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Strongly λ-statistically and strongly Valle-Poussin
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spaces
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Abstract. We introduce the notions of strongly λ-statistically pre-Cauchy and

strongly Valle-Poussin pre-Cauchy sequences in probabilistic metric spaces endowed

with strong topology. And we show that these two new notions are equivalent.

Strongly λ-statistically convergent sequences are strongly λ-statistically pre-Cauchy

sequences, and we give an example to show that there is a sequence in a proba-

bilistic metric space which is strongly λ-statistically pre-Cauchy but not strongly

λ-statistically convergent.
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1 Introduction:

Throughout the article, λ will always denote a non-decreasing sequence of positive real
numbers tending to ∞ such that λ1 = 1, λn+1 ≤ λn + 1, n ∈ N. And we write ∆∞ to denote all
such sequences λ.

In 1951, in order to study sequences of real numbers similar in some sense to the convergent
sequences of real numbers, Fast [4] and Schoenberg [10] independently introduced the notion
of statistical convergence of sequences of real numbers. Afterward, in [1], in order to provide
a Cauchy-like criterion for the statistical convergent sequences of real numbers, Connor et al.
introduced the notion of pre-Cauchy sequences of real numbers and established a relationship
between the notions of statistical convergence and pre-Cauchy sequences of real numbers. In 2000,
Mursaleen [8] introduced the notion of λ-statistical convergence of sequences of real numbers and
established its relationship with the notion of statistical convergence of sequences of real numbers.
For a survey on this direction, see [2, 3, 5] and many others.

On the other hand, the concept of Probabilistic metric spaces was introduced by Menger [7]
under the name of statistical metric spaces. In this theory, the distance between two points u, v
is a distribution function Fuv. And the value of the function Fuv at any t > 0, that is, Fuv(t)
can be interpreted as the probability that the distance between u and v is less than t. After
Menger, the theory of probabilistic metric spaces was studied and developed by Schwiezer and
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Sklar [12, 13, 14], Tardiff [15], Thorp [16] and many others. For a survey on this direction, see
the book written by Schwiezer and Sklar [14].

One can define several topologies on this space, however, strong topology is the only one
which is getting more attention over the years. In [11], Şençimen et al. remarked that the strong
topology is first countable and Hausdorff, it can be characterized in terms of strong convergence
of sequences. Moreover, to provide a more general framework for applications, Şençimen et al.
[11] extended the notion of strong convergence of sequences to the notion of strong statistical
convergence of sequences. Recently, Malik and Das [6] studied the notion of strong λ-statistical
convergence of sequences which is a generalization of the notion of strong statistical convergence
of sequences.

In point of view of recent applications of probabilistic metric spaces, in this article, we
provide a Cauchy-like criterion of strong statistical and strong λ-statistical convergence of se-
quences in probabilistic metric spaces. We introduce the notion of strongly λ-statistically pre-
Cauchy sequences in probabilistic metric spaces. Strongly λ-statistically convergent sequences
are strongly λ-statistically pre-Cauchy sequences, and we give an example to show that there is
a sequence in a probabilistic metric space which is strongly λ-statistically pre-Cauchy but not
strongly λ-statistically convergent. Therefore, in the realm of PM spaces, our notion resolved
the question: can one decide if a sequence is strongly λ-statistically convergent without knowing
the strong λ-statistical limit of the sequence in advance? Further, this notion provides a tool
for the applications of the strong topology on the PM spaces. Also, we introduce the notion of
strongly Valle-Poussin pre-Cauchy sequences to understand the notion of strongly λ-statistically
pre-Cauchy sequences in probabilistic metric spaces differently. And these two new notions are
equivalent.

2 Preliminaries

First, we familiarize reader with the basic concepts of statistical convergence, statistical
pre-Cauchy and λ-statistical convergence of sequences of real numbers.

The notion of asymptotic density of the subsets of the set of all natural numbers N plays a
central role in the concept of statistical convergence of sequences. We recall that a set A ⊂ N is
said to have asymptotic density d(A) if

d(A) = lim
n→∞

|A(n)|
n

,

where for all n ∈ N, A(n) = {k ∈ A : k ≤ n}.

Definition 1. [5] A sequence {xk}k∈N of real numbers is said to be statistically convergent to
l ∈ R if, for every ε > 0, d(A(ε)) = 0, where A(ε) = {k ∈ N : |xk − l| ≥ ε}.

Definition 2. [1] A sequence {xk}k∈N of real numbers is said to be statistically pre-Cauchy if,
for every ε > 0,

lim
n→∞

1

n2
|{(j, k) ∈ [1, n]× [1, n] : |xj − xk| ≥ ε}| = 0.

From now on rest of the article, for each n ∈ N, we write In = [n − λn + 1, n], where
λ = {λn} ∈ ∆∞.
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Definition 3. [8] A sequence {xk}k∈N of real numbers is said to be λ-statistically convergent to
l ∈ R if, for every ε > 0,

lim
n→∞

1

λn
|{k ∈ In : |xk − l| ≥ ε}| = 0.

In 2000, Mursaleen [8] defined the notion of the generalized de la Valle-Poussin mean for a
sequence x = {xk} by the the formula 1

λn

∑
k∈In

xk. Note that whenever λn = n we have the notion

of Cesro mean for the sequence.

Definition 4. [8] A sequence {xk}k∈N of real numbers is said to be strongly (V, λ)-summable to
l ∈ R if,

lim
n→∞

1

λn

∑
k∈In

|xk − l| = 0.

Theorem 2.1. [8] For bounded sequences of real numbers, the notions of λ-statistical convergence
and strong (V, λ)-summability are equivalent.

Now we recall some basic ideas related to the probabilistic metric spaces (briefly PM spaces)
(see [12, 13, 14] and many others).

Definition 5. A non decreasing function f : [−∞,∞] → [0, 1] with f(−∞) = 0 and f(∞) = 1
is called a distribution function.

We denote the set of all left continuous distribution functions over (−∞,∞) by D.

We consider a partial relation ≤ on D defined by g ≤ f if and only if g(x) ≤ f(x) for all
x ∈ [−∞,∞].

Definition 6. For any q ∈ [−∞,∞] the unit step at q is denoted by εq and is defined to be a
function in D given by

εq(t) = 0, −∞ ≤ t ≤ q
= 1, q < t ≤ ∞.

In particular,

ε0(t) = 0, −∞ ≤ t ≤ 0

= 1, 0 < t ≤ ∞.

Definition 7. A sequence {fn}n∈N of distribution functions is said to converge weakly to a
distribution function f , if the sequence {fn(t)}n∈N converges to f(t) at each continuity point t

of f . In this case, we write fn
w−→ f .

Definition 8. The distance between f and g in D is denoted by dL(f, g) and is defined to be
the infimum of all numbers h ∈ (0, 1] such that the inequalities

f(t− h)− h ≤ g(t) ≤ f(t+ h) + h
and g(t− h)− h ≤ f(t) ≤ g(t+ h) + h

hold for all t ∈ (− 1
h ,

1
h ).
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It is known from the literature that dL is a metric on D and for any sequence {fn}n∈N in D
and f ∈ D, we have

fn
w−→ f if and only if dL(fn, f)→ 0.

Definition 9. A non-decreasing real valued function h defined on [0,∞] that satisfies h(0) = 0
and h(∞) = 1 and is left continuous on (0,∞) is called a distance distribution function (d.d.f.
in short).

The set of all distance distribution functions is denoted by D+. Moreover, the function dL
is a metric on D+.

Theorem 2.2. [14] Let f ∈ D+ be given. Then for any t > 0, f(t) > 1 − t if and only if
dL(f, ε0) < t.

Definition 10. A triangle function is a binary operation τ on D+, which is commutative, non-
decreasing, associative in each place and ε0 is the identity.

Definition 11. A probabilistic metric space, briefly PM space, is a triplet (P, F, τ) where P is
a nonempty set whose elements are the points of the space; F is a function from P ×P into D+,
τ is a triangle function, and the following conditions are satisfied for all x, y, z ∈ P :

1. F (x, x) = ε0

2. F (x, y) 6= ε0 if x 6= y

3. F (x, y) = F (y, x)

4. F (x, z) ≥ τ(F (x, y), F (y, z)).

From now on we denote F (x, y) by Fxy and its value at t by Fxy(t).

Example 1. Let f ∈ D+ be fixed and distinct from ε0 and ε∞. Then we have the equilateral
PM space (P, F,M) where F is defined by

Fpq =

{
f ; if p 6= q
ε0 ; if p = q

and M is the maximal triangle function.

Definition 12. Let (P, F, τ) be a PM space. For x ∈ P and r > 0, the strong r-neighborhood
of x is denoted by Nx(r) and is defined by

Nx(r) = {y ∈ P : Fxy(r) > 1− r}.

In this case, the collection Nx = {Nx(r) : r > 0} is said to be the strong neighborhood
system at x and the union N =

⋃
x∈P

Nx is said to be the strong neighborhood system for P .

From the Theorem 2.2, we have Nx(r) = {y ∈ P : dL(Fxy, ε0) < r}. If τ is continuous, then
the strong neighborhood system N determines a Hausdorff topology for P . This topology is said
to be the strong topology for P .

Definition 13. Let (P, F, τ) be a PM space. Then for any r > 0, the subset V(r) of P ×P given
by
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V(r) = {(x, y) : Fxy(r) > 1− r}

is said to be the strong r-vicinity.

Theorem 2.3. [14] Let (P, F, τ) be a PM space and τ be continuous. Then for any r > 0, there
is an s > 0 such that V(s) ◦V(s) ⊂ V(r), where V(s) ◦V(s) = {(x, z) : for some y, (x, y) and
(y, z) ∈ V(s)}.

Note 1. By the virtue of the hypothesis of the Theorem 2.3, we can say, for any r > 0, there is
an s > 0 such that Fab(r) > 1− r whenever Fac(s) > 1− s and Fcb(s) > 1− s. Equivalently, we
can write for any r > 0, there is an s > 0 such that dL(Fab, ε0) < r whenever dL(Fac, ε0) < s and
dL(Fcb, ε0) < s.

From now on throughout this work, P will always denote the PM space (P, F, τ) endowed
with the strong topology.

Definition 14. [11] Let (P, F, τ) be a PM space. A sequence x = {xk}k∈N in P is said to be
strongly convergent to l ∈ P if, for every t > 0, ∃ a natural number k0 such that

xk ∈ Nl(t) whenever k ≥ k0.

In this case, we write F - lim
k→∞

xk = l or xk
F−→ l.

Definition 15. [11] Let (P, F, τ) be a PM space. A sequence x = {xk}k∈N in P is said to be
strongly statistically convergent to l ∈ P if, for any t > 0

d({k ∈ N : Fxkl(t) ≤ 1− t}) = 0 or d({k ∈ N : xk /∈ Nl(t)}) = 0.

In this case, we write stF - lim
k→∞

xk = l.

Definition 16. [6] A sequence x = {xk}k∈N in a PM space (P, F, τ) is said to be strongly
λ-statistically convergent to l ∈ P if, for every t > 0,

lim
n→∞

1

λn
|{k ∈ In : Fxkl(t) ≤ 1− t}| = 0.

or

lim
n→∞

1

λn
|{k ∈ In : xk /∈ Nl(t)}| = 0.

In this case, we write stFλ - lim
k→∞

xk = l or simply as xk
stFλ−−→ l.

3 Strongly λ-statistical pre-Cauchy

In this section, we introduce the notion of strongly λ-statistically pre-Cauchy and establish
a Cauchy like criterion for a strong λ-statistically convergent sequence in probabilistic metric
spaces.

Definition 17. A sequence x = {xk}k∈N in a PM space (P, F, τ) is said to be strongly λ-
statistically pre-Cauchy if for every t > 0,

lim
n→∞

1

λ2n

∣∣{(j, k) ∈ In × In : Fxjxk(t) ≤ 1− t}
∣∣ = 0.
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Note 2. In the above Definition 17, if we replace λn by n for each n ∈ N, then we have the
notion of strong statistically pre-Cauchy.

Theorem 3.1. If lim inf
n→∞

λn
n > 0, then the notion of strongly statistically pre-Cauchy implies the

notion of strongly λ-statistically pre-Cauchy.

Proof. Let x = {xk}k∈N be a sequence in a PM space (P, F, τ) and x is strongly statistically
pre-Cauchy. Let t > 0 be given. Then for t > 0, we have

1

n2
|{(j, k) ∈ [1, n]× [1, n] : Fxjxk(t) ≤ 1− t}|

≥ 1

n2
|{(j, k) ∈ In × In : Fxjxk(t) ≤ 1− t}|

=
λ2n
n2

1

λ2n
|{(j, k) ∈ In × In : Fxjxk(t) ≤ 1− t}|.

Now {λn}n∈N is a non-decreasing sequence of positive numbers such that λ1 = 1, λn+1 ≤ λn + 1,
λn ≤ n for all n and hence the quotient λn

n is nonnegative and bounded above by 1. So we have

0 < lim inf
n→∞

λ2
n

n2 ≤ 1 and since lim
n→∞

1
n2 |{(j, k) ∈ [1, n]× [1, n] : Fxjxk(t) ≤ 1− t}| = 0, so

lim
n→∞

1

λ2n
|{(j, k) ∈ In × In : Fxjxk(t) ≤ 1− t}| = 0.

Hence x is strongly λ-statistically pre-Cauchy.

Theorem 3.2. Let (P, F, τ) be a PM space. If a sequence x = {xk}k∈N is strongly λ-statistically
convergent, then it is strongly λ-statistically pre-Cauchy in P .

Proof. Let the sequence x = {xk}k∈N be strongly λ-statistically convergent to l ∈ P . Let
t > 0 be given. Then there exists s > 0 such that dL(Fuw, ε0) < t whenever dL(Fuv, ε0) < s,
dL(Fvw, ε0) < s and u, v, w ∈ P . Let

En = {k ∈ In : Fxkl(s) ≤ 1− s}.

Then lim
n→∞

|En|
λn

= 0. Now let Fn = In \ En. Then lim
n→∞

|Fn|
λn

= 1. Then for j, k ∈ Fn, we have

Fxj l(s) > 1 − s and Fxkl(s) > 1 − s, that is, dL(Fxj l, ε0) < s and dL(Fxkl, ε0) < s. Thus for
j, k ∈ Fn, we have dL(Fxjxk , ε0) < t, that is, Fxjxk(t) > 1− t. Hence

Fn × Fn ⊂ {(j, k) ∈ In × In : Fxjxk(t) > 1− t}.

This implies [
|Fn|
λn

]2
≤ 1

λ2n

∣∣{(j, k) ∈ In × In : Fxjxk(t) > 1− t}
∣∣ .

Since lim
n→∞

|Fn|
λn

= 1, so

lim
n→∞

1

λ2n

∣∣{(j, k) ∈ In × In : Fxjxk(t) > 1− t}
∣∣ = 1.

Thus

lim
n→∞

1

λ2n

∣∣{(j, k) ∈ In × In : Fxjxk(t) ≤ 1− t}
∣∣ = 0.

Hence the sequence x is strongly λ-statistically pre-Cauchy in P .
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Now we state a necessary and sufficient condition for a sequence to be strongly λ-statistically
pre-Cauchy in a probabilistic metric space.

Theorem 3.3. Let (P, F, τ) be a PM space and x = {xk}k∈N be a sequence in P . Then the
sequence x is strongly λ-statistically pre-Cauchy if and only if

lim
n→∞

1

λ2n

∑
j,k∈In

dL(Fxjxk , ε0) = 0.

Proof. At first, we assume that

lim
n→∞

1

λ2n

∑
j,k∈In

dL(Fxjxk , ε0) = 0.

Let t > 0 be given. Since λn > 0 for all n ∈ N and t > 0, so we have

1

λ2n

∑
j,k∈In

dL(Fxjxk , ε0)

≥ t(
1

λ2n

∣∣{(j, k) ∈ In × In : dL(Fxjxk , ε0) ≥ t
}∣∣) ≥ 0.

Thus from the squeeze lemma for limits, we have

lim
n→∞

1

λ2n

∣∣{(j, k) ∈ In × In : dL(Fxjxk , ε0) ≥ t
}∣∣ = 0.

In other words,

lim
n→∞

1

λ2n

∣∣{(j, k) ∈ In × In : Fxjxk(t) ≤ 1− t
}∣∣ = 0.

Hence the sequence x is strongly λ-statistically pre-Cauchy in P .

Conversely, we assume that x is strong λ-statistically pre-Cauchy sequence in P . Let t > 0
be given. Choose s > 0 and t0 > 0 so that s

2 + t0 < t. Since dL(Fpq, ε0) ≤ 1 for every p, q ∈ P
and λn > 0 for n ∈ N, so we have

1

λ2n

∑
j,k∈In

dL(Fxjxk , ε0)

=
1

λ2n

∑
dL(Fxjxk

,ε0)<s
2

j,k∈In

dL(Fxjxk , ε0) +
1

λ2n

∑
dL(Fxjxk

,ε0)≥ s
2

j,k∈In

dL(Fxjxk , ε0)

≤ s

2
+

1

λ2n

∣∣∣{(j, k) ∈ In × In : dL(Fxjxk , ε0) ≥ s

2

}∣∣∣ .
Now, since x is strongly λ-statistically pre-Cauchy, so there exists n0 ∈ N such that for all n ≥ n0,

1

λ2n

∣∣∣{(j, k) ∈ In × In : dL(Fxjxk , ε0) ≥ s

2

}∣∣∣ < t0.

Thus for all n ≥ n0, we have

1

λ2n

∑
j,k∈In

dL(Fxjxk , ε0) <
s

2
+ t0 < t.
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Hence

lim
n→∞

1

λ2n

∑
j,k∈In

dL(Fxjxk , ε0) = 0.

4 Strongly Valle-Poussin pre-Cauchy

Now we treat the condition of the Theorem 3.3 as a new definition of pre-Cauchy and named
it strongly Valle-Poussin pre-Cauchy. In particular, when λn = n we call it strongly Cesro
pre-Cauchy.

Definition 18. A sequence x = {xk}k∈N in a PM space (P, F, τ) is said to be strongly Valle-
Poussin pre-Cauchy if, for every ε > 0 there exists n0 ∈ N such that for all n ≥ n0,

1

λ2n

∑
j,k∈In

dL(Fxjxk , ε0) < ε.

Theorem 4.1. Let (P, F, τ) be a PM space and x = {xk}k∈N be a sequence in P . Then the
sequence x is strongly λ-statistically pre-Cauchy if and only if x is strongly Valle-Poussin pre-
Cauchy.

Proof. Directly follows from the Theorem 3.3.

Theorem 4.2. If lim
n→∞

λn
n = 1, then the notion of strong Valle-Poussin pre-Cauchy implies the

notion of strong Cesro pre-Cauchy.

Proof. Let x = {xk}k∈N be a sequence in a PM space (P, F, τ) and x be strongly Valle-Poussin
pre-Cauchy. Let ε > 0 be given. Then there exists n0 ∈ N such that for all n ≥ n0, we have

1

λ2n

∑
j,k∈In

dL(Fxjxk , ε0) <
ε

2

and

|λn
n
− 1| <

√
ε

2
.

Also, we have dL(Fpq, ε0) ≤ 1 for every p, q ∈ P and λn ≤ n for all n ∈ N. Thus for all n ≥ n0,
we have

1

n2

∑
j,k∈[1,n]

dL(Fxjxk , ε0) =
1

n2

∑
j,k∈[1,n−λn]

dL(Fxjxk , ε0) +
1

n2

∑
j,k∈In

dL(Fxjxk , ε0)

≤ (n− λn)2

n2
+
λ2n
n2

1

λ2n

∑
j,k∈In

dL(Fxjxk , ε0)

<
ε

2
+

1

λ2n

∑
j,k∈In

dL(Fxjxk , ε0)
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<
ε

2
+
ε

2
= ε.

Hence x is strongly Cesro pre-Cauchy.

Corollary 4.3. If lim
n→∞

λn
n = 1, then the notion of strong λ-statistically pre-Cauchy implies the

notion of strong statistically pre-Cauchy.

Proof. Directly follows from the Theorem 3.3 and the Theorem 4.2.

Lemma 4.1. [6] Let (P, F, τ) be a PM space and x = {xk}k∈N be a sequence in P . If the sequence
x is strongly λ-statistical convergent in P , then it has a subsequence {xqn}n∈N which is strongly
convergent to the same limit.

In the very next theorem, we state a sufficient condition for a strongly λ-statistically pre-
Cauchy sequence to be strongly λ-statistically convergent in a PM space (P, F, τ).

Theorem 4.4. Let (P, F, τ) be a PM space and x = {xk}k∈N be a strongly λ-statistically pre-
Cauchy sequence in P . If the sequence x = {xk}k∈N has a subsequence {xqk}k∈N which is strongly
convergent to l ∈ P and the following condition holds

0 < lim inf
n→∞

1

λn
|{qk ∈ In : k ∈ N}| <∞,

then x is strongly λ-statistically convergent to l.

Proof. Let t > 0 be given. Then there exists s > 0 such that for all u, v, w ∈ P , we have

dL(Fuw, ε0) < t whenever dL(Fuv, ε0) < s and dL(Fvw, ε0) < s. (4.1)

Since the subsequence {xqk}k∈N is strongly convergent to l, so there exists k0 ∈ N such that for all
k ≥ k0, we have dL(Fxqk l, ε0) < s. Let Q = {qk : k ≥ k0; k ∈ N} and P (t) = {k : dL(Fxkl, ε0) ≥ t}.
Then from (1) we have,

1

λ2n

∣∣{(j, k) ∈ In × In : dL(Fxjxk , ε0) ≥ s}
∣∣

≥ 1

λ2n

∑
j,k∈In

χQ×P (t)(j, k)

=
1

λn
|{qj ∈ Q : qj ∈ In}| ×

1

λn
|{k ∈ P (t) : k ∈ In}| .

Therefore,

lim
n→∞

1

λ2n

∣∣{(j, k) ∈ In × In : dL(Fxjxk , ε0) ≥ s}
∣∣

≥ lim
n→∞

1

λn
|{qj ∈ Q : qj ∈ In}| × lim

n→∞

1

λn
|{k ∈ P (t) : k ∈ In}| .

Again since x is strongly λ-statistically pre-Cauchy, so we have for s > 0,

lim
n→∞

1

λ2n

∣∣{(j, k) ∈ In × In : dL(Fxjxk , ε0) ≥ s}
∣∣ = 0.
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Thus

lim
n→∞

1

λn
|{qj ∈ Q : qj ∈ In}| × lim

n→∞

1

λn
|{k ∈ P (t) : k ∈ In}| = 0.

Now by the given hypothesis, we have 0 < lim inf
n→∞

1
λn
|{k ∈ In : k ∈ N}| <∞.

Therefore,

lim
n→∞

1

λn
|{k ∈ B(t) : k ∈ In}| = 0.

Thus

lim
n→∞

1

λn
|{k ∈ In : dL(Fxkl, ε0) ≥ t}| = 0.

Hence x is strongly λ-statistically convergent to l.

Note 3. The above result suggests us that there must exist a sequence in a probabilistic met-
ric space which is strongly λ-statistically pre-Cauchy, however, the sequence is not strongly
λ-statistically convergent.

Example 2. Let P = R with the usual metric d and K(x) = 1− e−x. Then K ∈ D+. Define a
function F : P × P → D+ by

F (p, q)(t) = Fpq(t) = K( t
d(p,q) ) = 1− e

−t
|p−q| for all p, q ∈ P and t > 0.

Also, we make the convention that K(x/0) = K(∞) = 1 for x > 0 and K(0/0) = K(0) = 0.
Then (P, F, τ) becomes a PM space, where τ is the continuous triangle function. Let λn = n− 3
for n > 3 and λn = 1 for 1 ≤ n ≤ 3. Now define a sequence x in P in the following way. For
n, k ∈ N such that (n− 1)! < k ≤ n! we define

xk =
n∑
v=1

1
v , and let x = {xk}k∈N.

Clearly, x has no strongly convergent subsequence by the construction of the sequence. Conse-
quently, by the Lemma 4.1 x is not strongly λ-statistically convergent. However, we show that x

is strongly λ-statistically pre-Cauchy. Let t1 > 0 be given. At first, we define Kn(t) = 1− e−tn2
for t > 0. Clearly, Kn(t) is a distance distribution function and for t > 0, Kn(t) weakly converges
to ε0. Then for that t1 > 0 there exists an positive integer n0 such that for all n ≥ n0 we have
dL(Kn(t), ε0) < t1. Choose n > n0 and n ≥ 4. Then if n! < n1 ≤ (n+1)! and (n−1)! < j, k ≤ n1
then we have, |xj − xk| < 2

n . It follows that for t1 > 0 and n! < n1 ≤ (n+ 1)!, we have

1

n21

∣∣{(j, k) ∈ [4, n1]× [4, n1] : dL(Fxjxk , ε0) < t1; j, k ≤ n1
}∣∣

≥ 1

n21
[n1 − (n− 1)!]2

≥ [1− 1

n
]2.

Since lim
n→∞

[1− 1
n ]2 = 1, it follows that x is strongly λ-statistically pre-Cauchy.
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