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THREE-DIMENSIONAL CR-SUBMANIFOLDS IN THE NEARLY

KAEHLER SIX-SPHERE SATISFYING B.Y. CHEN’S BASIC EQUALITY

TOORU SASAHARA

Abstract. B. Y. Chen introduced in [3] an important Riemannian invariant for a Riemannian

manifold and obtained a sharp inequality between his invariant and the squared mean curvature

for arbitrary submanifolds in real space forms. In this paper we investigate 3-dimensional CR-

submanifolds in the nearly Kaehler 6-sphere which realize the equality case of the inequality.

1. Introduction

Let Mn be an n-dimensional submanifold Mn in an m-dimensional real space form

M̃m(c) of constant sectional curvature c. In [3] B. Y. Chen introduces a Riemannian
invariant δM on Mn defined by δM (p) = τ(p)− inf K(p), where inf K(p) is the infimum of

the sectional curvature K(π) at p, π runs over all planes in the tangent space TpM
n and

τ is the scalar curvature given by τ =
∑

i<j

K(ei ∧ ej) for an orthonormal basis e1, . . . , en

of TpM
n. Chen’s invariant vanishes trivially when n = 2.

In [3] he proves the following basic inequality for arbitrary submanifolds Mn in a real
space form M̃m(c):

δM ≤
n2(n − 2)

2(n − 1)
||H ||2 +

1

2
(n + 1)(n − 2)c, (1.1)

where ||H ||2 is the squared mean curvature. It is a natural and very interesting problem
to investigate and to understand submanifolds of dimension ≥ 3 satisfying the equality

case of the inequality, i.e.

δM =
n2(n − 2)

2(n − 1)
||H ||2 +

1

2
(n + 1)(n − 2)c, (1.2)

which is known as Chen’s basic equality (see, for instance [10]). For such submanifolds

there is a canonical distribution defined by

D(p) = {X ∈ TpM
n | (n − 1)h(X, Y ) = n〈X, Y 〉H, ∀Y ∈ TpM

n},
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where h is the second fundamental form of Mn in M̃m(c). If the dimension of D(p) is

constant, it is shown in [3] that the distribution D is completely integrable.

When M is a submanifold of an almost Hermitian manifold M̃ , a subspace V of

TpM is called totally real if JV is contained in the normal space T⊥

p M of M at p. The

submanifold M is called totally real if each tangent space of M is totally real; and M

is called a CR-submanifold if there exists a differential holomorphic distribution H on

M such that the orthogonal complement H⊥ of H in TM is a totally real distribution

[1]. A CR-submanifold is called proper if it is neither totally real (i.e., H⊥ = TM) nor

holomorphic (i.e., H = TM).

Submanifolds satisfying equality (1.2) have been studied recently by many geometers
(see, for instance [2-6, 8-11]). In particular, 3-dimensional totally real submanifolds sat-

isfying Chen’s basic equality in the nearly Kaehler 6-sphere S6(1) have been completely

classified in [11] by F. Dillen and L. Vrancken.

In [5] Chen also established the basic inequality for arbitrary submanifolds in complex

space forms of constant holomorphic sectional curvature 4c as follows:

δM ≤
n2(n − 2)

2(n − 1)
||H ||2 +

1

2
(n2 + 2n − 2)c (for c > 0),

δM ≤
n2(n − 2)

2(n − 1)
||H ||2 +

1

2
(n + 1)(n − 2)c (for c < 0).

He proved that a submanifold of complex projective space satisfies Chen’s basic equal-

ity if and only if the submanifold is a totally geodesic complex submanifold. Moreover

in [7] he and L. Vrancken completely classified proper CR-submanifolds of complex hy-

perbolic spaces which satisfy the basic equality.

In complex hyperbolic space, the canonical distribution D of submanifolds satisfying

Chen’s basic equality is totally real.

In this paper, we investigate 3-dimensional CR-submanifolds in the nearly Kaehler

6-sphere S6(1) satisfying Chen’s basic equality (1.2) under the condition that D is totally

real. Our main result is the following.

Main Theorem. There exist no 3-dimensional proper CR-submanifold in S6(1)

satisfying Chen’s basic equality under the condition that D is totally real.

2. The Nearly Kaehler Structure of S6(1)

We give a brief explanation how the standard nearly Kaehler structure on S6(1) arises

in a natural manner from Cayley multiplication. For elementary facts about Cayley

numbers and their automorphism group G2, we refer the reader to [14] and [17].

The multiplication on Cayley numbers ϑ may be used to define a vector cross product

on purely imaginary Cayley numbers R
7 by using the formula

u × v =
1

2
(uv − vu), (2.1)
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while the standard inner product on R
7 is given by

〈u, v〉 = −
1

2
(uv + vu). (2.2)

It is elementary [12] to show that the triple scalar product 〈u × v, w〉 is skew symmetric
in u, v, w.

Let J be the automorphism of the tangent bundle TS6 of S6(1) defined by

Ju = x × u, u ∈ TxS6(1), x ∈ S6(1).

It is clear that J is an almost complex structure on S6(1) and J is in fact a nearly
Kaehler structure on S6(1) in the sense that (∇̃uJ)u = 0, for any vector u tangent to
S6(1), where ∇̃ denotes the metric connection of S6(1). We define the corresponding
skew-symmetric (2,1)-tensor field G by

G(X, Y ) = (∇̃XJ)(Y ).

We know from [16] that this tensor field satisfies the following property:

G(X, JY ) + JG(X, Y ) = 0. (2.3)

For further information on the properties of G, we refer to [6] and [16].

3. Proof of the Main Theorem

We need the following lemmas.

Lemma 3.1. Let M be a CR-submanifold of a nearly Kaehler manifold M̃ . Denote

by T⊥M = JH⊥⊕ν the orthogonal decomposition of the normal bundle, where H⊥ is the

totally real distribution and ν a complex subbundle of T⊥M . Then the shape operator A

satisfies

〈AξJX, X〉 = −〈AJξX, X〉, (3.1)

for any vector field X in the holomorphic distribution H and ξ in ν.

Proof. For any vector field X in the holomorphic distribution H, we have

0 = (∇̃XJ)(X) = ∇XJX + h(X, JX)− J(∇XX) − Jh(X, X),

where ∇ is the metric connection of M with respect to the induced metric. Hence we
obtain 〈h(X, JX), ξ〉 = 〈Jh(X, X), ξ〉 for any vector field ξ ∈ ν.

Lemma 3.2. Let M be a 3-dimensional proper minimal CR-submanifold in S6(1).
If M satisfies equality (1.2) and D is totally real, then D⊥ is integrable.

Proof. Since D⊥ is a complex plane (i.e,D⊥ = H), we can choose an orthonormal
frame field {E1, E2} on D⊥ such that JE1 = E2. By the minimality of M and lemma
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3.2 of [3], the second fundamental h satisfies h(E1, JE2) = h(JE1, E2). Moreover from
(2.3) we have G(E1, E2) = 0. Hence, by virtue of [1, page 26], D⊥ is integrable.

A submanifold is said to be linearlyfull in Sm(1) if it does not lie in any totally
geodesic submanifold of Sm(1).

Lemma 3.3. Let M be a 3-dimensional proper minimal CR-submanifold in S6(1).
If M satisfies equality (1.2) and D is totally real, then M is linearly full in a totally

geodesic S5(1).

Proof. Let {E1, E2, E3} be an orthonormal frame field on M such that {E1, E2} ∈ H,
E3 ∈ H⊥ which diagonalize the shape operator AJE3

. We may assume JE1 = E2. For
any X ∈ TM , we have

−AJE3
X + ∇⊥

XJE3 = ∇̃XJE3 = (∇̃XJ)(E3) + J∇XE3 + Jh(X, E3). (3.2)

From (3.2) and lemma 3.2 of [3], we have

∇⊥

E3
JE3 = J(∇E3

E3) = 0. (3.3)

Further from (3.2) and lemma 3.2 of [3], we have

−AJE3
E1 + ∇⊥

E1
JE3 = (∇̃E1

J)(E3) + J(∇E1
E3). (3.4)

Since G is skew-symmetric, we find

(∇̃E1
J)(E3) = −(∇̃E3

J)(E1)

= −∇E3
E2 + J(∇E3

E1) (3.5)

From (3.4) and (3.5), we obtain ∇⊥

E1
JE3 ∈ JH⊥ which implies ∇⊥

E1
JE3 = 0 because

JH⊥ is of rank one and JE3 is of unit length. Similarly, we also have ∇⊥

E2
JE3 = 0

Hence, JE3 is a parallel normal vector field. Thus, from the equation of Ricci, we have
[AJE3

, Aξ] = 0.
If AJE3

≡ 0, the first normal space ν is parallel i.e. ∇⊥ξ ∈ ν, ξ ∈ ν by the parallelism
of JE3. Therefore, by Erbacher’s theorem [12], M must be contained in a totally geodesic
S5(1).

If AJE3
6≡ 0, we put V = {p ∈ M : detAJE3

6= 0}. In this case, the shape operators
take the following form on V :

AJE3
=





a 0 0

0 −a 0
0 0 0



 , Aξi
=





hi
11 0 0

0 −hi
11 0

0 0 0



 , (3.6)

ξi ∈ ν, i = 1, 2.

Combining (3.1) with (3.6) yields Aξ1
= Aξ2

= 0 which imply that V is contained in a
totally geodesic S4(1), since JE3 is a parallel normal vector field. Therefore, TS4(1)|V
is spanned by {E1, E2, E3, JE3}. A result of Gray in [13] shows that this is impossible.
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For a given orthonormal frame field {E1, E2, E3}, define local functions γk
ij by γk

ij =
〈∇Ei

Ej , Ek〉.

Lemma 3.4. Let M be a 3-dimensional proper minimal CR-submanifold in S6(1).
If M satisfies equality (1.2) and D is totally real, then, with respect to some suitable

orthonormal frame field {E1, E2, E3} on M , we have

γ1
33 = γ2

33 = 0 (3.7)

γ3
11 = γ3

22 (3.8)

γ3
12 = −γ3

21 (3.9)

Proof. Let {E1, E2, E3} be an orthonormal frame field mentioned in lemma 3.3.
From AJE3

= 0 and (3.1), we know that the second fundamental form satisfies

h(E1, E1) = φξ, h(E2, E2) = −φξ, h(E3, E3) = 0,

h(E1, E2) = φJξ, h(E1, E3) = 0, h(E2, E3) = 0,

where φ is a function and ξ ∈ ν. Thus, from (∇h)(E1, E3, E3) = (∇h)(E3, E1, E3), we
obtain ∇E3

E3 = 0. Also from (∇h)(E3, E1, E1) = (∇h)(E1, E3, E1), we obtain (3.8).
Finally from (∇h)(E1, E2, E3) = (∇h)(E2, E1, E3), we obtain (3.9).

From lemma 3.2, we know that the distribution D⊥ locally spanned by E1 and E2 is
an integrable distribution. Hence we get γ3

12 = γ3
21 = 0.

Similarly as [6], we have the following lemmas using lemma 3.4.

Lemma 3.5. The local function γ3
11 satisfies the following system of differential

equations:

E1(γ
3
11) = 0, E2(γ

3
11) = 0.

Lemma 3.6. Under the hypothesis of Lemma 3.4. Then, on a neighborhood of a

given point p ∈ M , M is the warped product of an open interval (−ǫ, ǫ) and N2, N2 the

leaf of the distribution D⊥ through p.

From lemma 3.6 we may prove the following lemma.

Lemma 3.7. Let M be a 3-dimensional minimal CR-submanifold in S6(1). If M

satisfies equality (1.2) and D is totally real, then M is a totally real submanifold.

Proof. If M is proper, we obtain from Lemma 3.6 that M is locally a warped product
and that the distribution on M determined by the product structure coincide with D
and D⊥. Moreover, since h(D,D⊥) = 0, locally M is immersed as a warped product;
furthermore, the first factor is totally geodesic, and therefore we can assume that the
first factor of the corresponding warped product decomposition is 1-dimensional. Since
the decomposition into a warped product with one-dimensional first factor is unique up
to isometries, M is thus immersed as follows [6]:
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Let S1
+(1) = {(x1, x2) ∈ R

2| ||x|| = 1 and x1 > 0} be a half circle, S5(1) the

unit hypersphere of R
6, and N the unit vector orthogonal to the hyperplane containing

S5(1). We parametrize the half circle S1
+(1) by (−π

2 , π
2 ) → S1

+(1), t 7→ (cos(t), sin(t)).

Let f : M2 → S5(1) be a minimal immersion of a surface into S5(1). Then the associated
warped product immersion is given by

x : (−
π

2
,
π

2
) ×cos(t) M2 → S6(1), (t, p) 7→ sin(t)N + cos(t)f(p).

Let X be a vector field tangent to M2. Then

x∗(
∂

∂t
) = cos(t)N − sin(t)f(p), x∗(X) = cos(t)f∗(X),

and

Jx∗(
∂

∂t
) = N × f(p), Jx∗(X) = cos(t) sin(t)N × f∗(X) + cos2(t)Jf∗(X).

Since D = span{ ∂
∂t
} is totally real, we have

〈N × f(p), f∗(X)〉 = 0. (3.10)

Differentiating (3.10) yields

〈N × f∗(Y ), f∗(X)〉 + 〈N × p, h(X, Y )〉 = 0, (3.11)

for any vector fields X and Y tangent to M2. Because the first term in (3.11) is skew

symmetric and the second is symmetric, both terms must vanish. Hence we obtain

〈N × f∗(X), f∗(Y )〉 = 0

which implies D⊥ is not a complex plane. This is a contradiction. Hence, M must be

nonproper.

Lemma 3.8. Let M be a 3-dimensional nonminimal CR-submanifold in S6(1) which

satisfies equality (1.2). If D is totally real, then H ∈ JD.

Proof Let {E1, E2, E3} be an orthonormal frame field on M such that {E1, E2} ∈ H.
Without loss of generality we may assume JE1 = E2. Thus, (3.1) gives

〈AξE1, E1〉 + 〈AξJE1, JE1〉 = 〈AJξJE1, E1〉 − 〈AJξE1, JE1〉 = 0

for every vector field ξ ∈ ν. Therefore, the mean curvature vector H lies in JD.

From lemma 3.8 we have the following.

Lemma 3.9. Let M be a 3-dimensional nonminimal proper CR-submanifold in S6(1)

which satisfies equality (1.2). Then D is not totally real.
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Proof. If D is totally real, we have H ∈ JD from lemma 3.8. Without loss of

generality we may assume JE3 is parallel to the mean curvature vector. By (3.2), we

obtain that JE3 is a parallel normal vector field. Further, form the equation of Ricci we

have [AJE3
, Aξ] = 0 for any ξ ∈ ν. By lemma 3.2 of [3], this implies that, with respect to

a suitable orthonormal frame field with E2 = JE1, the shape operators either take the

form:

AJE3
=





a 0 0

0 a 0

0 0 2a



 , Aξi
=





hi
11 hi

12 0

hi
12 −hi

11 0

0 0 0



 , i = 1, 2, (3.12)

or take the form:

AJE3
=





b 0 0
0 c 0

0 0 b + c



 , Aξi
=





hi
11 0 0
0 −hi

11 0

0 0 0



 , i = 1, 2, (3.13)

where a, b, c are functions such that b 6= c and ξi ∈ ν.

If the shape operators take the form (3.13), then by combining (3.1) with (3.13), we

obtain Aξ1
= Aξ2

= 0. Since JE3 is a parallel normal vector field, this implies that M

is contained in a totally geodesic S4(1). Since the tangent space of this sphere S4(1) is
spanned by {E1, E2, E3, JE3}, S4(1) is an almost complex submanifold in S6(1) which

is a contradiction. Hence the shape operators must take the form (3.12). Therefore, the

second fundamental form satisfies

h(E1, E1) = aJE3 + φξ, h(E2, E2) = aJE3 − φξ, h(E3, E3) = 2aJE3

h(E1, E3) = 0, h(E1, E2) = φJξ, h(E2, E3) = 0, (3.14)

for some function φ and some ξ ∈ ν. From (3.14) we find

(∇h)(E1, E2, E3) = −γ3
12aJE3 − γ1

13φJξ + γ2
13φξ, (3.15)

(∇h)(E2, E1, E3) = −γ3
21aJE3 − γ2

23φJξ − γ1
23φξ. (3.16)

If we put W1 = {p ∈ M : a(p) 6= 0} and W2 = {q ∈ M : φ(q) 6= 0}, then the equation
of Codazzi, (3.15) and (3.16) yield

γ3
12 = γ3

21 = 0 on W1 ∩ W2

which implies that D⊥ is integrable on W1 ∩ W2. Hence by virtue of [1, page 26], we

conclude that W1 ∩W2 is minimal, which is a contradiction. Hence, D cannot be totally
real.

The main theorem follows from Lemma 3.7 and Lemma 3.9.
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