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ON THE EXISTENCE OF TWO STATIONARY SOLUTIONS

FOR A FREE BOUNDARY PROBLEM DESCRIBING CELL MOTILITY

HARUNORI MONOBE

Abstract. This paper is concerned with the existence of stationary solutions for a free

boundary problem related to cell motility. In recent years, the author and Ninomiya [6]

showed that there exist at least two stationary solutions with disk-shaped domains in

isotropic boundary conditions. In this paper, it will be shown that there exist exactly two

stationary solutions for the free boundary problem under the same boundary conditions.

The proof is based on the weak maximum principle and the mean-valued theorem.

1. Introduction

Keratocyte is a cell observed in corneal stroma, fish epidermis and so on. The cell usually

maintains the shape in a disk and stays in the same place. However, when corneal stroma

and fish epidermis are scratched, the cell moves to the scratched wound to heal. In that time,

the cell changes shape from a disk to half-moon and locomotes. It is noted that this change

of form is mainly affected by the effect of plasma streaming and actin filaments (F-actin). In

recent years, some mathematical models focused on the relationship between cell locomo-

tion and actin filaments were proposed. For instance, Mogilner et al. [2, 3, 4] proposed some

mathematical models describing crawling nematode sperm cell.

In this paper, we treat another mathematical model describing cell motility, which is pro-

posed by Tamiki Umeda (see [5, 6]). The model is a free boundary problem as follows :







































ut = d∆u +k1U −u +k2 in Q :=
⋃

t>0

Ω(t )× {t },

u = 1+ Aκ on Γ :=
⋃

t>0

∂Ω(t )× {t },

V =γU −1− Aκ on Γ,

u =φ≥ k2 in Ω(0)× {t = 0},

(1.1)
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whereΩ(t ) is an unknown region inR2 (t ∈ [0,∞)), ∂Ω(t ) is the boundary ofΩ(t ), u = u(x, y, t ) :

Q →R is an unknown function, U is a time-dependent function represented by

U =U (t ) =C0 −

∫∫

Ω(t )
u d xd y,

V = V (x, y, t ) and κ = κ(x, y, t ) stand for the outer normal velocity and the inward curvature

of ∂Ω(t ), respectively, and γ = γ(n) is a positive function defined in ∂Ω(t ), n = n(x, y, t ) is the

outer normal unit vector to ∂Ω(t ) and d ,k1,k2, A are positive constants.

Biologically, Ω(t ) stands for a thin two-dimensional sheet occupied by F-actin in a single

cell. The functions u, U and constant C0 represent the density of F-actin, the concentration

of G-action and the total amount of G-actin, respectively. Moreover γ represents an activity of

polymerization rate of G-actin. The activity is anisotropic and determined by various factors,

e.g., chemotaxis outside the cell and the chemical reaction inside the cell. For the explanation

about each terms in (1.1), see [5] and [6] for details.

The author [5] considered the behavior of solutions (u,Ω(t )) for (1.1) with spherically

symmetric initial data, where γ is a positive constant. It was shown that, if A is sufficiently

small, then there exist global-in-time solutions and blow-up solutions depending on initial

data. More precisely, if the radius s0 = s(0) of the initial domain Ω(0) exists in an interval

[α2,β2] and the initial function φ satisfies

k2 <φ< 1+ A/s0(= 1+ Aκ(x, y,0)) (1.2)

for any (x, y) ∈ Ω(0), then solutions (u,Ω(t )) of (1.1) exist for any time and satisfy that the

radius s(t ) of Ω(t ) always exists in the interval [α2,β2]. Similarly, if the radius s0 of Ω(0)

is smaller than β1(< α2) and φ satisfies (1.2), then Ω(t ) shrinks to a single point in a finite

time, i.e., max(x,y)∈Ω(t ) u(·, t ) = 1+ A/s(t ) goes to infinity in a finite time. For the definition of

α1,α2,β1 and β2, see Assumption 2 later (or see Condition 2 in [5] ). From this result, it is

expected that there exist two stationary solutions (u1,Ω1) and (u2,Ω2) such that the radii of

Ω1 and Ω2 are contained in intervals [β1,α1] and [α2,β2], respectively. It is interesting to in-

vestigate whether stationary solutions with disk-shaped domains for (1.1) exist or not. One of

the reasons for the interesting is that some cells, e.g., keratocyte stay the same position with

disk-shaped domains when the activity of polymerization rate of G-actin is constant.

Recently, the author and Ninomiya [6] gave a partial answer to the expectation. They

showed the existence of traveling wave solutions of (1.1) with the velocity c ≥ 0 under the

condition

γ=γ(n) = η+ξcosθ,

where η > ξ ≥ 0 and θ is the angle between n and x-axis. In particular, if ξ = 0, then the

velocity c of traveling wave solution is zero and the traveling wave solution corresponds to



ON THE EXISTENCE OF TWO STATIONARY SOLUTIONS 41

the stationary solution of (1.1) with γ = η > 0. Hence it has been already shown that there

exist at least two stationary solutions with disk-shaped domains in (1.1).

In this paper, we will identify the number of stationary solutions for (1.1) under the con-

dition that γ= η> 0. In other words, we examine the number of (u,Ω) satisfying the following

problem :














d∆u +k1U −u +k2 = 0 in Ω,

u = 1+ Aκ on ∂Ω,

0 = γU −1− Aκ on ∂Ω,

(1.3)

where

U =C0 −

∫∫

Ω

u d xd y. (1.4)

Definition 1. We call (u,Ω) a stationary solution of (1.1) if (u,Ω)∈C 2+α(Ω)×C 4 satisfies (1.3),

where u, U are positive, Ω is a bounded domain and α ∈ (0,1).

Throughout this paper, we impose some assumptions on k1, k2, C0 and γ.

Assumption 1. k1, k2, C0 and γ satisfy the following conditions :

(H1) γ is a positive constant,

(H2) k1/γ−1+k2 < 0,

(H3) γC0 −1 > 0.

The following assumption is of help to define the range of A :

Assumption 2. Ā is a small constant such that there exist at least four points α1,α2,β1,β2 ∈
(

0,
√

C0/πk2

)

such that

γ(C0 −παi (Ā +αi )) = 1+
Ā

αi
, (1.5)

γ(C0 −πk2β
2
i )= 1+

Ā

βi
(1.6)

for i = 1,2, where α1 <α2 and β1 <β2.

Notation 1. We will use the symbols α1(A), α2(A), β1(A) and β2(A) to denote four points satis-

fying (1.5) and (1.6) for a given constant A ∈ (0, Ā].

Next we state our main result :
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Figure 1: This graph shows three functions z = f1(s) = γ(C0 −πs(Ā + s)), z = f2(s) = γ(C0 −

πk2s2) and z = f3(s) = 1+ Ā/s, where γ= 1,C0 = 3,k2 = 0.8, Ā = 0.33. The conditions (1.5) and

(1.6) in Assumption 2 correspond to conditions f1(αi ) = f3(αi ) and f2(βi ) = f3(βi ), respec-

tively.

Theorem 1. Assume that k1,k2,C0, γ and Ā satisfy Assumption 1 and 2, respectively. Then there

is a positive constant A0 ≤ Ā such that, for any A ∈ (0, A0], there exist exactly two stationary

solutions (u j ,Ω j ) ( j = 1,2) of (1.3) with the following properties :

(P1) Ω j is a disk-shaped domain,

(P2) u j is spherically symmetric and u j (x1) > u j (x2) if |x1| > |x2|, where x1 = (x1, y1) and

x2 = (x2, y2).

(P3) For any (x, y)∈Ω j , it holds that

k2 < u j < 1+
A

s j
, U j =C0 −

∫∫

Ω j

u j d xd y > 0,

where s1 and s2 represent the radius of Ω1 and Ω2, respectively, and they satisfy

s1 ∈ [β1(A),α1(A)], s2 ∈ [α2(A),β2(A)].

In Theorem 1, (P1) means that the shape of cell is disked-shape. The positivity of u and U

in (P3) imply that the density of F-actin and the concentration of G-actin in a cell are positive,

respectively. In addition, (P2) means that F-actin is concentrated in the neighborhood of cell

membrane. This result is similar to the experimental observation that F-actin are assembled

around the leading edge in the the membrane (see [7]). According to the result of [5], it is

expected that (u1,Ω1) and (u2,Ω2) are stable and unstable, respectively. As mentioned above,

some cells stay the same position with a disk-shaped domain under the isotropic activity con-

ditions. Thus Ω2 is coincided with the phenomena. On the other hand, we confirm that if the

initial domain Ω(0) of (1.1) is a disk-shaped domain whose radius is smaller than β1(A)(< s1),
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then the domain Ω(t ) of (1.1) shrinks to a single point, which is the center of Ω(0), at a finite

time (see [5]). Such a behavior is not observed in cell locomotion. From this, we expect that

the existence of the stationary solution (u1,Ω1) is caused by a lack of the effect of thickness of

cell membrane, size of actin filaments and so on.

This paper is organized as follows: In Section 2, we confirm that solutions of (1.3) have to

be spherically symmetric. This claim is derived from the boundary condition Aκ=γU −1. In

addition, we review the previous results for (1.3) such that, for a sufficiently small A satisfying

(1.5) and (1.6), there exist at least two solutions of (1.3). Moreover we introduce auxiliary

function and domain (u(s),Ω(s)) satisfying











d∆u +
k1

γ

(

1+
A

s

)

−u +k2 = 0 in Ω(s),

u = 1+
A

s
on ∂Ω(s),

where Ω(s) is a disk-shaped domain with the radius s. In particular, we give an estimate re-

lated to
∂

∂s

(

C0 −

∫

Ω(s)
u(s)d xd y

)

by using a comparison function. The estimate is useful for investigating the number of solu-

tions for (1.3).

In Section 3, we complete the proof of Theorem 1. To this end, we will verify the number

of constants s which satisfy

γ

(

C0 −

∫

Ω(s)
u(s)d xd y

)

= 1+
A

s
.

Actually, it will be shown that, if (u(s),Ω(s)) satisfies this equality for a certain s > 0, then the

pair (u(s),Ω(s)) corresponds to the solution of (1.3). As a result, we will show that, for a suffi-

ciently small constant A, there exist exactly two solutions (u1,Ω1) and (u2,Ω2) of (1.3), where

the radii s1 of Ω1 and s2 of Ω2 satisfy s1 ∈ [β1(A),α1(A)] and s2 ∈ [α2(A),β2(A)], respectively.

After the proof of Theorem 1, we briefly discuss the structure of solutions for (1.3). In par-

ticular, we remark that it is possible that the saddle-node bifurcation takes place with respect

to A.

2. A priori estimate and auxiliary lemmas

In this section, we introduce a priori estimate of (u,Ω) for (1.3) and auxiliary lemmas.

At first, we confirm that, if there exists a solution of (1.3), then the solution must be spheri-

cally symmetric. Second, we review the previous result in [5] which gives an upper and lower

estimates of u. Finally, we will prepare auxiliary lemmas which contributes to examine the

number of solutions for (1.3).
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2.1. Known results

Note that γ is a positive constant by Assumption 1. From the boundary condition and the

interface equation of (1.3), we verify that u and Ω are spherically symmetric.

Lemma 1. If there exists a classical solution (u,Ω) of (1.3), then Ω is a disk-shaped domain and

u is a spherically symmetric function. Moreover, if |x1| > |x2|, then it holds that u j (x1) > u j (x2),

where x1 = (x1, y1) and x2 = (x2, y2).

Proof. Suppose that there exists a classical solution (u,Ω) of (1.3). Then U is a positive con-

stant. In addition, γ is also a positive constant by (H1) of Assumption 1. Since the interface

equation of (1.3) satisfies

γU = 1+ Aκ, (2.1)

the curvature κ is a constant. According to the definition of solutions for (1.3), κ is a positive

constant. This means that Ω is a disk-shaped domain. By (2.1), we know that the solution u

has to satisfy the following elliptic problem :











d∆u +
k1

γ

(

1+
A

s

)

−u +k2 = 0 in Bs ,

u = 1+
A

s
on ∂Bs ,

(2.2)

where κ, U are positive constants and Bs is a disk-shaped domain with the radius s. By stan-

dard elliptic theory [1], there exists a unique solution u ∈C 2+α(Ω) of (2.2). Fortunately, we can

solve (2.2) with the help of a modified Bessel function v(r ) satisfying











vr r +
1

r
vr −v +k1U +k2 = 0 in

(

0,
s

d

)

,

vr (0) = 0, v
( s

d

)

= 1+
A

s
.

(2.3)

We note that the modified Bessel function v(r ) is represented by

v(r ) = 1+
A

s
−a

( s

d

)

+
a(s/d )

I0(s/d )
I0(r ),

where

a
( s

d

)

:=

(

1−
k1

η

)(

1+
A

s

)

−k2,

I0(r ) :=
1

π

∫π

0
exp(r cosθ)dθ =

∞
∑

m=0

(

r m

m!2m

)2

.

As a result, it is confirmed that there exists a spherically symmetric solution u of (2.2). In

addition, since the derivative of v(r ) with respect to r is positive, we immediately confirm

that v(r ) is a monotone increasing function. Therefore we complete the proof. ���
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From Lemma 1, we only have to investigate the number of spherically symmetric solu-

tions with disk-shaped domains for (1.3). One of difficulties of our problem is that we have to

confirm the condition (1.4), i.e.,

U =C0 −

∫∫

Ω

u d xd y.

To overcome this difficulty, we first ignore the restrict (1.4) and investigate the property of

solutions of an elliptic problem with a given domain Bs as follows :











d∆u +
k1

γ

(

1+
A

s

)

−u +k2 = 0 in Bs ,

u = 1+
A

s
on ∂Bs .

(2.4)

We note that (2.2) was appeared in the proof Lemma 1. From now on, u(s) stands for the

solution u of (2.4) with a disk-shaped domain Bs .

The following lemma is of help to a priori estimate of U :

Lemma 2 (cf.[6]). Let s be a given positive-constant. Then there exists a unique solution u(s)∈

C 2+α(Bs ) of (2.4) with the property

k2 <u(s)< 1+
A

s
i n Bs .

Proof. The existence of solutions for (2.4) is guaranteed by standard elliptic theory [1]. Apply-

ing the weak maximum principle for (2.3), we obtain the desire estimate. Here we used (H2)

and (H3) of Assumption 1. See [6] for the details. ���

In addition, we review the previous result related to the existence of solutions for (1.3).

Lemma 3 (cf. [6]). Assume that k1,k2,γ and C0 satisfy Assumption 1. Then there is a positive

constant A∗ such that, for any A ∈ (0, A∗), there exist at least two stationary solutions (u j ,Ω j )

( j = 1,2) of (1.3) with the property (P1), (P2) and (P3) in Theorem 1.

Here we explain the reason why Assumption 2 is needed. By Lemma 2, we immediately

obtain the following estimate :

C0 −πs(A+ s)<C0 −

∫

Ω(s)
u(s)d xd y <C0 −k2πs2. (2.5)

If there exists a positive constant s such that

γ

(

C0 −

∫

Ω(s)
u(s)d xd y

)

= 1+
A

s
, (2.6)
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then (u(s),Ω(s)) of (2.3) corresponds to a solution of (1.3) because U satisfies (1.4). Consider-

ing (2.5) and (2.6), we know that the necessary condition for solutions of (1.3) to exist is that

there exists at least a constant s∗ > 0 satisfying

γ
(

C0 −k2πs2
∗

)

> 1+
A

s∗
. (2.7)

In this paper, due to technical reasons to find two constant s1 and s2 satisfying (2.6), the author

imposed more stronger assumption, i.e., Assumption 2 which ensures the existence of s∗∗

satisfying

γ (C0 −πs∗∗(A+ s∗∗)) > 1+
A

s∗∗
(2.8)

provided that A ≤ Ā. Note that it follows from Assumption 1 that s∗∗ in (2.8) satisfies the

inequality (2.7). The size of A∗ in Lemma 3 is also determined by the same reason.

2.2. Auxiliary lemmas

As mentioned in subsection 2.1, we investigate the number of constants s satisfying (2.6)

to find solutions (u,Ω) of (1.3). To this end, we will give estimates for the derivative of

C0 −

∫

Bs

u(s)d xd y (2.9)

with respect to s. Here we transform (2.3) into an elliptic problem defined in a fixed domain

which is independent of s. Define w (τ; s) = u(s), where τ = |x|/s and x = (x, y). Then (2.3) is

rewritten by














d

s2
wττ+

d

s2τ
wτ+

k1

γ

(

1+
A

s

)

−w +k2 = 0 in (0,1),

wr (0) = 0, w (1)= 1+
A

s
,

(2.10)

and (2.9) is represented by

C0 −2πs2

∫1

0
τw (τ; s)dτ. (2.11)

From now on, we will investigate a priori estimate for the derivative of (2.11) with respect to

s.

The following lemma provides us detailed informations about the derivative of w (1; s)

with respect to s :

Lemma 4. Let ws be the derivative of w with respect to s. Define w s by

w s = w s (τ; s) =
σ

d
(1−τ2)−

A

s2
,

where σ= k1(2s + A)/4γ+ A/2. Then it holds that

ws ≤ w s in [0,1].
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Proof. By (2.10), ws satisfies















d (ws)ττ+
d

τ
(ws)τ+

k1

γ
(2s + A)−2sw − s2ws +2k2s = 0 in (0,1),

(ws )τ(0) = 0, ws(1) =−
A

s2
.

(2.12)

Set X = w s −ws . Then it follows from simple calculations that X satisfies



























d Xττ+
d

τ
Xτ−

k1

γ
(2s + A)+2sw − s2X −2k2s

−d (w s )ττ−
d

τ
(w s )τ+ s2w s = 0 in (0,1),

Xτ(0) = 0, X (1) = 0.

(2.13)

From now, we show that X ≥ 0 in [0,1]. Suppose that there exists a point τ∗ ∈ [0,1) such that

X (τ∗) < 0 and X (τ) ≥ X (τ∗) for any τ ∈ [0,1]. Then Xττ(τ∗) ≥ 0, Xτ(τ∗) = 0 and X (τ∗) < 0. On

the other hand, we have the following positivity at τ= τ∗ :

−
k1

γ
(2s + A)+2sw −2k2s −d (ws )ττ−

d

τ
(w s )τ+ s2w s

≥−
k1

γ
(2s + A)+2σ+2σ− A+

s2σ

d
(1−τ2)

≥ A+
s2σ

d
(1−τ2) > 0.

This estimate implies that the left-hand side of interior condition in (2.13) is positive at τ= τ∗.

This contradicts the fact that the right-hand side of (2.13) is zero. Since X ≥ 0 in [0,1), we have

the desired inequality. ���

The following two lemmas imply that, if A is sufficiently small, then the derivative of

1+ A/s with respect to s approaches infinity in [β1(A),α1(A)] and zero in [α2(A),β2(A)], re-

spectively.

Lemma 5. There exists a constant A1 ∈ (0, Ā] such that, for a fixed constant A ∈ (0, A1], it holds

that

−2γπ(A+ s) >
∂

∂s

(

1+
A

s

)

for any s ∈ [β1(A),α1(A)].

Proof. By the definition of α1(Ā), we obtain

γπ(Ā+α1(Ā))−
1

α1(Ā)
(γC0 −1) =−

Ā

{α1(Ā)}2
.
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Note that α1(A) is a monotone function with respect to A and converges to zero as A tends to

zero. Thus there exists a constant A0,1 ∈ (0, Ā] such that −1 >−A0,1/s2 for any s ∈ [0,α1(A0,1)].

Thus we have

−2πγ(A0,1 + s)−
∂

∂s

(

1+
A0,1

s

)

=−2πγ(A0,1 + s)+
A0,1

s2

≥−2πγ
(

A0,1 +
√

A0,1

)

+1

for any s ∈ [0,α1(A0,1)]. Let A0,2 be a positive constant satisfying −2πγ(A0,2 +
√

A0,2)+1 > 0.

Taking A1 = min{A0,1, A0,2}, we obtain the desired estimate for A ∈ (0, A1]. ���

Lemma 6. There exists a constant A2 ∈ (0, Ā] such that, for a fixed constant A ∈ (0, A2], it holds

that

γ(−2πk2s + A)<
∂

∂s

(

1+
A

s

)

for any s ∈ [α2(A),β2(A)].

Proof. Recall that α2(A) is monotone increasing with respect to A. Thus it satisfies that

α2(Ā) ≤α2(A) for any A ∈ (0, Ā). Let A be a constant in (0, Ā). Then we obtain

γ(−2πk2s + A)−
∂

∂s

(

1+
A

s

)

=γ(−2πk2s + A)+
A

s2

≤−2πγk2α2(Ā)+ Aγ+
A

{α2(Ā)}2
(2.14)

for any s ∈ [α2(A),∞). Letting A2 be a positive constant in (0, Ā] such that the right-hand side

of (2.14) is negative, we obtain the desire estimate. ���

3. Proof of Theorem 1

In this section, to complete the proof of Theorem 1, we confirm the number of constants

s satisfying

γ

(

C0 −2πs2

∫1

0
τw (τ; s)dτ

)

= 1+
A

s
(3.1)

instead of (2.6). Let A be a small constant such that A ≤ A0 := min{A1, A2}. Differentiating

(2.11) with respect to s, we have

∂

∂s

(

C0 −2πs2

∫1

0
τw (τ; s)dτ

)

=−2π

(∫1

0
2sτw (τ; s)+ s2τws(τ; s)dτ

)

=−2π

{

k2s +
k1

2γ
(2s + A)+d (ws)τ(1)

}

. (3.2)

The last equality is derived from (2.12).
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We show that there exist exactly two constants s1 and s2 satisfying (3.1), where s1 ∈ [β1(A),

α1(A)] and s2 ∈ [α2(A),β2(A)], respectively. As seen in Lemma 4, (ws)τ(1) is non-positive.

Hence we have

γ
∂

∂s

(

C0 −2πs2

∫1

0
τw (τ; s)dτ

)

>−2πγ

{

k2s +
k1

2γ
(2s + A)

}

,

>−2πγ(s + A),

>
∂

∂s

(

1+
A

s

)

for any s ∈ [β1(A),α1(A)]. Note that (H2) in Assumption 1. Remember that it follows from

Assumption 2 that

γ

(

C0 −2πβ1(A)2

∫1

0
τw (τ;β1(A))dτ

)

< 1+
A

β1(A)

and

γ

(

C0 −2πα1(A)2

∫1

0
τw (τ;α1(A))dτ

)

> 1+
A

α1(A)
.

Therefore there exists at most a point s ∈ [β1(A),α1(A)] satisfying (3.1).

On the other hand, it follows from Lemma 4 that

−d (ws)τ(1) ≤−d (w s )τ(1) =
k1

2γ
(2s + A)+ A. (3.3)

According to (3.2) and (3.3), we obtain

γ
∂

∂s

(

C0 −2πs2

∫1

0
τw (τ; s)dτ

)

< γ(−2πk2s + A)

<
∂

∂s

(

1+
A

s

)

for any s ∈ [α2(A),β2(A)]. From Assumption 2, α2(A) and β2(A) satisfy

γ

(

C0 −2πα2(A)2

∫1

0
τw (τ;α2(A))dτ

)

> 1+
A

α2(A)

and

γ

(

C0 −2πβ2(A)2

∫1

0
τw (τ;β2(A))dτ

)

< 1+
A

β2(A)
.

Therefore there exists at most a point s ∈ [α2(A),β2(A)] satisfying (2.6). In conclusion, we

complete the proof of Theorem 1.

4. Conclusions

In this paper, we obtained the result that there exist exactly two solutions for (1.3) with a

small constant A satisfying A ≤ A0 ≤ Ā. Thus we naturally encounter a question of existences
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of solutions for (1.3) provided A > Ā. It is not easy to answer the question when A is slightly

larger than Ā. However we can confirm that there exist no solutions (u,Ω) of (1.3) provided

A is sufficiently larger than Ā. Assume that there exists a solution of (1.3). By Lemma 1, Ω

is a disk-shaped domain with a radius s∗. In addition, it follows from a similar argument of

Lemma 2 that

f1(s∗) < γU < f2(s∗),

where f1 and f2 stand for functions appeared in Figure 1. Since we can easily take a large

constant A such that f2(s) < f3(s) in [0,∞), it holds that γU < 1+A/s∗. This result implies that

there exist no solutions (u,Ω) of (1.3) under the condition that A is sufficiently large and sug-

gests that the saddle-node bifurcation takes place with respect to A. Thus it is also expected

that there exists exactly two solutions for (1.3) even if A ∈ (A0, Ā) and the bifurcation point is

larger than Ā. Hence Assumptions 1 and 2 are essential. Incidentally, if (H3) is not satisfied,

i.e., γC0 ≤ 1, then we can also confirm that there are no stationary solutions of (1.3).
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