions. Indeed,
we assume that the conditions (2.1) and (2.2) are proper.

Remark 1. k0(x) = 5
4x

5
8 satisfies compatibility conditions, (2.1) and (2.2), where n = 2, β =

0.29827, L = 1/2.

Remark 2. If we suppose (2.1) and (2.2) hold and use the maximum principles, then we have
kt > 0 and kx > 0 in (0, L]× (0, T ), respectively. (See Lemma 2.1 in [11])
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Theorem 2.1. k quenches in a finite time Tβ if k0(x) satisfies (2.1).

Proof. Suppose that k0(x) satisfies (2.1). Thus, we obtain

Θ = (1− k (L, 0))−β +

∫ L

0
(1− k (x, 0))−α dx > 0.

Let’s define an auxiliary function; Z (t) =
∫ L
0 (1− k (x, t)) dx, 0 < t < T . In that case, we

obtain

Z ′ (t) = − (1− k (L, t))−β −
∫ L

0
(1− k (x, t))−α dx ≤ −Θ,

from Remark 2. Hence, Z (t) ≤ Z(0)−Θt. Namely, Z (Tβ) = 0 for some Tβ = Z(0)/Θ, which
means quenching occurs in finite time Tβ for 0 < T ≤ Tβ .

If we apply the transform kn = h in (1.4), then we obtain the following problem,
ht = B(h)

(
hxx + (1− h1/n)−α

)
, (x, t) ∈ (0, L)× (0, T ),

hx (0, t) = 0, hx (L, t) = (1− h1/n(L, t))−β, t ∈ (0, T ),

h0 (x) = kn0 (x) , x ∈ [0, L],

(2.3)

where B(h) = nh(n−1)/n > 0 for h > 0. Instead of (1.4), we use (2.3) in the proof of the next
theorem for convenience.

Theorem 2.2. x = L is the single quenching point if h0(x) (k0(x)) satisfies (2.1) and (2.2).

Proof. Let w ∈ (0, L), ρ ∈ (0, T ) and ξ > 0. Define

Θ(x, t) = hx − ξ (x− (L− w)) in [L− w,L]× [ρ, T ).

Θ(x, t) supplies

Θt−B(h)Θxx−α(1−h1/n)−α−1Θ = B′(h)hx
ht

B(h)
+ξα(1−h1/n)−α−1 (x− (L− w)) > 0,

in (L− w,L) × (ρ, T ). Therefore, Θ(x, t) can’t have a negative interior minimum using the
maximum principle. Let ξ be a sufficient small constant. We have Θ(x, ρ) > 0 since hx(x, t) >
0 in (0, L]× (0, T ). Otherwise, we get

Θ(L− w, t) = hx(L− w, t) > 0,

Θ(L, t) =
(
1− h1/n(L, t)

)−β
− ξw > 1− ξw > 0,

where ξ is a sufficient small constant and t ∈ (ρ, T ). From the maximum principle, we achieve
that Θ(x, t) > 0, i.e. hx > ξ (x− (L− w)), (x, t) ∈ [L − w,L] × [ρ, T ). Taking integral with
respect to x from (L− w) to L, we obtain that

h(L− w, t) < h(L, t)− ξw2

2
< 1− ξw2

2
.

h doesn’t quench in [0, L) in (2.3). So, k doesn’t quench in [0, L) in (1.4).
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Theorem 2.3. lim
t→T−

β

kt(L, t) → ∞ if k0(x) satisfies (2.1) and (2.2).

Proof. Let χ be a positive constant. We will prove this theorem as in [1]. Assume that kt is
bounded on [0, L]× [0, T ). Thus,

kt < χ → (kn)xx + (1− k)−p < χ ⇒ (kn)xx < χ.

Taking integral respect to x from x to L, and then from 0 to L, we get the following inequality

L(1− k(L, t))−β < (χL2)/2 + kn(L, t)− kn(0, t).

This is a contradiction. Because, the right-hand side is finite while the left-hand side tends to
infinity as t → T−. Therefore, kt blows up somewhere.

2.2 Estimates for the quenching time

In this subsection, we aim to get upper bound estimates for the quenching time by the help of
lower solutions of (1.4).

Definition 1. A lower solution for (1.4) is called a function ζ ∈ C([0, L]× [0, T ))∩C2,1((0, L)×
(0, T )) that satisfies the following inequalities:

ζt − (ζn)xx ≤ (1− ζ)−α, 0 < x < L, 0 < t < T,

(ζn)x (0, t) = 0, (ζn)x (L, t) ≤ (1− ζ(L, t))−β, 0 < t < T, ,

ζ (x, 0) ≤ k0 (x) , 0 ≤ x ≤ L.

(2.4)

It is an upper solution when the reverse inequalities are satisfied.

Lemma 2.1. Suppose a lower solution of (1.4) in [0, L]× [0, T ) is ζ . Then we get k ≥ ζ in [0, L]×
[0, T ).

The proof of Lemma 2.1 is a trivial modification of this in [6].

Theorem 2.4. If 1 < n ≤ 1/L and α ≥ β, then x = L (< 1) is a quenching point.

Proof. Let’s define

ζ(x, t) = 1−

(
(β + 1)

(
L2 − x2 + ρ− t

)
2

)1/(β+1)

in [0, L]× [0, ρ],

where ρ = 2(1−m)β+1/(β + 1) andm = min
x∈[0,L]

k0(x) ≥ 0. We have

ζt − (ζn)xx − (1− ζ)−α
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=
1

2

(
(β + 1)

(
L2 − x2 + ρ− t

)
2

)− β
β+1

−

(
(β + 1)

(
L2 − x2 + ρ− t

)
2

)− α
β+1

−n

1−((β + 1)
(
L2 − x2 + ρ− t

)
2

) 1
β+1

n−1(
(β + 1)

(
L2 − x2 + ρ− t

)
2

)− β
β+1

−n(n− 1)x2

1−((β + 1)
(
L2 − x2 + ρ− t

)
2

) 1
β+1

n−2(
(β + 1)

(
L2 − x2 + ρ− t

)
2

)− 2β
β+1

−nβx2

1−((β + 1)
(
L2 − x2 + ρ− t

)
2

) 1
β+1

n−1(
(β + 1)

(
L2 − x2 + ρ− t

)
2

)− 2β+1
β+1

≤ 0

for α ≥ β, n > 1 and x ∈ (0, L), t ∈ (0, ρ]. Also, the following inequalities apply due to the
character of this problem

ζ(x, t) = 1−

(
(β + 1)

(
L2 − x2 + ρ− t

)
2

)1/(β+1)

< 1

and

0 <

(
(β + 1)

(
L2 − x2 + ρ− t

)
2

)1/(β+1)

< 1.

Further,

(ζn)x (0, t) = 0,

(ζn)x (L, t) ≤ (1− ζ(L, t))−β

for n ≤ 1/L and t ∈ (0, ρ]. Furthermore,

ζ(x, 0) = 1−

(
(β + 1)

(
L2 − x2 + ρ− t

)
2

)1/(β+1)

≤ 1−
(
(β + 1) ρ

2

)1/(β+1)

= m,

for x ∈ [0, L]. ζ(x, t) is a lower solution from definition 1. In addition, at t = ρ and x = L, we
get

ζ(L, ρ) = 1.

Thus, we get
k(L, ρ) ≥ ζ(L, ρ) = 1

by Lemma 2.1. Hence, x = L is a quenching point. Also, we get L < 1 since n > 1 and
n ≤ 1/L.
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Remark 3. We can easily calculate an upper bound for the quenching time. From Theorem 2.4,
maximum upper bound is Tβ = 2/(β + 1) (for α ≥ β and m = 0). From Remark 1, k0(x) =
5
4x

5
8 (for α ≥ β = 0.29827, L = 1/2 and n = 2), then we have Tβ = 1.5405. Finally, we obtain

a quenching rate

k(L, T ) ≥ 1− C1 (T − t)1/(β+1) in [0, L]× [0, T ],

where C1 =
(
β+1
2

)1/(β+1)
.

Theorem 2.5. An upper bound for the quenching time is (1 − m)α+1/(α + 1) if k0(x) satisfies
(2.1) and (2.2).

Proof. We benefit from the following problem:

ζt = (ζn)xx + (1− ζ)−α, (x, t) ∈ (0, L)× (0, T ),

(ζn)x (0, t) = 0 = (ζn)x (L, t), t ∈ (0, T ),

ζ(x, 0) = k0(x), x ∈ [0, L].

By Definition 1, ζ is a lower solution for the problem (1.4). We suppose that ζx(t) = ζxx(t) =

0 and ζ(0) ≤ k0(x) on [0, L]. Therefore, we focus the following initial-value problem instead of
the above problem

ζ ′(t) = (1− ζ(t))−α for t > 0, (2.5)

ζ(0) = m.

So, taking integral respect t from t to T in (2.5), we obtain that an upper bound for the quenching
time is

T ≤ (1−m)α+1/(α+ 1).

The theorem is proved.

Remark 4. FromTheorem 2.5, if we select n = 2, L = 1/2, k0(x) =
5
4x

5
8 as in Remark 1, then

we obtain that a maximum upper of quenching time Tβ is 1/(α+ 1) as in Remark 3.

3 Quenching for (1.5)

In this section, the proof of the following lemma and theorems are congruent to that in Section 2
and Section 3 in [1].
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3.1 Quenching properties

In this subsection, we examine to get single quenching point for (1.5).

Definition 2. ζ is called a lower solution of (1.5) if ζ ∈ C([0, L] × [0, T )) ∩ C2,1((0, L) ×
(0, T )) satisfies the following inequalities:

ζt ≤ (ζn)xx, 0 < x < L, 0 < t < T,

(ζn)x (0, t) ≥ (1− ζ(0, t))−α, (ζn)x (L, t) ≤ (1− ζ(L, t))−β , 0 < t < T,

ζ (x, 0) ≤ k0 (x) , 0 ≤ x ≤ L.

It is an upper solution when the reverse inequalities are satisfied.

Lemma 3.1. Assume r = r(x, t, r0) and p = p(x, t, p0) are solutions of (1.5)with r0 = r0(x) and
p0 = p0(x), respectively. If r0 ≤ p0 < 1, then r ≤ p on [0, L]× [0, T ).

The proof of Lemma 3.1 is a trivial modification of Theorem 1 given in [1].

If we apply the transform kn = h in (1.5), then we get following problem:
ht = B(h)hxx, 0 < x < L, 0 < t < T,

hx (0, t) = (1− h1/n(0, t))−α, hx (L, t) = (1− h1/n(L, t))−β, 0 < t < T,

h0 (x) = kn0 (x) , 0 ≤ x ≤ L,

(3.1)

where B(h) = nh(n−1)/n > 0 for h > 0. Instead of (1.5), we use (3.1) in the proofs of the next
following remark and theorems for convenience.

Remark 5. It is easily proved that, if B(h0)h
′′
0 (x) ≥ 0 in [0, L], then ht ≥ 0 in [0, L] × (0, T ).

Also, ht > 0 in (0, L)× (0, T ) using the strong maximum principle.

Theorem 3.1. If B(h0)h
′′
0 (x) ≥ 0 in [0, L], then (3.1) has only quenching point x = L.

Proof. We know that hx(0, t) = (1− h1/n(0, t))−α > 1 and hxx = ht/(B(h)) > 0 in (0, L)×
(0, T ). Thus, hx is an non-decreasing function and so, hx(x, t) > 1 in (0, L) × (0, T ). Assume
ξ ∈ (0, L). Taking integral this inequality with respect to x from L− ξ to L, we obtain

h(L− ξ, t) < h(L, t)− ξ < 1− ξ.

So h hasn’t quench point in [0, L). This completes the proof.

Theorem 3.2. Assume that h(x, t) quenches finite time. Thus, ht blows up at the same time.
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Proof. Assume that ht is bounded holds. Namely ht < χ on [0, L]× [0, T ) since χ > 0. We get

hxx <
χ

n
h(1−n)/n.

Multiplying the inequality by hx, then integrating the inequality with respect to x from 0 toL, we
obtain

1

2

(
(1− h1/n(L, t))−β − (1− h1/n(0, t))−α

)
< χ

(
h1/n(L, t)− h1/n(0, t)

)
.

We see that the left-hand side tends to positive infinity, while the right-hand side is finite if Tβ is
finite quenching time, as t → T−

β . This is a contradiction. Hence, we get lim
t→T−

β

ht(L, t) = ∞

fromTheorem 3.1.

3.2 Steady State

In this subsection, we examine the steady state of (1.5)

(Kn)xx = 0, (Kn)x(0) = (1−K(0))−α, (Kn)x (L) = (1−K(L))−β. (3.2)

In (3.2), we apply the transformKn = H , then we get the following problem:

Hxx = 0, Hx (0) = (1−H1/n(0))−α, Hx (L) = (1−H1/n(L))−β. (3.3)

We have
H = (I +Mx)n,

where
nMIn−1 = (1− I)−α, nM(I +ML)n−1 = (1− (I +ML))−β ,

which gives
L(I) = (1− 2I)/M,

since α = β = n− 1. We note that L(I) > 0 for 0 ≤ I < 1/2 implies α = β = n− 1. Also, we
get maximum value of L(I) = 1/M for I = 0. We callM = maxL(I).

Lemma 3.2. (3.2) has a solution h(≤ 1) since 0 ≤ I < 1/2 and α = β = n− 1.

Proof. If α = β = n − 1, then (3.3) has a solution if and only if 0 < L ≤ M since 0 ≤ I <

1/2.

Theorem 3.3. h exists globally since h0 ≤ H(0), α = β = n− 1 and L ∈ (0,M ].

Proof. By definition 2 and Lemma 3.1, h ≤ H . Hence h exists globally. So k exists globally.
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