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ON THE ABLUE OF THE SCALE PARAMETER OF THE

GENERALIZED PARETO DISTRIBUTION

SMILEY W. CHENG AND C. H. CHOU

Abstract. We study the asymptotic best linear unbiased estimation of the scale parameter of

the generalized Pareto distribution (GPD) with the probability density function (p.d.f.)

f(x) =

{

σ−1(1 − rx/σ)1/r−1, r 6= 0

σ−1 exp(−x/σ), r = 0.

In Cheng and Chou (2000), the best linear unbiased estimation of the scale parameter was

discussed for finite samples. We study the large sample size cases here. Results of some chosen

cases are tabulated.

Introduction

We consider the random variable X having the generalized Pareto distribution (GPD)

with a probability density function (p.d.f.)

f(x) =

{

σ−1(1 − rx/σ)1/r−1, r 6= 0

σ−1 exp(−x/σ), r = 0.

where σ and r are the scale and shape parameters respectively. The range of x is
0 ≤ x < ∞ for r ≤ 0 and 0 ≤ x ≤ σ/r for r > 0.

Clearly, the standardized random variable U = X/σ has the p.d.f.

f(u) =

{

(1 − ru)1/r−1, r 6= 0

exp(−u), r = 0.

The range of u is 0 ≤ u ≤ ∞ for r ≤ 0 and 0 ≤ u ≤ 1/r for r > 0.

The Pareto distribution was first proposed by Pareto (1897). The generalized Pareto

distribution was introduced by Pickands (1975). Maximum likelihood estimation of gen-

eralized Pareto distribution was discussed by Davison (1984) and Smith (1984, 1985).

Hosking and Wallis (1987) derived estimators of parameters and quantiles by the method
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of moments and the method of probability weighted moments. They restricted atten-

tion to the case −1/2 < r < 1/2, for both practical and theoretical reasons. Also, they

pointed out a close connection between generalized Pareto and generalized extreme-value

distributions (GEV) with equal value for their shape parameters. As Hosking, Wallis,

and Wood (1985) remarked, applications of the GEV distributions, particularly in hy-

drology usually involve the case −1/2 < r < 1/2. Chan and Cheng (1973) dealt with

the asymptotically best linear unbiased estimate of the scale parameter of the Pareto

distribution.

For r < 0 the distribution has a heavy Pareto-type upper tail. The case r = 0 is the

exponential distribution for which many statistical techniques are available. When r > 0

the distribution has an upper endpoint at σ/r. For r = 0.5 and r = 1 the distribution is

triangular and uniform respectively.

The applications of the GDP include the use in the analysis of extreme events, in

the modeling of large insurance claims, and as a failure-time distribution in reliability

studies.

Consider a sample of n order statistics

X(1) < X(2) < · · · < X(n) (1.1)

from a continuous distribution with the p.d.f. g[(x − µ)/σ]/σ, where µ and σ are the

location and scale parameters respectively.

Lloyed (1952) obtained the generalized least-square estimators of the location and

scale parameters using order statistics. Cheng and Chou (2000) found the best linear

unbiased estimators (BLUE’s) of the parameters based on k(≤ n) order statistics selected

from (1.1).

Let

X∗ = (X(n1) < X(n2) < · · · < X(nk)), 1 < n1 < · · · < nk < n. (1.2)

In estimating a parameter by a linear combination of k(< n) chosen order statistics

from a sample, the set of k order statistics which gives the minimum variance among all

possible choices of k order statistics is the preferred one. However when n or k is large,

the procedure for finding the optimum ranks is time-consuming, even with the use of

a computer. Asymptotic theory is then useful for the approximation of such optimum

ranks.

Ogawa (1951) proposed the asymptotically best linear unbiased estimate (ABLUE) of

the location parameter µ and/or the scale parameter σ of the distribution g(·) and found

the optimum ranks of the ABLUE for the parameters of the normal distribution. Chan

and Cheng (1973) derived the ABLUE of µ and that of σ of the Pareto distribution.

First, we define the following terms:

Definition 1.1. A set of k fixed values {λi} = {λ1, . . . , λk} is called a spacing if it

satisfies the following relation:

0 < λ1 < λ2 < · · · < λk < 1.
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Definition 1.2. Let X(1) < X(2) < · · · < X(n) be a complete sample, if only the

order statistics

X(1) < X(2) < · · · < X([nβ]+1), 0 < β < 1,

where [a] is a Gauss’ symbol representing the integer part of a, are available in which

the largest 100(1 − β)% of the order statistics in (1.1) are missing, the sample is called

a right censored sample.

Definition 1.3. If only the order statistics

X([nα]+1) < X[nα]+2) < · · · < X(n), 0 < α < 1

are available in which the smallest 100α% of the order statistics in (1.1) are missing, the

sample is called a left censored sample.

Either of the two above cases is called a singly censored sample.

Definition 1.4. If only the order statistics

X([nα]+1) < · · · < X([nβ]+1), 0 < α, β < 1

are available in which the smallest 100α% and the largest 100(1 − β)% of the order

statistics in (1.1) are missing, the sample is called a doubly censored sample.

Definition 1.5.

I∗(a, b) = {(λ1, . . . , λk) : 0 ≤ a ≤ λ1 ≤ · · · ≤ λk ≤ b ≤ 1};

I∗(0, 1) = {(λ1, . . . , λk) : 0 < λ1 < · · · < λk < 1};

I(0, β) = {(λ1, . . . , λk) : 0 ≤ λ1 ≤ · · · ≤ λk ≤ β < 1};

I(α, 1) = {(λ1, . . . , λk) : 0 < α ≤ λ1 < · · · < λk < 1};

I(α, β) = {(λ1, . . . , λk) : 0 < α ≤ λ1 < · · · < λk ≤ β < 1}.

By applying the Gauss-Markov theorem, Ogawa (1951) obtained the ABLUE µ∗ of

µ and/or the ABLUE σ∗ of σ, which is a linear combination of the sample quantiles

X(n1) < X(n2) < · · · < X(nk), ni = [nλi] + 1.

When µ is known, the ABLUE σ∗ of σ is

σ∗ =

k
∑

i=1

biX(ni) − µ
K3

K2

Var (σ∗) =
σ2

nK2
,
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where K2 =
∑k

i=1 uiK2i, K3 =
∑k

i=1 K2i and bi = K2i/K2, and

K2i =
{(uifi − ui−1fi−1

λi − λi−1

)

−
(ui+1fi+1 − uifi

λi+1 − λi

)}

· fi,

set λ0 = 0, λk+1 = 1, f0 = fk+1 = u0f0 = uk+1fk+1 = 0, fi = f(ui), i = 1, . . . , k.

K2 can easily be reduced to a simple form:

K2 =

k+1
∑

i=1

uifi − ui−1fi−1

λi − λi−1
.

The ABLUE

We now deal with the ABLUE of the scale parameter, when the shape parameter

is known, of the generalized Pareto distribution based on order statistics selected from

a complete, singly or doubly censored sample when the sample size is large. We apply

a unified method proposed by Cheng (1975) to derive the estimate and the optimum

spacing.

We first state basic lemmas and theorems which will lead to the optimum spacing

algorithms and tables used to facilitate the computations.

Firstly we will deal with the complete sample, and some tables are presented. Then

we will deal with left, right, and doubly censored samples and tables are presented.

Finally we obtain the solution of a special case where the shape parameter r = −1 and

give some remarks.

Assume that the value of the shape parameter r is known and the scale parameter σ

is to be estimated.

The k order statistics

X([nλ1]+1) < X(nλ2]+1) < · · · < X([nλk]+1) (3.1)

in (1.1), where [nλi] represents the largest integer not exceeding nλi, are called sample

quantiles. Ogawa’s (1951) asymptotically best linear unbiased estimate of σ, when r is

known (r 6= 0), is

σ∗ =

k
∑

i=1

biX([nλi]+1) (3.2)

bi =
fi

K2
[
uifi − ui−1fi−1

λi − λi−1
−

ui+1fi+1 − uifi

λi+1 − λi
], 1 = 1, . . . , k, (3.3)

K2 =

k+1
∑

i=1

(uifi − ui−1fi−1)
2/(λi − λi−1), (3.4)
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where

ui = F−1(λi) =
1 − (1 − λi)

r

r
, fi = f(ui) = (1 − λi)

1−r,

f0u0 = fk+1uk+1 = 0, λ0 = 0, λk+1 = 1.

The asymptotic variance of σ∗ is

Var (σ∗) =
σ2

K2n
. (3.5)

The value of K2 in (3.4) increases with the number of λi’s. We set gi = uifi. So, as
k → ∞ and max |λi − λi−1| tends to zero.,

lim
k→∞

K2(λ1, . . . , λk) = lim
k→∞

k
∑

i=1

[
gi − gi−1

λi − λi−1
]2(λi − λi−1)

=

∫ 1

0

(
dg

dλ
)2dλ =

∫ 1

0

(1 +
uf ′

f
)2dF =

∫ 1

0

(
uf ′

f
)2dF − 1 =

1

1 − 2r
.

Thus, the amount of information of the original sample with respect to σ is I(σ) =
n

(1−2r)σ2 . So the Crámer-Rao lower bound for the regular unbiased estimator of σ is
(1−2r)σ2

n , then the asymptotic relative efficiency of the estimator σ∗ is

ARE(σ∗) = (1 − 2r)
σ2

n
·
nK2

σ2
= (1 − 2r) · K2. (3.6)

In order to determine the k optimum quantiles for the ABLUE of σ, we have to mini-
mize VAR(σ∗) in (3.5) with respect to the standardized random variables. Equivalently,
we maximize K2 defined in I∗ (0,1) with respect to λi. We shall need the following
Lemmas in the sequel. The proof for the Lemma 3.1 and 3.2 can be found in Chan and
Kabir (1969), and Cheng (1975).

Lemma 3.1. K2 in (3.4) defined on I∗(0, 1) attains its maximum at an interior point

of I∗(0, 1).

Lemma 3.2. A point which maximizes K2 in (3.4) defined on I(0, 1) must satisfy

the equations

G(λi+1, λi, λi−1) =
(gi+1 − gi)

λi+1 − λi
+

(gi − gi−1

λi − λi−1
) − 2 · g′i = 0, i = 1, 2, . . . , k, (3.7)

where 0 = λ0 < λi < · · · < λk < λk+1 = 1, and g′i = g′(λi) = dg(λi)/dλi.

Lemma 3.3. Let

H1(y) =
1

2
+

y
1
r −1 − 1

2(r − 1)(y
1
r − 1)

,

H2(y) = −
1

2
−

y
1
r − y

2(r − 1)(y
1
r − 1)

,

G1(y) = −H2(y), G2(y) = −H1(y), 0 ≤ a ≤ y ≤ b ≤ 1, r 6= 1,
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then for any fixed y′ ∈ [a, b], there exists a unique y′′ ∈ [a, b] such that

H1(y
′) = H2(y

′′), 1 ≤ r ≤ 0.5,

G2(y
′) = G1(y

′′), r < 0.

Proof. First, we consider the case that r ∈ (0, 0.5). We have H1(1) = H2(1) = 0

and the first derivative of H1(y) and H2(y) are given by

H ′
1(y) =

y(1/r)−2 · f1(y)

2 · (r − 1) · (y1/r − 1)2
,

where f1(y) = r(1 − y1/r) + (y − 1),

H ′
2(y) =

f2(y)

2 · (r − 1) · (y1/r − 1)2
,

where f2(y) = r(1 − y1/r) + (y − 1).

Since f ′
1(y) = 1 − y(1/r)−1 and f ′

2(y) = (1/r) · (1 − r) · (y − 1) · y(1/r)−2, for r ∈ (0, 0.5),

we have f1(y) < 0 and f2(y) < 0. It follows that H ′
1(y) > 0 and H ′

2(y) > 0. This
implies that both H1(y) and H2(y) are increasing functions of y. Moreover, H1(y) < 0

and H2(y) < 0. Define

H(y) = H1(y) − H2(y)

= 1 +
(y − 1) · (y1/r − y)

2 · (r − 1) · y · (y1/r − 1)
, 0 < y < 1. (3.8)

Then

H ′(y) =
g1(y)

2 · (r − 1) · (y1/r − 1)2
,

where

g1(y) = y
1
r −2(1 −

1

r
) − y

1
r −2 + 1 + (

1

r
− 1)y

1
r , and

g′1(y) = (
1

r
− 1)y

1
r −3g2(y),

g2(y) =
1

r
y2 − 2y

1
r −

1

r
+ 2,

g′2(y) =
1

r
y(1 − y

1
r −2), g1(1) = g2(1) = 0.

Since 0 < r < 0.5, we have g′2(y) > 0 and g2(1) = 0, and therefore g2(y) < 0. It

follows that g′1(y) < 0 and g1(1) = 0. So g1(y) > 0, and H ′(y) < 0 and H(1) = 0. Hence,
H(y) > 0. We have H1(y) > H2(y), 0 < y < 1. Moreover, H1(0) = limy→0 H1(y) =

r/[2 · (r − 1)], and H2(0) = −1/2. Thus, we obtain a unique y′′ ∈ [y′, 1] such that

H1(y
′) = H2(y

′′). We have proved this Lemma for the shape parameter r ∈ (0, 0.5).
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Secondly, when r < 0, we also have G1(1) = G2(1) = 0. The first derivative of
G1(y) and G2(y) are given by G′

1(y) = −H ′
2(y) and G′

2(y) = −H ′
1(y). For the shape

parameter r < 0, f ′
2(y) > 0 and f2(1) = 0, it implies f2(y) < 0. It follows that

G′
1(y) < 0 and G1(1) = 0, then G1(y) > 0. Similarly, f ′

1(y) < 0 and f1(1) = 0, it implies
f1(y) > 0. Hence, G′

2(y) < 0, and G2(1) = 0, so G2(y) > 0. Thus, G1(y) and G2(y)
are decreasing functions of y for y ∈ (0, 1), and G1(y) > 0 and G2(y) > 0. The function
G(y)[= G1(y) − G2(y)] is equal to H(y) defined in (3.8). When r < 0, g′2(y) > 0 and
g2(1) = 0. It implies that g2(y) < 0. It follows that g′1(y) > 0 and g1(1) = 0. Therefore,
g1(y) < 0. It follows that H ′(y) > 0 and H(1) = 0. It implies that H(y) < 0, thus,
G1(y) < G2(y), 0 < y < 1. Moreover, G1(0) = r/[2 · (r − 1)] and G2(0) = ∞. This
completes the proof.

Theorem 3.1. The system of equations (3.7) has a unique solution {λc
i} =

{λc
i , · · · , λ

c
k} in I(0, 1) which gives the maximum of K2 in (3.4) defined on I(0, 1).

Proof. Let yi = ti+1

ti
= (1−λi+1

1−λi
)r , i = 0, 1, . . . , k. Clearly, 0 ≤ yi ≤ 1 when

0 < r ≤ 0.5, and
gi+1 − gi

λi+1 − λi
=

1

r
· {

−1

ti
(
1 − [ti+1/ti]

1r−1

1 − [ti+1/ti]1/r
) + 1}.

Thus, (3.7) reduces to

1

r
· {

−1

ti
(
1 − y

1/r−1
i

1 − y
1/r
i

)+1}+
1

r
· {

−1

ti−1
(
1 − y

1/r−1
i−1

1 − y
1/r
i−1

+1}−
2

r
· (

r − 1

ti
+1) = 0, i = 1, . . . , k

(3.9)
which can be written as

H1(yi) = H2(yi−1), i = 1, . . . , k,

where the functions H1(y) and H2(y) are as in Lemma 3.3. Since yk = 0, by Lemma
3.2, yk−1 is uniquely determined by the equation H2(yk−1) = H1(yk) = r

2(r−1) when

0 < r < 1/2. Since yk−1 is now known, yk−2 is uniquely determined by the equation
H2(yk−2) = H1(yk−1). Continuing this process, we can obtain for any k, the unique set
of numbers denoted by {yk−1, yk−2, . . . , y0}. Consequently, {λi} are uniquely determined
by

y0y1 · · · yi−1 = (1 − λi)
r, i.e. λi = 1 − (y0y1 · · · yi−1)

1/r, i = 1, . . . , k.

This solution gives the maximum of K2 in (3.4) defined on I(0, 1) followed from Lemma
3.1 and Lemma 3.2. Thus this completes the proof for the case r ∈ (0, 0.5).

For r < 0, yi > 1, let zi = 1
yi

= ( 1−λi

1−λi+1
)r < 1.

Thus, equation (3.7) can be written as

G2(zi) = G1(zi−1), i = 1, . . . , k,

where the functions G1(z) and G2(z) are as in Lemma 3.3. Since zk = 0, by Lemma 3.2,
zk−1 is uniquely determined by the equation G2(zk−1) = G1(zk) = r/[2(r − 1)], r < 0.
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Continuing this process, we can obtain for any k the unique set of numbers denoted

by {zk−1, zk−2, . . . , z0}. Consequently, {λi} are uniquely determined by z0z1 · · · zi−1 =

(1−λi)
−r, i.e. λi = 1−(z0z1 · · · zi−1)

−1/r, i = 1 . . . , k. This solution gives the maximum

of K2 in (3.4) defined on I(0, 1) followed from Lemma 3.1 and Lemma 3.2. Thus, this

proves the case for r < 0.

Table 1 lists the optimum spacing, the coefficients, the ARE of the ABLUE σ∗ for a

GPD of r = 0.2 from a complete sample.

Table 1. The optimum spacing, the coefficients and the ARE of the ABLUE

σ∗ based on k = 1(1)6 sample quantiles from a complete sample for GPD

(r = 0.2)

i 1 2 3 4 5 6 ARE(σ∗)

λi 0.8888

bi 0.5625 0.5710

λi 0.7706 0.9745

bi 0.4278 0.1748 0.7595

λi 0.6744 0.9253 0.9917

bi 0.3548 0.1959 0.0801 0.8458

λi 0.5976 0.8690 0.9699 0.9967

bi 0.3057 0.1947 0.1075 0.0439 0.8926

λi 0.5357 0.8132 0.9392 0.9860 0.9984

bi 0.2695 0.1870 0.1191 0.0658 0.0269 0.9209

λi 0.4850 0.7609 0.9038 0.9687 0.9928 0.9992

bi 0.2413 0.1774 0.1231 0.0784 0.0433 0.0177 0.9393

Example. Let n = 60, k = 4, r = 0.2. It is easy to check from Table 1. Then the

ABLUE σ∗ of σ is

σ∗ = 0.3057 · x(36) + 0.1947 · x(53) + 0.1075 · x(59) + 0.0439 · x(60)

and the ARE(σ∗) = 0.8926.

Given a left censored sample defined in Definition 1.3. α is the proportion of censoring

on the left. For a given k, consider the sample quantiles X(n1), X(n2), . . . , X(nk) with

α ≤ λ1 < · · · ≤ λk < 1 and ni = [nλi] + 1, i = 1, . . . , k. Define λ0 = 0 and λk+1 = 1.

Based on k sample quantiles X(n1), X(n2), . . . , X(nk), the ABLUE of σ and its variance

are given by (3.2) and (3.5), respectively.

In order to determine the k optimum quantiles for the ABLUE of σ, we have to

minimize VAR(σ∗) in (3.5). Equivalently, we maximize K2 in (3.4) on I∗(α, 1), and

there are two possible cases (i) α ≤ λc
1 and (ii) α > λc

1. For case (i), we take the

optimum spacing {λc
i} for the complete sample. For case (ii), we have the following

theorem:
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Theorem 3.2. The system of equations

G(λi+1, λi, λi−1) = 0, i = 2, . . . , k

defined on the domain α = λ1 < · · · < λk < 1 has a unique solution {λ1
i } = {λ1

1, . . . , λ
1
k}

which is the only spacing at which K2 defined on α ≤ λ1 < · · · < λk ≤ 1 attains its

maximum.

Table 2 lists the optimum spacing, the coefficients, the ARE of the ABLUE σ∗ for a
GPD of r = 0.2 from a left censored sample with α = 0.10.

Table 2. The optimum spacing, the coefficients and the ARE of the ABLUE
σ∗ based on k = 1(1)6 sample quantiles from a left censored α = 0.10 sample
for GPD (r = −1.0)

i 1 2 3 4 5 6 ARE(σ∗)

λi 0.1000 0.5500

bi 1.6364 0.6694 0.8167

λi 0.1000 0.4000 0.7000

bi 1.0588 0.7059 0.1765 0.9180

λi 0.1000 0.3250 0.5500

bi 0.8283 0.6451 0.2867 0.0717 0.9534

λi 0.1000 0.2800 0.4600 0.6400 0.8200

bi 0.7016 0.5773 0.3247 0.1443 0.0361 0.9698

λi 0.1000 0.2500 0.4000 0.5500 0.7000 0.8500

bi 0.6207 0.5172 0.3310 0.1862 0.0828 0.0207 0.9787

Example. Let n = 100, k = 2, r = −1.0 and censored at α = 0.10. From Table 2,
we obtain the ABLUE of σ as

σ∗ = 1.6364 · x(10) + 0.6694 · x(55),

with ARE(σ∗) = 81.67%.

Given a right censored sample defined on Definition 1.2. (1 − β) is the proportion
of censoring on the right. For a given k, consider the sample quantiles X(n1), X(n2), . . . ,
X(nk) with 0 < λ1 < · · · < λk ≤ β and ni = [nλi] + 1, i = 1, . . . , k. Define λ0 = 0 and
λk+1 = 1. Based on k sample quantiles X(n1), X(n2), . . . , X(nk), the ABLUE of σ and its
variance are given by (3.2) and (3.5), respectively.

In order to determine the k optimum quantiles for the ABLUE of σ, we have to
minimize VAR(σ∗) in (3.5). Equivalently, we maximize K2 in (3.4) on I∗(0, β). By
Theorem 3.1, K2 has a unique maximum at an interior point of I∗(0, 1). Then, we have
the following two cases: (i) λc

k ≤ β (ii) λc
k > β.

In the first case, we take the maximum of K2 corresponding to {λc
i}, and the k

optimum quantiles for the complete sample case.
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For the second case, we prove the following theorem.

Theorem 3.3. The system of equations

G(λi+1, λi, λi−1) = 0, i = 1, . . . , k − 1,

defined on the domain 0 < λi < · · · < λk = β has a unique solution {λr
i } = {λr

i , . . . , λ
r
i }

which is the only spacing at which defined on 0 < λi < · · · < λk ≤ β attains its maximum.

Given a doubly censored sample defined on Definition 1.4. α and (1 − β) are the
proportion of censoring on the left and right. For a given k, consider the sample quantiles

X(n1), X(n2), . . . , X(nk) with α ≤ λi < · · · < λk ≤ β and ni = [nλi] + 1, i = 1, . . . , k.

Define λ0 = 0 and λk+1 = 1. Based on k sample quantiles X(n1), X(n2), . . . , X(nk), the

ABLUE of σ and its variance are given by (3.2) and (3.5), respectively.

In order to determine the k optimum quantiles for the ABLUE of σ, we have to

minimize VAR(σ∗) in (3.5). Equivalently, we maximize K2 in (3.4) on I∗(α, β). By
Theorem 3.1, K2 has a unique maximum at an interior point of I∗(0, 1). Then we have

to consider the following five cases:

(1) α ≤ λc
1, β > λc

k;
(2) α ≤ λr

1, β > λr
k < λc

k;

(3) α ≤ λr
1, β > λr

k < λc
k;

(4) λc
1 < α = λ1

1, β ≥ λ1
k;

(5) λc
1 < α = λ1

1, β ≥ λ1
k.

In cases (1), (2) and (4) we take optimum spacing {λc
i}, {λ

r
i }, {λ

1
i }, respectively, which

corresponds the maximum of K2 defined on I∗(α, β). Thus, the optimum quantiles in

cases (1), (2), (4) are the same as those in the complete, right, left censored sample,

respectively.

Theorem 3.4. Let (λr
i , . . . , λ

r
k), with 0 < λr

i < · · · < λr
k = β be the optimum spacing

for the right censoring sample with β < λc
k, and α > λr

1. Then, K2 in (3.4) defined on

I∗(α, β) has a unique maximum at the point in I(α, β) which is the unique solution of

the system of equations

G(λi+1, λi, λi−1) = 0, i = 2, . . . , k

with α = λ1 < λ2 < · · · < λk−1 < λk = β.

To deal with case (5), we have the following theorem:

Theorem 3.5. Let (λ1
i , . . . , λ

1
k), with α < λ1

i < · · · < λ1
k < 1, be the optimum spacing

for left censoring at β < λ1
k, and α > λc

1. Then K2 in (3.4) defined on I∗(α, β) has a

unique maximum at the point in I(α, β) which is the unique solution of the system of

equations

G(λi+1, λi, λi−1) = 0, i = 2, . . . , k − 1
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with α = λ1 < λ2 < · · · < λk−1 < λk = β.

When r = −1.0, the p.d.f of GPD is

f(u) =
1

(1 + u)2
, u > 0.

And gi = uifi = λi(1 − λi), g′i = 1 − 2λi, fi = (1 − λi)
2. Since gi+1−gi

λi+1−λi
= 1 − λi+1 − λi,

then G(λi+1, λi, λi−1) in (3.6) is reduced to

(1 − λi+1 − λi) + (1 − λi − λi−1) − 2 · (1 − 2λi) = 0, i = 1, . . . , k.

Thus, we obtain the following equation

λi+1 − λi = λi − λi−1, i = 1, . . . , k. (3.10)

Since λ0 = 0, then λ2 = 2 · λ1. Substitute λ2 into (3.10) to obtain λ3 = 3 · λ1.
Proceeding in this way, we can obtain λi = i · λ1. Since λk+1 = 1, it follows from
λk+1 = (k + 1) · λ1 that λ1 = 1/(k + 1). Thus, we obtain

λi = i/(k + 1), i = 1, . . . , k. (3.11)

Substitute (3.11) into (3.4) and (3.3) to obtain K2 and bi as follows:

K2 =
k(k + 2)

3(k + 1)2
, (3.12)

bi =
6(k + 1 − i)2

k(k + 1)(k + 2)
, i = 1, . . . , k. (3.13)

The ARE(σ∗), defined on (3.6), is

ARE(σ∗) =
k(k + 2)

(k + 1)2
.

Table 3 lists the optimum spacing, the coefficients, the ARE of the ABLUE of σ of a
GPD from a doubly censored sample with α = 0.4 and β = 0.8.

Table 3. The optimum spacing, the coefficients and the ARE of the ABLUE
σ∗ of σ of a GDP of r = −0.5 based on k = 2(1)5 sample quantiles from a
Doubly censored sample for proportions of censoring α = 0.4 and β = 0.8.

i 1 2 3 4 5 ARE(σ∗)

λi 0.4000 0.8000

bi 0.8574 0.2027 0.8669

λi 0.4000 0.6176 0.8000

bi 0.5879 0.2516 0.1405 0.9138

λi 0.4000 0.5487 0.6827 0.8000

bi 0.5068 0.2075 0.1298 0.1218 0.9226

λi 0.4000 0.5129 0.6177 0.7137 0.8000

bi 0.4674 0.1719 0.1244 0.0846 0.1126 0.9257
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Example. Let n = 100, k = 2, α = 0.4, β = 0.8. It is easy to obtain the optimum

quantiles from Table 3 as X(40), X(80). The ABLUE of σ is

σ∗ = 0.8574 · X(40) + 0.2027 · X(80)

with ARE(σ∗) = 86.69%.

The Algorithm

We must use an algorithm to find the optimum spacing {λi} for the ABLUE σ∗ of σ

based on complete sample or censored sample.

Let yi = [(1 + λi−1)/(1 − λi)]
r , i = 1, . . . , k, 0 < r < 1/2.

Now we state the algorithm as follows:

(a) complete sample

y0y1 · · · yi−1 = (
1 − λ1

1 − λ0
·
1 − λ2

1 − λ1
· · ·

1 − λi

1 − λi−1
)r = (1 − λi)

r,

⇒ λi = 1 − (y0yi · · · yi−1)
1/r , i = 1, 2, . . . , k.

(b) Left censored sample at α

y0y1 · · · yi−1 = (
1 − λi

1 − λ1
)r = (

1 − λi

1 − α
)r,

⇒ λi = 1 − (1 − α) · (y0y1 · · · yi−1)
1/r, i = 1, 2, . . . , k.

λ1 = α.

(c) Right censored sample at β

yiyi+1 · · · yk−1 = (
1 − λk

1 − λi
)r = (

1 − β

1 − λi
)r,

⇒ λi = 1 − (1 − β) · (yiyi+1 · · · yk−1)
1/r, i = 1, 2, . . . , k − 1,

λi = β.

(d) Doubly censored sample at α and β

λi = 1 − (1 − α) · (y0y1 · · · yi−1)
1/r

or λi = 1 − (1 − β) · (yiyi+1 · · · yk−1)
1/r, i = 1, 2, . . . , k − 1,

λ1 = α, yk = β.

When r < 0, the algorithm is the same as above except

yi = (
1 − λi

1 − λi+1
)r, i = 1, . . . , k.
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FORTRAN 77 programs were written in order to find the values of the optimum
spacing, the corresponding coefficients and the ARE for the complete sample, singly
censored sample and doubly censored sample cases and any values of k and r. We listed
one table for each case and the other cases can similarly be derived using the algorithm
above.

All computations were rounded to the 4th decimal place for the complete and the
censored samples.

Conclusion

In this paper we can see from the tables that most of the relative efficiencies are
quite high for the ABLUE of σ. From the results it is easy to obtain the ABLUE of the
scale parameter σ of the GPD for the various shape parameters. If the shape parameter
r < 0, then the ABLUE of σ is very good. The ABLUE of σ for the shape parameter
0 < r < 1/2 has smaller relative efficiency than that for r < 0.
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