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A NON-COMMUTATIVE SOBOLEV ESTIMATE

AND ITS APPLICATION TO SPECTRAL SYNTHESIS

M. K. VEMURI

Abstract. In [M. K. Vemuri, Realizations of the canonical representation, Proc. Indian Acad. Sci. Math. Sci., 118

(2008), 115–131], it was shown that the spectral synthesis problem for the Alpha transform is closely related to the

problem of classifying realizations of the canonical representation (of the Heisenberg group). In this paper, it is

shown that discrete sets are sets of spectral synthesis for the Alpha transform.

1. Introduction

For p ∈ [1,∞], let Sp denote the Schatten class of pth power traceable operators on L2(R).

For x, y ∈R, let Tx and My denote the translation and modulation operators on L2(R), i.e. for

s ∈ L2(R)

(Tx s)(t) = s(t + x) and

(My s)(t) = e2πi y t s(t).

If (x1, y1) ∈R2 and X ∈ Sp , set

(x1, y1) ·X = Ty1 M−x1 X Mx1 T−y1 .

If q ∈ L1(R2) and X ∈ Sp , set

q ·X =

Ï

q(x1, y1)(x1, y1) ·X d x1d y1.

Then Sp becomes an L1(R2)-module. Note that the previous integral exists by Lemma 2.4.

Main Theorem. If X ∈ S1, tr(X ) = 0 and ε > 0, then there exists ρ ∈ L1(R2) with ρ̂ = 1 on a

neighborhood of (0,0) such that
∥

∥ρ ·X
∥

∥

S1 < ε.
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Definition 1.1. If X ∈ S1, the Alpha transform of X is the function on R2 defined by

α(X )(x, y) = tr(Tx My X ).

The Alpha transform is related to the module structure on S1 in the same way that the

classical Fourier transform is related to convolution. In fact, we have the following lemma.

Lemma 1.2. If q ∈ L1(R2) and X ∈ S1, then α(q ·X ) = q̂α(X ).

Proof. Note first that

α((x1, y1) ·X )(x, y) = tr(Tx My Ty1 M−x1 X Mx1 T−y1 )

= e−2πi y y1 tr(Ty1 Tx M−x1 My X Mx1 T−y1 )

= e−2πi(y y1+xx1) tr(Ty1 M−x1 Tx My X Mx1 T−y1 )

= e−2πi(y y1+xx1) tr(Tx My X )

= e−2πi(y y1+xx1)α(X )(x, y).

The result now follows by integration.

By standard methods, the main theorem leads to the following corollary, which may be

viewed as saying that discrete sets are sets of spectral synthesis (more precisely, C-sets) for

the Alpha transform.

Main Corollary. Let D ⊆ R2 be a discrete set. Let ε > 0. If X ∈ S1 and α(X ) vanishes on D,

then there exists Y ∈ S1 such that α(Y ) vanishes on a neighborhood of D and ‖X −Y ‖S1 < ε.

It was shown in [6] (see also [5]) that the spectral synthesis problem for the Alpha trans-

form is closely related to the problem of classifying realizations of the canonical representa-

tion (of the Heisenberg group).

2. Some Lemmas on Integration

In this section, we prove some slight extensions of [4, Theorem 3.27].

Definition 2.1. Let f be a continuous function defined on R
2. We say that f is rapidly

decreasing and write f ∈ R(R2) if for all positive integers n, the function (x, y) 7→ (1+ x2 +

y2)n f (x, y) is bounded. The best constants in the bounds give a countable family of norms

which turn R(R2) into a Frechet space.

Let T be a Frechet space defined by a countable family of norms.

Definition 2.2. A function Φ :R2 →T is bounded if for each norm σ, the function σ◦Φ is

bounded.
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Definition 2.3. A function Φ : R2 → T is polynomially bounded if for each norm σ, there

exists a polynomial p such that

σ◦Φ(x, y) ≤ p(x, y)

for all (x, y) ∈R2.

Lemma 2.4. Let Φ :R2 →T be a bounded continuous function. Let f ∈ L1(R2). Then

Ï

f (x, y)Φ(x, y)d xd y

exists.

Proof. There is a sequence { fk } of compactly supported continuous functions such that

fk → f in L1(R2). For each k, the integral

Ik =

Ï

fk (x, y)Φ(x, y)d xd y

exists by [4, Theorem 3.27]. For each norm σ,

σ(Ik − I j ) ≤

Ï

| fk (x, y)− f j (x, y)|σ(Φ(x, y))d xd y

≤ supσ(Φ(x, y))
∥

∥ fk − f j

∥

∥

1

→ 0

as k, j →∞. So {Ik } is a Cauchy sequence. Since T is Frechet, there exists I ∈T such that

lim
k→∞

Ik = I .

Let Λ be a continuous linear functional on T . Then

Λ(I ) = lim
k→∞

Λ(Ik )

= lim
k→∞

Λ(

Ï

fk (x, y)Φ(x, y)d xd y)

= lim
k→∞

Ï

fk (x, y)Λ(Φ(x, y))d xd y

=

Ï

f (x, y)Λ(Φ(x, y))d xd y (by the dominated convergence theorem)

=

Ï

Λ( f (x, y)Φ(x, y))d xd y.

Therefore,
Î

f (x, y)Φ(x, y)d xd y = I .

Lemma 2.5 Let Φ :R2 →T be a polynomially bounded continuous function. Let f ∈R(R2).

Then
Ï

f (x, y)Φ(x, y)d xd y
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exists.

We omit the proof because it is very similar to the proof of Lemma 2.4.

3. An Interpolation Theorem

Theorem 3.1. Let 1 ≤ p0, p1, p ′
0, p ′

1 ≤∞ and suppose that T : Lp0 (R2)∩Lp1 (R2) → Sp′
0 ∩Sp′

1

is a linear transformation which satisfies

∥

∥T f
∥

∥

S
p′

0
≤ M0

∥

∥ f
∥

∥

p0
and

∥

∥T f
∥

∥

S
p′

1
≤ M1

∥

∥ f
∥

∥

p1
.

Then for each f ∈ Lp0 (R2)∩Lp1 (R2) and each t ∈ (0,1), T f ∈ Sp′
t and

∥

∥T f
∥

∥

S
p′t

≤ Mt

∥

∥ f
∥

∥

pt
,

where

1

pt
=

t

p1
+

1− t

p0
,

1

p ′
t

=
t

p ′
1

+
1− t

p ′
0

and

Mt = M1−t
0 M t

1 .

Proof. This follows immediately from the abstract (Calderon-Lions) interpolation theo-

rem once we know that {Lp (R2)|p ∈ [1,∞]} and {Sp |p ∈ [1,∞]} form complex interpolation

scales. For this, see [2, p38, Example 1 and p44, Proposition 8]. Note that we must take S∞ to

be the space of compact operators with the operator norm for all this to work.

4. Non-commutative Hölder Inequality

Theorem 4.1. Let 1 ≤ p ≤∞ and p−1 +p ′−1
= 1. If A ∈ Sp and B ∈ Sp′

, then AB ∈ S1 and

‖AB‖S1 ≤ ‖A‖Sp ‖B‖
Sp′ .

Proof. This follows from Theorem 3.1. For details, see [2].

5. The Inverse Alpha Transform

Definition 5.1. Let f ∈ L1(R2). Then the inverse Alpha transform of f is the bounded

operator defined by

Θ( f ) =

Ï

f (x, y)M−y T−x d xd y
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Note that this integral exists by Lemma 2.4.

Lemma 5.2. If f ∈ L1(R2), then for all g ∈ L2(R),

[Θ( f )g ](v)=

∫

K (v, w)g (w)d w a.e.

where

K (v, w) =

∫

f (v −w, y)e−2πi y v d y.

Proof. For any h ∈ L2(R),

∫

[Θ( f )g ](v)h(v)d v =

∫(Ï

f (x, y)M−y T−x d xd y g

)

(v)h(v)d v

=

Ï

f (x, y)

∫

(M−y T−x g )(v)h(v)d vd xd y

(by definition of integral)

=

Ï

f (x, y)

∫

e−2πi y v g (v − x)h(v)d vd xd y

=

Ñ

f (x, y)e−2πi y v d y g (v − x)d xh(v)d v

(by Fubini’s theorem)

=

Ñ

f (v −w, y)e−2πi y v d y g (w)d wh(v)d v

=

Ï

K (v, w)g (w)d wh(v)d v.

The application of Fubini’s theorem is justified by the fact that F ∈ L1(R3) if

F (x, y, v) = f (x, y)e−2πi y v g (v − x)h(v).

6. A Minimalist Alpha Inversion Formula

Lemma 6.1. If X ∈ S1, then

‖α(X )‖∞ ≤ ‖X ‖S1 .

Proof. For any Y ∈ S1, we have |tr(Y )| ≤ tr(|Y |) by the spectral theorem. So for any X ∈ S1,

‖α(X )‖∞ = sup
(x,y)∈R2

|tr(Tx My X )|

≤ sup
(x,y)∈R2

tr(|Tx My X |)

= tr(|X |) (since Tx My is unitary)

= ‖X ‖S1 .
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Remark 6.2. Note that if X is given by an integral kernel K of Schwartz class, then

α(X )(x, y) =

∫

e2πi y v K (v, v − x)d v.

Theorem 6.3. If f is a Schwartz class function on R2, then

α(Θ( f )) = f .

Proof. By the Schwartz-Plancherel theorem for the classical Fourier transform, the kernel

K of Θ( f ) is of Schwartz class. So

α(Θ( f ))(x, y) =

∫

e2πi y v K (v, v − x)d v

=

∫

e2πi y v

∫

f (x, y ′)e−2πi y ′v d y ′d v

= f (x, y) (by the classical Fourier inversion formula.)

Theorem 6.4. If X ∈ S1 is given by an integral kernel K of Schwartz class, then

X =Θ(α(X )).

Proof. By Lemma 5.2, Θ(α(X )) is given by the kernel K̃ , where

K̃ (v ′, w) =

∫

α(X )(v ′
−w, y)e−2πi y v ′

d y.

However, by Remark 6.2 and the classical Fourier inversion formula,

K̃ (v ′, w) =

∫∫

e2πi y v K (v, v − (v ′
−w))d ve−2πi y v ′

d y

= K (v ′, w).

7. Non-commutative Riemann-Lebesgue Lemma

Theorem 7.1. If f ∈ L1(R2), then
∥

∥Θ( f )
∥

∥

∞
≤

∥

∥ f
∥

∥

1 and Θ( f ) ∈ S∞.

Proof. Firstly,

∥

∥Θ( f )
∥

∥

∞
=

∥

∥

∥

Ï

f (x, y)M−y T−x d xd y
∥

∥

∥

∞

≤

Ï

| f (x, y)|
∥

∥M−y T−x

∥

∥

∞
d xd y

=

Ï

| f (x, y)|d xd y
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=
∥

∥ f
∥

∥

1 .

Now, there is a sequence { fk } of compactly supported smooth functions such that fk → f

in L1(R2). Moreover, for each k, the operator Θ( fk ) ∈ S∞. But, by the previous calculation,

Θ( fk ) →Θ( f ) in operator norm. Since S∞ is closed in the operator norm, Θ( f ) ∈ S∞.

8. Non-commutative Plancherel Theorem

Theorem 8.1. Θ extends to an isometry

Θ : L2(R2) → S2.

Proof. Assume first that f ∈ L1(R2)∩L2(R2). Then Θ( f ) is given by the kernel

K (v, w) =

∫

f (v −w, y)e−2πi y v d y.

So

∥

∥Θ( f )
∥

∥

2
S2 =

Ï

|K (v, w)|2d vd w

=

Ï

∣

∣

∣

∫

f (v −w, y)e−2πi y v d y
∣

∣

∣

2

d vd w

=

Ï

| f (u, v)|2d vdu (by the classical Plancherel theorem)

=
∥

∥ f
∥

∥

2 .

The rest is clear.

9. Non-commutative Hausdorff-Young Theorem

Theomre 9.1. Let 1 ≤ p ≤ 2 and p−1 +p ′−1
= 1. Then Θ extends to a bounded operator

Θ : Lp (R2) → Sp′

.

Proof. The endpoint estimates are given by Theorem 7.1 and Theorem 8.1. The result now

follows from Theorem 3.1.

10. An Approximation Lemma

Recall that if ϕ,ψ ∈ L2(R), the operator ϕ⊗ψ : L2(R)→ L2(R) is defined by

(ϕ⊗ψ)( f ) = 〈 f ,ψ〉ϕ,
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and is of rank one. Thus a general finite rank operator is of the form

X =

n
∑

k=1

ϕk ⊗ψk with ϕk ,ψk ∈ L2(R).

Definition 10.1. The non-commutative Schwartz space is the space SS of finite rank op-

erators X : L2(R) → L2(R) such that

X =

n
∑

k=1

ϕk ⊗ψk with ϕk ∈S ,

where S is the space of Schwartz class functions on R.

Lemma 10.2. Let X ∈ S1, tr(X ) = 0 and ε > 0. Then there exists Z ∈ SS such that tr(Z ) = 0

and

‖X −Z ‖S1 < ε.

Proof. It is well known (see e.g. [1]) that there exists a finite rank operator

X1 =

n
∑

k=1

ϕk ⊗ψk

such that
∥

∥ψk

∥

∥

2 = 1 and ‖X −X1‖S1 <
ε
4 . It is also well known that there exist ϕ′

k
∈S such that

∥

∥ϕk −ϕ′
k

∥

∥

2
<

ε
4n

. Set

X2 =

n
∑

k=1

ϕ′
k ⊗ψk .

Then

‖X1 −X2‖ =

∥

∥

∥

n
∑

k=1

(ϕk −ϕ′
k )⊗ψk

∥

∥

∥

S1

≤

n
∑

k=1

∥

∥ϕk −ϕ′
k

∥

∥

2

∥

∥ψk

∥

∥

2

<

n
∑

k=1

ε

4n

=
ε

4
.

Fix W ∈ SS such that ‖W ‖ = tr(W ) = 1 and define Z = X2 − tr(X2)W . Then Z ∈ SS , tr(Z ) = 0

and

‖X2 −Z ‖S1 ≤ |tr(X2)|

=

∣

∣

∣

n
∑

k=1

〈ϕ′

k ,ψk 〉

∣

∣

∣
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=

∣

∣

∣

n
∑

k=1

(

〈ϕk ,ψk〉−〈ϕk −ϕ′
k ,ψk〉

)

∣

∣

∣

≤

∣

∣

∣

n
∑

k=1

〈ϕk ,ψk 〉

∣

∣

∣+

n
∑

k=1

|〈ϕk −ϕ′

k ,ψk 〉|

≤ |tr(X1)|+
n
∑

k=1

∥

∥ϕk −ϕ′

k

∥

∥

2

∥

∥ψk

∥

∥

2

< |tr(X1)|+
ε

4
.

But

|tr(X1)| = |tr(X )− tr(X −X1)|

≤ |tr(X )|+ |tr(X −X1)|

= |tr(X −X1)|

≤ tr(|X −X1|)

= ‖X −X1‖S1

<
ε

4
.

Therefore, ‖X2 −Z ‖S1 <
ε
2

. Therefore, ‖X −Z ‖< ε.

11. The Action of Differential Operators

Definition 11.1. For ϕ ∈S , define

(Pϕ)(t) =
dϕ

d t
(Qϕ)(t) = 2πi tϕ(t).

Lemma 11.2. If X ∈ SS , then P X ,QX ∈ SS . Moreover,

α(P X ) =

(

∂

∂x
−2πi y

)

α(X )

α(QX ) =
∂

∂y
α(X ).

Proof. It follows immediately from the definition that P X ,QX ∈ SS . Since for any ϕ ∈S ,

limh→0
Th−I

h
ϕ= Pϕ in the L2(R) sense, limh→0

Th−I
h

X = P X in S1-norm. So

∂

∂x
α(X )(x, y) =

∂

∂x
tr(Tx My X )

= lim
h→0

tr(Tx+h My X )− tr(Tx My X )

h
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= lim
h→0

tr

(

e2πi yh Tx My Th X −Tx My X

h

)

= lim
h→0

tr

(

e2πi yh Tx My Th X −e2πi yh Tx My X

h

+
e2πi yh Tx My X −Tx My X

h

)

= lim
h→0

tr

(

Tx My
Th − I

h
X

)

+
e2πi yh −1

h
tr(Tx My X )

= tr(Tx My P X )+2πi y tr(Tx My X )

= (α(P X )+2πi yα(X ))(x, y).

So

α(P X ) =

(

∂

∂x
−2πi y

)

α(X ).

By essentially the same argument, we get

α(QX ) =
∂

∂y
α(X ).

Lemma 11.3. If X ∈ SS and q ∈R(R2), then Im(q ·X ) ⊆S .

Proof. Without loss of generality, we may assume X = ϕ⊗ψ with ϕ ∈ S . Let g ∈ L2(R).

Since the map (x, y) 7→ 〈g ,Ty M−xψ〉 is bounded and continuous, q(x1, y1)〈g ,Ty1 M−x1ψ〉 ∈

R(R2). Since (x1, y1) 7→ Ty1 M−x1ϕ is a polynomially bounded continuous map R2 →S ,

I =

Ï

q(x1, y1)〈g ,Ty1 M−x1ψ〉Ty1 M−x1ϕd x1d y1

exists in S by Lemma 2.5. Now, for any h ∈ L2(R),

∫

I (v)h(v)d v =

Ï

q(x1, y1)〈((x1, y1) ·X )g ,h〉d x1d y1 (by definition of integral)

= 〈(q ·X )g ,h〉.

It follows that

I = (q ·X )g a.e.

In particular (q ·X )g ∈S .

Lemma 11.4. Let X ∈ SS and q ∈R(R2). Then

P (q ·X ) = (−2πi x1q) ·X +q · (P X ).

In particular, P (q ·X ) ∈ S1.
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Proof. Since for any ϕ ∈S ,

lim
h→0

(

Th − I

h

)

ϕ= Pϕ

in the L2(R)-sense and Im(q ·X ) ⊆S , we have

P (q ·X ) = lim
h→0

Th − I

h
(q ·X )

in the strong operator topology. For the same reason,

P X = lim
h→0

Th − I

h
X

in S1-norm. So

lim
h→0

Th − I

h
(q ·X ) = lim

h→0

Th − I

h

Ï

q(x1, y1)(x1, y1) ·X d x1d y1

= lim
h→0

Ï

q(x1, y1)
Th − I

h
(x1, y1) ·X d x1d y1

= lim
h→0

Ï

q(x1, y1)
1

h

(

e−2πi x1h Ty1 M−x1 Th X Mx1 T−y1

−Ty1 M−x1 X Mx1 T−y1

)

d x1d y1

= lim
h→0

Ï

q(x1, y1)

(

e−2πi x1h −1

h
Ty1 M−x1 Th X Mx1 T−y1

+Ty1 M−x1

Th − I

h
X Mx1 T−y1

)

d x1d y1

=

Ï

q(x1, y1)(−2πi x1(x1, y1) ·X + (x1, y1) · (P X ))d x1d y1

= (−2πi x1q) ·X +q · (P X )

in S1-norm. This proves the claim.

Lemma 11.5. Let X ∈ SS and q ∈R(R2). Then

Q(q ·X ) = (−2πi y1q) ·X +q · (QX ).

In particular, Q(q ·X ) ∈ S1.

Proof. This is proved by the same sort of reasoning as Lemma 11.4.

Lemma 11.6. If X ∈ SS and q ∈R(R2), then

α(P (q ·X )) =

(

∂

∂x
−2πi y

)

α(q ·X ).

Proof. By Lemma 11.4, we have

P (q ·X ) = (−2πi x1q) ·X +q · (P X ).
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It follows that

α(P (q ·X )) =
∂q̂

∂x
α(X )+ q̂α(P X )

=
∂q̂

∂x
α(X )+ q̂

(

∂

∂x
−2πi y

)

α(X )

=
∂

∂x
(q̂α(X ))−2πi y q̂α(X )

=

(

∂

∂x
−2πi y

)

(q̂α(X ))

=

(

∂

∂x
−2πi y

)

α(q ·X ).

Lemma 11.7. If X ∈ SS and q ∈R(R2), then

α(Q(q ·X )) =
∂

∂y
α(q ·X ).

Proof. This is proved in the same way as Lemma 11.6.

12. The Harmonic Oscillator

Definition 12.1. The harmonic oscillator is the differential operator

H = P 2
+Q2.

Lemma 12.2. If X ∈ SS and q ∈R(R2), then H(q ·X ) ∈ S1 and

α(H(q ·X )) =Dα(q ·X ),

where

D =

(

∂

∂x
−2πi y

)2

+

(

∂

∂y

)2

.

Proof. By Lemma 11.4 and Lemma 11.5, we have

P 2(q ·X ) = P ((−2πi x1q) ·X )+P (q · (P X )) and

Q2(q ·X ) = Q((−2πi y1q) ·X )+Q(q · (QX )).

So P 2(q ·X ),Q2(q ·X ) ∈ S1 and hence H(q ·X ) ∈ S1.

By Lemma 11.6 and Lemma 11.7, we have

α(P 2(q ·X )) = α(P ((−2πi x1q) ·X ))+α(P (q · (P X )))
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=

(

∂

∂x
−2πi y

)

α((−2πi x1q) ·X )+

(

∂

∂x
−2πi y

)

α(q · (P X ))

=

(

∂

∂x
−2πi y

)

(α((−2πi x1q) ·X )+α(q · (P X )))

=

(

∂

∂x
−2πi y

)(

∂q̂

∂x
α(X )+ q̂

(

∂

∂x
−2πi y

)

α(X )

)

=

(

∂

∂x
−2πi y

)(

∂

∂x
(q̂α(X ))−2πi yα(X )

)

=

(

∂

∂x
−2πi y

)2

(q̂α(X ))

=

(

∂

∂x
−2πi y

)2

α(q ·X ).

and

α(Q2(q ·X )) =
∂

∂y
α((−2πi y1q) ·X )+

∂

∂y
α(q · (QX ))

=
∂

∂y
(α((−2πi y1q) ·X )+α(q · (QX )))

=
∂

∂y

(

∂q̂

∂y
α(X )+ q̂

∂

∂y
α(X )

)

=
∂2

∂y2
(q̂α(X ))

=
∂2

∂y2
α(q ·X ).

The result now follows.

Theorem 12.3. There is a complete orthonormal set {ϕk } in L2(R) such that

Hϕk =−2π(2k +1)ϕk .

Proof. See [3, Lemma 10.34].

Corollary 12.4. For p > 1,

H−1
∈ Sp .

Proof. This follows from the p-series test.

13. A Versal Constant

For δ> 0, let Bδ = {(x, y) ∈ R2 :
√

x2 + y2 < δ}. Fix a radial smooth function τ with support

in B1 and identically 1 in a neighborhood of 0. Set

V = ‖τ̌‖1 .
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Set

τδ(x, y) = τ(x/δ, y/δ).

Then

τ̌δ(x1, y1) =

Ï

e2πi(xx1+y y1)τδ(x, y)d xd y

=

Ï

e2πi(xx1+y y1)τ(x/δ, y/δ)d xd y

=

Ï

e2πiδ(xx1+y y1)τ(x, y)δ2d xd y

= δ2τ̌(δx1,δy1).

So for any δ> 0,

‖τ̌δ‖1 = δ2

Ï

|τ̌(δx1,δy1)|d x1d y1

= δ2

Ï

|τ̌(x1, y1)|δ−2d x1d y1

= ‖τ̌‖1

= V .



SPECTRAL SYNTHESIS 109

14. The Heart of the Matter

14.1. If X ∈ SS , tr(X ) = 0 and ε > 0, then there exists ρ ∈ L1(R2) with ρ̂ = 1 on a neighbor-

hood of (0,0) such that
∥

∥ρ ·X
∥

∥

S1
< ε.

Proof. Let r =
√

x2 + y2. Let

C1 = sup
B1

|∇α(X )|.

Since α(X ) is smooth and α(X )(0,0) = 0, it follows from the mean value theorem that

|α(X )(x, y)| ≤C1r on B1.

Let

C2 = sup
B1

|∆α(X )|

D1 = sup
B1

|τ|

D2 = sup
B1

|∇τ|

D3 = sup
B1

|∆τ|.

Then

D(τδα(X )) =

(

∆−4πi y
∂

∂x
−4π2 y2

)

(τδα(X ))

= (∆τδ)α(X )+2∇τδ ·∇α(X )+τδ∆α(X )

−4πi y

(

∂τδ

∂x
α(X )+τδ

∂

∂x
α(X )

)

−4π2 y2τδα(X ).

Therefore, on Bδ, we have by the Cauchy–Schwarz inequality that

|D(τδα(X ))| ≤ [|∆τδ||α(X )|+2|∇τδ ||∇α(X )|+ |τδ||∆α(X )|

+4π|y |

(

∣

∣

∣

∂τδ

∂x

∣

∣

∣|α(X )|+ |τδ|
∣

∣

∣

∂

∂x
α(X )

∣

∣

∣

)

+4π2
|y |2|τδ||α(X )|]

≤ (|∆τδ||α(X )|+2|∇τδ ||∇α(X )|+ |τδ||∆α(X )|

+4πr (|∇τδ||α(X )|+ |τδ ||∇α(X )|)+4π2r 2
|τδ||α(X )|)

≤ (δ−2D3C1r +2δ−1D2C1 +D1C2

+4πr (δ−1D2C1r +D1C1)+4π2r 2D1C1r )

≤ (δ−2D3C1r +δ−1(2D2C1 +4πD2C1)+ (D1C2 +4πD1C1 +4π2D1C1))
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≤ (A1δ
−2r + A2δ

−1
+ A3).

Moreover, D(τδα(X )) is supported in Bδ. Fix p ∈ (1,2). Then

‖D(τδα(X ))‖p ≤ A1δ
−2

(Ï

Bδ

r p d xd y

)1/p

+ A2δ
−1

(Ï

Bδ

d xd y

)1/p

+A3

(Ï

Bδ

d xd y

)1/p

≤ (2π)1/p

(

A1δ
−2

(

δp+2

p +2

)1/p

+ A2δ
−1

(

δ2

2

)1/p

+ A3

(

δ2

2

)1/p
)

= (2π)1/p
(

A1(p +2)−1/p
+ A22−1/p

)

δ2/p−1
+ A32−1/pδ2/p .

Therefore,

lim
δ→0

D(τδα(X )) = 0 in Lp (R2).

If p−1 +p ′−1
= 1, then we have

lim
δ→0

H(τ̌δ ·X ) = lim
δ→0

Θ (D(τδα(X ))) (by Theorem 6.4 and Lemma 12.2)

= Θ

(

lim
δ→0

D(τδα(X ))

)

(by Theorem 9.1)

= 0 in Sp′

.

By Corollary 12.4, H−1 ∈ Sp . So by Theorem 4.1, we have

lim
δ→0

τ̌δ ·X = H−1(lim
δ→0

H(τ̌δ ·X ))

= 0 in S1.

Therefore, there exists δ0 > 0 such that
∥

∥τ̌δ0
·X

∥

∥

S1 < ε. Take ρ = τ̌δ0
. Then ρ̂ = 1 in a neighbor-

hood of (0,0) and
∥

∥ρ ·X
∥

∥

S1 < ε.

Proof. of the Main Theorem. Now, if X ∈ S1 and tr(X ) = 0, by Theorem 10.2 we can find

X ′ ∈ SS such that
∥

∥X −X ′
∥

∥

S1 <
ε

2V and tr(X ′) = 0. Then by Lemma 14.1 we can find ρ ∈ L1(R2)

such that
∥

∥ρ ·X ′
∥

∥

S1 <
ε
2 . Thus

∥

∥ρ ·X
∥

∥

S1 =
∥

∥ρ · [X ′
− (X ′

−X )]
∥

∥

S1

≤
∥

∥ρ ·X ′
∥

∥

S1 +
∥

∥ρ · (X ′
−X )

∥

∥

S1

≤
ε

2
+

∥

∥ρ
∥

∥

1

∥

∥X −X ′
∥

∥

S1

< ε.
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