THREE-DIMENSIONAL CR-SUBMANIFOLDS IN THE NEARLY KAEHLER SIX-SPHERE SATISFYING B.Y. CHEN'S BASIC EQUALITY

TOORU SASAHARA

Abstract

B. Y. Chen introduced in [3] an important Riemannian invariant for a Riemannian manifold and obtained a sharp inequality between his invariant and the squared mean curvature for arbitrary submanifolds in real space forms. In this paper we investigate 3-dimensional CRsubmanifolds in the nearly Kaehler 6 -sphere which realize the equality case of the inequality.

1. Introduction

Let M^{n} be an n-dimensional submanifold M^{n} in an m-dimensional real space form $\tilde{M}^{m}(c)$ of constant sectional curvature c. In [3] B. Y. Chen introduces a Riemannian invariant δ_{M} on M^{n} defined by $\delta_{M}(p)=\tau(p)-\inf K(p)$, where $\inf K(p)$ is the infimum of the sectional curvature $K(\pi)$ at p, π runs over all planes in the tangent space $T_{p} M^{n}$ and τ is the scalar curvature given by $\tau=\sum_{i<j} K\left(e_{i} \wedge e_{j}\right)$ for an orthonormal basis e_{1}, \ldots, e_{n} of $T_{p} M^{n}$. Chen's invariant vanishes trivially when $n=2$.

In [3] he proves the following basic inequality for arbitrary submanifolds M^{n} in a real space form $\tilde{M}^{m}(c)$:

$$
\begin{equation*}
\delta_{M} \leq \frac{n^{2}(n-2)}{2(n-1)}\|H\|^{2}+\frac{1}{2}(n+1)(n-2) c \tag{1.1}
\end{equation*}
$$

where $\|H\|^{2}$ is the squared mean curvature. It is a natural and very interesting problem to investigate and to understand submanifolds of dimension ≥ 3 satisfying the equality case of the inequality, i.e.

$$
\begin{equation*}
\delta_{M}=\frac{n^{2}(n-2)}{2(n-1)}\|H\|^{2}+\frac{1}{2}(n+1)(n-2) c, \tag{1.2}
\end{equation*}
$$

which is known as Chen's basic equality (see, for instance [10]). For such submanifolds there is a canonical distribution defined by

$$
\mathcal{D}(p)=\left\{X \in T_{p} M^{n} \mid(n-1) h(X, Y)=n\langle X, Y\rangle H, \forall Y \in T_{p} M^{n}\right\}
$$

Received December 9, 1999.

2000 Mathematics Subject Classification. Primary 53C40; secondary 53A10.
Key words and phrases. CR-submanifold, nearly Kaehler six-sphere, Chen's equality.
where h is the second fundamental form of M^{n} in $\tilde{M}^{m}(c)$. If the dimension of $\mathcal{D}(p)$ is constant, it is shown in [3] that the distribution \mathcal{D} is completely integrable.

When M is a submanifold of an almost Hermitian manifold \tilde{M}, a subspace V of $T_{p} M$ is called totally real if $J V$ is contained in the normal space $T_{p}^{\perp} M$ of M at p. The submanifold M is called totally real if each tangent space of M is totally real; and M is called a $C R$-submanifold if there exists a differential holomorphic distribution \mathcal{H} on M such that the orthogonal complement \mathcal{H}^{\perp} of \mathcal{H} in $T M$ is a totally real distribution [1]. A $C R$-submanifold is called proper if it is neither totally real (i.e., $\mathcal{H}^{\perp}=T M$) nor holomorphic (i.e., $\mathcal{H}=T M$).

Submanifolds satisfying equality (1.2) have been studied recently by many geometers (see, for instance [2-6, 8-11]). In particular, 3-dimensional totally real submanifolds satisfying Chen's basic equality in the nearly Kaehler 6 -sphere $S^{6}(1)$ have been completely classified in [11] by F. Dillen and L. Vrancken.

In [5] Chen also established the basic inequality for arbitrary submanifolds in complex space forms of constant holomorphic sectional curvature $4 c$ as follows:

$$
\begin{aligned}
& \delta_{M} \leq \frac{n^{2}(n-2)}{2(n-1)}\|H\|^{2}+\frac{1}{2}\left(n^{2}+2 n-2\right) c \quad(\text { for } \quad c>0) \\
& \delta_{M} \leq \frac{n^{2}(n-2)}{2(n-1)}\|H\|^{2}+\frac{1}{2}(n+1)(n-2) c \quad(\text { for } \quad c<0) .
\end{aligned}
$$

He proved that a submanifold of complex projective space satisfies Chen's basic equality if and only if the submanifold is a totally geodesic complex submanifold. Moreover in [7] he and L. Vrancken completely classified proper $C R$-submanifolds of complex hyperbolic spaces which satisfy the basic equality.

In complex hyperbolic space, the canonical distribution \mathcal{D} of submanifolds satisfying Chen's basic equality is totally real.

In this paper, we investigate 3-dimensional $C R$-submanifolds in the nearly Kaehler 6 -sphere $S^{6}(1)$ satisfying Chen's basic equality (1.2) under the condition that \mathcal{D} is totally real. Our main result is the following.

Main Theorem. There exist no 3-dimensional proper CR-submanifold in $S^{6}(1)$ satisfying Chen's basic equality under the condition that \mathcal{D} is totally real.

2. The Nearly Kaehler Structure of $S^{6}(1)$

We give a brief explanation how the standard nearly Kaehler structure on $S^{6}(1)$ arises in a natural manner from Cayley multiplication. For elementary facts about Cayley numbers and their automorphism group G_{2}, we refer the reader to [14] and [17].

The multiplication on Cayley numbers ϑ may be used to define a vector cross product on purely imaginary Cayley numbers \mathbb{R}^{7} by using the formula

$$
\begin{equation*}
u \times v=\frac{1}{2}(u v-v u), \tag{2.1}
\end{equation*}
$$

while the standard inner product on \mathbb{R}^{7} is given by

$$
\begin{equation*}
\langle u, v\rangle=-\frac{1}{2}(u v+v u) \tag{2.2}
\end{equation*}
$$

It is elementary [12] to show that the triple scalar product $\langle u \times v, w\rangle$ is skew symmetric in u, v, w.

Let J be the automorphism of the tangent bundle $T S^{6}$ of $S^{6}(1)$ defined by

$$
J u=x \times u, \quad u \in T_{x} S^{6}(1), \quad x \in S^{6}(1)
$$

It is clear that J is an almost complex structure on $S^{6}(1)$ and J is in fact a nearly Kaehler structure on $S^{6}(1)$ in the sense that $\left(\tilde{\nabla}_{u} J\right) u=0$, for any vector u tangent to $S^{6}(1)$, where $\tilde{\nabla}$ denotes the metric connection of $S^{6}(1)$. We define the corresponding skew-symmetric (2,1)-tensor field G by

$$
G(X, Y)=\left(\tilde{\nabla}_{X} J\right)(Y)
$$

We know from [16] that this tensor field satisfies the following property:

$$
\begin{equation*}
G(X, J Y)+J G(X, Y)=0 \tag{2.3}
\end{equation*}
$$

For further information on the properties of G, we refer to [6] and [16].

3. Proof of the Main Theorem

We need the following lemmas.
Lemma 3.1. Let M be a CR-submanifold of a nearly Kaehler manifold \tilde{M}. Denote by $T^{\perp} M=J \mathcal{H}^{\perp} \oplus \nu$ the orthogonal decomposition of the normal bundle, where \mathcal{H}^{\perp} is the totally real distribution and ν a complex subbundle of $T^{\perp} M$. Then the shape operator A satisfies

$$
\begin{equation*}
\left\langle A_{\xi} J X, X\right\rangle=-\left\langle A_{J \xi} X, X\right\rangle \tag{3.1}
\end{equation*}
$$

for any vector field X in the holomorphic distribution \mathcal{H} and ξ in ν.
Proof. For any vector field X in the holomorphic distribution \mathcal{H}, we have

$$
0=\left(\tilde{\nabla}_{X} J\right)(X)=\nabla_{X} J X+h(X, J X)-J\left(\nabla_{X} X\right)-J h(X, X)
$$

where ∇ is the metric connection of M with respect to the induced metric. Hence we obtain $\langle h(X, J X), \xi\rangle=\langle J h(X, X), \xi\rangle$ for any vector field $\xi \in \nu$.

Lemma 3.2. Let M be a 3-dimensional proper minimal CR-submanifold in $S^{6}(1)$. If M satisfies equality (1.2) and \mathcal{D} is totally real, then \mathcal{D}^{\perp} is integrable.

Proof. Since \mathcal{D}^{\perp} is a complex plane $\left(i . e, \mathcal{D}^{\perp}=\mathcal{H}\right)$, we can choose an orthonormal frame field $\left\{E_{1}, E_{2}\right\}$ on \mathcal{D}^{\perp} such that $J E_{1}=E_{2}$. By the minimality of M and lemma
3.2 of [3], the second fundamental h satisfies $h\left(E_{1}, J E_{2}\right)=h\left(J E_{1}, E_{2}\right)$. Moreover from (2.3) we have $G\left(E_{1}, E_{2}\right)=0$. Hence, by virtue of [1, page 26], \mathcal{D}^{\perp} is integrable.

A submanifold is said to be linearlyfull in $S^{m}(1)$ if it does not lie in any totally geodesic submanifold of $S^{m}(1)$.

Lemma 3.3. Let M be a 3-dimensional proper minimal $C R$-submanifold in $S^{6}(1)$. If M satisfies equality (1.2) and \mathcal{D} is totally real, then M is linearly full in a totally geodesic $S^{5}(1)$.

Proof. Let $\left\{E_{1}, E_{2}, E_{3}\right\}$ be an orthonormal frame field on M such that $\left\{E_{1}, E_{2}\right\} \in \mathcal{H}$, $E_{3} \in \mathcal{H}^{\perp}$ which diagonalize the shape operator $A_{J E_{3}}$. We may assume $J E_{1}=E_{2}$. For any $X \in T M$, we have

$$
\begin{equation*}
-A_{J E_{3}} X+\nabla_{X}^{\perp} J E_{3}=\tilde{\nabla}_{X} J E_{3}=\left(\tilde{\nabla}_{X} J\right)\left(E_{3}\right)+J \nabla_{X} E_{3}+J h\left(X, E_{3}\right) \tag{3.2}
\end{equation*}
$$

From (3.2) and lemma 3.2 of [3], we have

$$
\begin{equation*}
\nabla{\stackrel{\rightharpoonup}{E_{3}}}_{\perp}^{E_{3}}=J\left(\nabla_{E_{3}} E_{3}\right)=0 \tag{3.3}
\end{equation*}
$$

Further from (3.2) and lemma 3.2 of [3], we have

$$
\begin{equation*}
-A_{J E_{3}} E_{1}+\nabla_{E_{1}}^{\perp} J E_{3}=\left(\tilde{\nabla}_{E_{1}} J\right)\left(E_{3}\right)+J\left(\nabla_{E_{1}} E_{3}\right) \tag{3.4}
\end{equation*}
$$

Since G is skew-symmetric, we find

$$
\begin{align*}
\left(\tilde{\nabla}_{E_{1}} J\right)\left(E_{3}\right) & =-\left(\tilde{\nabla}_{E_{3}} J\right)\left(E_{1}\right) \\
& =-\nabla_{E_{3}} E_{2}+J\left(\nabla_{E_{3}} E_{1}\right) \tag{3.5}
\end{align*}
$$

From (3.4) and (3.5), we obtain $\nabla \frac{\perp}{E_{1}} J E_{3} \in J \mathcal{H}^{\perp}$ which implies $\nabla \frac{E_{1}}{E_{1}} J E_{3}=0$ because $J \mathcal{H}^{\perp}$ is of rank one and $J E_{3}$ is of unit length. Similarly, we also have $\nabla_{E_{2}}^{\perp} J E_{3}=0$ Hence, $J E_{3}$ is a parallel normal vector field. Thus, from the equation of Ricci, we have $\left[A_{J E_{3}}, A_{\xi}\right]=0$.

If $A_{J E_{3}} \equiv 0$, the first normal space ν is parallel i.e. $\nabla^{\perp} \xi \in \nu, \xi \in \nu$ by the parallelism of $J E_{3}$. Therefore, by Erbacher's theorem [12], M must be contained in a totally geodesic $S^{5}(1)$.

If $A_{J E_{3}} \not \equiv 0$, we put $V=\left\{p \in M: \operatorname{det} A_{J E_{3}} \neq 0\right\}$. In this case, the shape operators take the following form on V :

$$
\begin{gather*}
A_{J E_{3}}=\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & -a & 0 \\
0 & 0 & 0
\end{array}\right), \quad A_{\xi_{i}}=\left(\begin{array}{ccc}
h_{11}^{i} & 0 & 0 \\
0 & -h_{11}^{i} & 0 \\
0 & 0 & 0
\end{array}\right), \tag{3.6}\\
\xi_{i} \in \nu, \quad i=1,2 .
\end{gather*}
$$

Combining (3.1) with (3.6) yields $A_{\xi_{1}}=A_{\xi_{2}}=0$ which imply that V is contained in a totally geodesic $S^{4}(1)$, since $J E_{3}$ is a parallel normal vector field. Therefore, $\left.T S^{4}(1)\right|_{V}$ is spanned by $\left\{E_{1}, E_{2}, E_{3}, J E_{3}\right\}$. A result of Gray in [13] shows that this is impossible.

For a given orthonormal frame field $\left\{E_{1}, E_{2}, E_{3}\right\}$, define local functions $\gamma_{i j}^{k}$ by $\gamma_{i j}^{k}=$ $\left\langle\nabla_{E_{i}} E_{j}, E_{k}\right\rangle$.

Lemma 3.4. Let M be a 3 -dimensional proper minimal $C R$-submanifold in $S^{6}(1)$. If M satisfies equality (1.2) and \mathcal{D} is totally real, then, with respect to some suitable orthonormal frame field $\left\{E_{1}, E_{2}, E_{3}\right\}$ on M, we have

$$
\begin{align*}
& \gamma_{33}^{1}=\gamma_{33}^{2}=0 \tag{3.7}\\
& \gamma_{11}^{3}=\gamma_{22}^{3} \tag{3.8}\\
& \gamma_{12}^{3}=-\gamma_{21}^{3} \tag{3.9}
\end{align*}
$$

Proof. Let $\left\{E_{1}, E_{2}, E_{3}\right\}$ be an orthonormal frame field mentioned in lemma 3.3. From $A_{J E_{3}}=0$ and (3.1), we know that the second fundamental form satisfies

$$
\begin{aligned}
& h\left(E_{1}, E_{1}\right)=\phi \xi, \quad h\left(E_{2}, E_{2}\right)=-\phi \xi, \quad h\left(E_{3}, E_{3}\right)=0, \\
& h\left(E_{1}, E_{2}\right)=\phi J \xi, \quad h\left(E_{1}, E_{3}\right)=0, \quad h\left(E_{2}, E_{3}\right)=0
\end{aligned}
$$

where ϕ is a function and $\xi \in \nu$. Thus, from $(\nabla h)\left(E_{1}, E_{3}, E_{3}\right)=(\nabla h)\left(E_{3}, E_{1}, E_{3}\right)$, we obtain $\nabla_{E_{3}} E_{3}=0$. Also from $(\nabla h)\left(E_{3}, E_{1}, E_{1}\right)=(\nabla h)\left(E_{1}, E_{3}, E_{1}\right)$, we obtain (3.8). Finally from $(\nabla h)\left(E_{1}, E_{2}, E_{3}\right)=(\nabla h)\left(E_{2}, E_{1}, E_{3}\right)$, we obtain (3.9).

From lemma 3.2, we know that the distribution \mathcal{D}^{\perp} locally spanned by E_{1} and E_{2} is an integrable distribution. Hence we get $\gamma_{12}^{3}=\gamma_{21}^{3}=0$.

Similarly as [6], we have the following lemmas using lemma 3.4.
Lemma 3.5. The local function γ_{11}^{3} satisfies the following system of differential equations:

$$
E_{1}\left(\gamma_{11}^{3}\right)=0, \quad E_{2}\left(\gamma_{11}^{3}\right)=0
$$

Lemma 3.6. Under the hypothesis of Lemma 3.4. Then, on a neighborhood of a given point $p \in M, M$ is the warped product of an open interval $(-\epsilon, \epsilon)$ and N^{2}, N^{2} the leaf of the distribution \mathcal{D}^{\perp} through p.

From lemma 3.6 we may prove the following lemma.
Lemma 3.7. Let M be a 3-dimensional minimal CR-submanifold in $S^{6}(1)$. If M satisfies equality (1.2) and \mathcal{D} is totally real, then M is a totally real submanifold.

Proof. If M is proper, we obtain from Lemma 3.6 that M is locally a warped product and that the distribution on M determined by the product structure coincide with \mathcal{D} and \mathcal{D}^{\perp}. Moreover, since $h\left(\mathcal{D}, \mathcal{D}^{\perp}\right)=0$, locally M is immersed as a warped product; furthermore, the first factor is totally geodesic, and therefore we can assume that the first factor of the corresponding warped product decomposition is 1-dimensional. Since the decomposition into a warped product with one-dimensional first factor is unique up to isometries, M is thus immersed as follows [6]:

Let $S_{+}^{1}(1)=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid\|x\|=1\right.$ and $\left.x_{1}>0\right\}$ be a half circle, $S^{5}(1)$ the unit hypersphere of \mathbb{R}^{6}, and N the unit vector orthogonal to the hyperplane containing $S^{5}(1)$. We parametrize the half circle $S_{+}^{1}(1)$ by $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow S_{+}^{1}(1), \quad t \mapsto(\cos (t), \sin (t))$. Let $f: M^{2} \rightarrow S^{5}(1)$ be a minimal immersion of a surface into $S^{5}(1)$. Then the associated warped product immersion is given by

$$
x:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times_{\cos (t)} M^{2} \rightarrow S^{6}(1), \quad(t, p) \mapsto \sin (t) N+\cos (t) f(p)
$$

Let X be a vector field tangent to M^{2}. Then

$$
x_{*}\left(\frac{\partial}{\partial t}\right)=\cos (t) N-\sin (t) f(p), \quad x_{*}(X)=\cos (t) f_{*}(X)
$$

and

$$
J x_{*}\left(\frac{\partial}{\partial t}\right)=N \times f(p), \quad J x_{*}(X)=\cos (t) \sin (t) N \times f_{*}(X)+\cos ^{2}(t) J f_{*}(X)
$$

Since $\mathcal{D}=\operatorname{span}\left\{\frac{\partial}{\partial t}\right\}$ is totally real, we have

$$
\begin{equation*}
\left\langle N \times f(p), f_{*}(X)\right\rangle=0 \tag{3.10}
\end{equation*}
$$

Differentiating (3.10) yields

$$
\begin{equation*}
\left\langle N \times f_{*}(Y), f_{*}(X)\right\rangle+\langle N \times p, h(X, Y)\rangle=0 \tag{3.11}
\end{equation*}
$$

for any vector fields X and Y tangent to M^{2}. Because the first term in (3.11) is skew symmetric and the second is symmetric, both terms must vanish. Hence we obtain

$$
\left\langle N \times f_{*}(X), f_{*}(Y)\right\rangle=0
$$

which implies \mathcal{D}^{\perp} is not a complex plane. This is a contradiction. Hence, M must be nonproper.

Lemma 3.8. Let M be a 3-dimensional nonminimal CR-submanifold in $S^{6}(1)$ which satisfies equality (1.2). If \mathcal{D} is totally real, then $H \in J \mathcal{D}$.

Proof Let $\left\{E_{1}, E_{2}, E_{3}\right\}$ be an orthonormal frame field on M such that $\left\{E_{1}, E_{2}\right\} \in \mathcal{H}$. Without loss of generality we may assume $J E_{1}=E_{2}$. Thus, (3.1) gives

$$
\left\langle A_{\xi} E_{1}, E_{1}\right\rangle+\left\langle A_{\xi} J E_{1}, J E_{1}\right\rangle=\left\langle A_{J \xi} J E_{1}, E_{1}\right\rangle-\left\langle A_{J \xi} E_{1}, J E_{1}\right\rangle=0
$$

for every vector field $\xi \in \nu$. Therefore, the mean curvature vector H lies in $J \mathcal{D}$.
From lemma 3.8 we have the following.
Lemma 3.9. Let M be a 3-dimensional nonminimal proper $C R$-submanifold in $S^{6}(1)$ which satisfies equality (1.2). Then \mathcal{D} is not totally real.

Proof. If \mathcal{D} is totally real, we have $H \in J \mathcal{D}$ from lemma 3.8. Without loss of generality we may assume $J E_{3}$ is parallel to the mean curvature vector. By (3.2), we obtain that $J E_{3}$ is a parallel normal vector field. Further, form the equation of Ricci we have $\left[A_{J E_{3}}, A_{\xi}\right]=0$ for any $\xi \in \nu$. By lemma 3.2 of [3], this implies that, with respect to a suitable orthonormal frame field with $E_{2}=J E_{1}$, the shape operators either take the form:

$$
A_{J E_{3}}=\left(\begin{array}{ccc}
a & 0 & 0 \tag{3.12}\\
0 & a & 0 \\
0 & 0 & 2 a
\end{array}\right), \quad A_{\xi_{i}}=\left(\begin{array}{ccc}
h_{11}^{i} & h_{12}^{i} & 0 \\
h_{12}^{i} & -h_{11}^{i} & 0 \\
0 & 0 & 0
\end{array}\right), \quad i=1,2
$$

or take the form:

$$
A_{J E_{3}}=\left(\begin{array}{ccc}
b & 0 & 0 \tag{3.13}\\
0 & c & 0 \\
0 & 0 & b+c
\end{array}\right), \quad A_{\xi_{i}}=\left(\begin{array}{ccc}
h_{11}^{i} & 0 & 0 \\
0 & -h_{11}^{i} & 0 \\
0 & 0 & 0
\end{array}\right), \quad i=1,2
$$

where a, b, c are functions such that $b \neq c$ and $\xi_{i} \in \nu$.
If the shape operators take the form (3.13), then by combining (3.1) with (3.13), we obtain $A_{\xi_{1}}=A_{\xi_{2}}=0$. Since $J E_{3}$ is a parallel normal vector field, this implies that M is contained in a totally geodesic $S^{4}(1)$. Since the tangent space of this sphere $S^{4}(1)$ is spanned by $\left\{E_{1}, E_{2}, E_{3}, J E_{3}\right\}, S^{4}(1)$ is an almost complex submanifold in $S^{6}(1)$ which is a contradiction. Hence the shape operators must take the form (3.12). Therefore, the second fundamental form satisfies

$$
\begin{align*}
& h\left(E_{1}, E_{1}\right)=a J E_{3}+\phi \xi, \quad h\left(E_{2}, E_{2}\right)=a J E_{3}-\phi \xi, \quad h\left(E_{3}, E_{3}\right)=2 a J E_{3} \\
& h\left(E_{1}, E_{3}\right)=0, \quad h\left(E_{1}, E_{2}\right)=\phi J \xi, \quad h\left(E_{2}, E_{3}\right)=0 \tag{3.14}
\end{align*}
$$

for some function ϕ and some $\xi \in \nu$. From (3.14) we find

$$
\begin{align*}
& (\nabla h)\left(E_{1}, E_{2}, E_{3}\right)=-\gamma_{12}^{3} a J E_{3}-\gamma_{13}^{1} \phi J \xi+\gamma_{13}^{2} \phi \xi, \tag{3.15}\\
& (\nabla h)\left(E_{2}, E_{1}, E_{3}\right)=-\gamma_{21}^{3} a J E_{3}-\gamma_{23}^{2} \phi J \xi-\gamma_{23}^{1} \phi \xi . \tag{3.16}
\end{align*}
$$

If we put $W_{1}=\{p \in M: a(p) \neq 0\}$ and $W_{2}=\{q \in M: \phi(q) \neq 0\}$, then the equation of Codazzi, (3.15) and (3.16) yield

$$
\gamma_{12}^{3}=\gamma_{21}^{3}=0 \quad \text { on } \quad W_{1} \cap W_{2}
$$

which implies that \mathcal{D}^{\perp} is integrable on $W_{1} \cap W_{2}$. Hence by virtue of [1, page 26], we conclude that $W_{1} \cap W_{2}$ is minimal, which is a contradiction. Hence, \mathcal{D} cannot be totally real.

The main theorem follows from Lemma 3.7 and Lemma 3.9.

Acknowledgements

The author would like to express his hearty gratitude to Professor B. Y. Chen and Professor K. Kiyohara for their helpful advice and constant encouragement.

References

[1] A. Bejancu, Geometry of $C R$-submanifolds, D. Reidel Publ., Dordrecht, Holland, 1986.
[2] D. E. Blair, F. Dillen, L. Verstraelen and L. Vrancken, Calabi curves as holomorphic Legendre curves and Chen's inequality, Kyunpook Math. J., 35(1995), 407-416.
[3] B. Y. Chen, Some pinching and classification theorems for minimal submanifolds, Arch. Math., 60(1993), 568-578.
[4] B. Y. Chen, A Riemannian invariants and its applications to submanifolds theory, Math., 27(1995), 17-26.
[5] B. Y. Chen, Some new obstructions to minimal and Lagrangian isometric immersion, Japan. J. Math., 26(2000), (to appear).
[6] B. Y. Chen, F. Dillen, L. Verstraelen and L. Vrancken, Characterization a class of totally real submanifolds of S^{6} by their sectional curvatures, Tôhoku Math. J., 47(1995), 185-198.
[7] B. Y. Chen and L. Vrancken, CR-submanifolds of complex hyperbolic spaces satisfying a basic equality, Israel. J. Math., 110(1999), 341-358.
[8] B. Y. Chen and J. Yang, Elliptic functions, theta function and hypersurfaces satisfying a basic equality, Math. Proc. Cambridge Phil. Soc., 125(1999), 463-509.
[9] M. Dajczer and L. A. Florit, A class of austere submanifolds, (preprint 1996).
[10] M. Dajczer and L. A. Florit, On Chen's basic equality, Illinois J. Math. 42(1998), 97-106.
[11] F. Dillen, L. Vrancken, Totally real submanifolds in $S^{6}(1)$ satisfying Chen's equality, Trans. Amer. Math. Soc., 348(1996), 1633-1646.
[12] J. Erbacher, Reduction of the codimension of an isometric immersion, J. Differential Geometry, 5(1971), 333-340.
[13] A. Gray, Almost complex submanifold of the six sphere, Proc. Amer. Math. Soc., 20(1969), 277-279.
[14] R. Harvey, H. B. Lawson, Calibrated geometries, Acta Math., 148(1982), 47-157.
[15] T. Sasahara, CR-submanifolds of complex hyperbolic spaces satisfying an equality of Chen, Tsukuba. J. Math., 23(1999), 565-583.
[16] K. Sekigawa, Almost complex submanifolds of a 6-dimensional sphere, Kodai Math. J., 6(1983), 174-185.
[17] R. M. W. Wood, Framing the exceptional Lie group G_{2} Topology, 15(1976), 303-320.

