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On the Signed strong total Roman domination
number of graphs

A. Mahmoodi, M. Atapour and S. Norouzian

Abstract. Let G = (V,E) be a finite and simple graph of order n and maximum
degree ∆. A signed strong total Roman dominating function on a graph G is a func-
tion f : V (G) → {−1, 1, 2, . . . , ⌈∆

2 ⌉ + 1} satisfying the condition that (i) for every
vertex v of G, f(N(v)) =

∑
u∈N(v) f(u) ≥ 1, where N(v) is the open neighborhood

of v and (ii) every vertex v for which f(v) = −1 is adjacent to at least one vertex
w for which f(w) ≥ 1 + ⌈ 1

2 |N(w) ∩ V−1|⌉, where V−1 = {v ∈ V : f(v) = −1}. The
minimum of the values ω(f) =

∑
v∈V f(v), taken over all signed strong total Roman

dominating functions f of G, is called the signed strong total Roman domination
number of G and is denoted by γssTR(G). In this paper, we initiate signed strong
total Roman domination number of a graph and give several bounds for this pa-
rameter. Then, among other results, we determine the signed strong total Roman
domination number of special classes of graphs.

Keywords. Signed total Roman dominating function, Signed total Roman domination
number, Strong Roman dominating function, Signed strong Roman dominating function

1 Introduction
Let G be a simple graph with vertex set V = V (G) and edge set E = E(G). The order and
size of a graph G are denoted by n = n(G) and m = m(G), respectively. For x, y ∈ V (G)
with x ̸= y, d(x, y) denotes the length of a shortest path from x to y. If there is no such
path, then we will make the convention d(x, y) = ∞. A graph G is called connected if there
is a path between each pair x and y in V (G). The diameter of G is defined as diam(G) =
sup{d(x, y)| x and y are vertices of G}. For every vertex v ∈ V , the open neighborhood NG(v)
is the set {u ∈ V | uv ∈ E} and the closed neighborhood of v is the set N [v] = N(v) ∪ {v}.
The degree of a vertex v ∈ V is dG(v) = d(v) = |NG(v)|. The minimum and maximum degree
of a graph G are denoted by δ = δ(G) and ∆ = ∆(G), respectively. A graph G is regular if the
degrees of all vertices of G are the same. We write Kn for the complete graph, Pn for a path and
Cn for a cycle of order n. We also denote the complete bipartite graph with two parts of sizes r
and s, by Kr,s. Let X and Y be two subsets of V (G). We denote by [X,Y ] the set of edges of G
with one end in X and the other end in Y .
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For a subset S ⊆ V and v ∈ V , we denote by G[S] the subgraph of G induced by vertices
of S and by dS(v) the number of vertices in S that are adjacent to v. It is easy to see that
dS(v) = dG[S](v) for every v ∈ S.

A subset S of vertices is called a 2-packing if N [u] ∩ N [v] = ∅ for every pair of vertices
u, v ∈ S. The 2-packing number ρ := ρ2(G) of a graph G is the maximum cardinality of a
2-packing in G.

A subset S of vertices of G is a dominating set if N [S] = V . The domination number γ(G)
is the minimum cardinality of a dominating set of G. A dominating set of minimum cardinality
of G is called a γ(G)-set. A subset D of vertices of a graph G is a total dominating set if each
vertex in V (G) is adjacent to some vertex in D. The cardinality of a smallest total dominating
set in a graph G is called the total domination number of G and is denoted by γt(G). We note
that this parameter is only defined for graphs without isolated vertices.

The definition of a Roman dominating function was motivated by an article in Scientific
American by Ian Stewart entitled �Defend the Roman Empire� (Stewart 1999) ([8]) and suggested
even earlier by ReVelle (1997) ([6]). In this way, Emperor Constantine the Great can defend the
Roman Empire, but it was so expensive to maintain a legion at a location, the Emperor would
like to station as few legions as possible, while still defending the Roman Empire (See [1]). To
solve this problem, other authors made some changes to the definition of the Roman function.
In particular, the signed Roman domination number was introduced by Ahanghar et al. in [1] as
below and has been studied in [7].

A signed Roman dominating function (SRDF) on a graph G is a function f : V → {−1, 1, 2}
satisfying the conditions that (i) f [v] =

∑
x∈N [v] f(x) ≥ 1 for each vertex v ∈ V , and (ii) every

vertex u for which f(u) = −1 is adjacent to at least one vertex v for which f(v) = 2. The weight
of an SRDF is the sum of its function values over all vertices and denoted by ω(f). The signed
Roman domination number of G, denoted γsR(G), is the minimum weight of an SRDF on G. In
this way, the defensive strategy is based in the fact that every place in which there is established
a Roman legion (a label 1) is able to protect itself under external attacks; and that every place
with an auxiliary troop (a label -1) must have at least a stronger neighbor (a label 2). So, if
an unsecured place (a label -1) is attacked, then a stronger neighbor could send one of its two
legions in order to defend the weak neighbor vertex (label -1) from the attack.

Next, for more study, the signed total Roman domination number was introduced by Volk-
mann (2016) in [9]. A signed total Roman dominating function (STRDF) on a graph G is a
function f : V → {−1, 1, 2} satisfying the conditions that (i) f(N(v)) =

∑
x∈N(v) f(x) ≥ 1 for

each vertex v ∈ V (i.e., f is a total dominating function), and (ii) every vertex u for which
f(u) = −1 is adjacent to at least one vertex v for which f(v) = 2. The weight of an STRDF is
the sum of its function values over all vertices and denoted by ω(f). The signed total Roman
domination number of G, denoted γstR(G), is the minimum weight of an STRDF on G.

But still, there was a question. If several unsecured places which protected by one stronger
place are attacked at the same time, the stronger place will be not able to defend all its neighbors.
This persuaded researchers to define the concept signed strong Roman domination number as
follows. In this definition, a strong place should be able to defend itself and, at least half of its
weak neighbors.

Consider a graph G of order n and maximum degree ∆. A signed strong Roman dominating
function (abbreviated SStRDF) on a graph G is a function f : V (G) → {−1, 1, 2, . . . , ⌈∆

2 ⌉ + 1}
satisfying the conditions that (i) for every vertex v of G, f [v] =

∑
u∈N [v] f(u) ≥ 1 and (ii) every

vertex v for which f(v) = −1 is adjacent to at least one vertex w for which f(w) ≥ 1+⌈ 1
2 |N(w)∩

V−1|⌉, where V−1 = {v ∈ V : f(v) = −1}. The minimum of the values ω(f) =
∑

v∈V f(v), taken
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over all signed strong Roman dominating functions f of G, is called the signed strong Roman
domination number of G and is denoted by γssR(G). A signed strong Roman dominating function
of weight γssR(G) is called γssR(G)-function. This concept has been introduced in [2] and studied
in [5].

With this motivation in mind and in graph theoretic terms, in this paper we generalize the
concept of signed strong Roman dominating function and initiate the study of signed strong total
Roman dominating function in graphs.

Consider a graph G of order n and maximum degree ∆. A signed strong total Roman domi-
nating function (abbreviated SSTRDF) on a graph G is a function f : V (G) → {−1, 1, 2, . . . , ⌈∆

2 ⌉+
1} satisfying the condition that (i) for every vertex v of G, f(N(v)) =

∑
u∈N(v) f(u) ≥ 1 (i.e., f

is a total dominating function) and (ii) every vertex v for which f(v) = −1 is adjacent to at least
one vertex w for which f(w) ≥ 1 + ⌈ 1

2 |N(w) ∩ V−1|⌉, where V−1 = {v ∈ V : f(v) = −1}. The
minimum of the values ω(f) =

∑
v∈V f(v), taken over all signed strong total Roman dominating

functions f of G, is called the signed strong total Roman domination number of G and is denoted
by γssTR(G). A signed strong total Roman dominating function of weight γssTR(G) is called
γssTR(G)-function.

A signed strong total Roman dominating function f : V (G) → {−1, 1, 2, . . . , ⌈∆
2 ⌉ + 1} can

be represented by the ordered partition (V−1, V1, . . . , V⌈∆
2 ⌉+1), where Vj = {v ∈ V : f(v) = j}

for j = −1, 1, 2, . . . , ⌈∆
2 ⌉ + 1. Let |Vj | = nj for j = −1, 1, 2, . . . , ⌈∆

2 ⌉ + 1. In the course of
paper, for simplicity, we set B =

∪1+⌈∆
2 ⌉

i=2 Vi, |B| = nB , V1B = V1

∪
B, |V1B | = n1B . We also

denote the size of G[V1B ], G[B] and G[Vj ] for j = −1, 1, 2, . . . , ⌈∆
2 ⌉+ 1 by m1B , mB and mj for

j = −1, 1, 2, . . . , ⌈∆
2 ⌉+ 1, respectively. Let f(X) =

∑
v∈X f(v), where X is a subset of V (G).

In this paper, we present some bounds on the signed strong total Roman domination number.
Among other results, we prove that γssTR(G) ≥ n(δ+1)

∆ − n and γssTR(G) ≥ 17+11⌈∆
2 ⌉

1+⌈∆
2 ⌉ n − 12m.

In Section 3, the signed strong total Roman domination number is determined for some classes
of graphs. Finally, in section 5, we indicate some possible directions of future research.

2 Preliminary results and examples
In this section we present basic properties of the signed strong Roman dominating function.

We make use of the following results in this paper.

Observation 2.1. Let f = (V−1, V1, . . . , V1+⌈∆
2 ⌉) be an SSTRDF for a graph G without isolated

vertices of order n. Then the following results hold:

(a) |B|+ |V1|+ |V−1| = n.
(b) V1 ∪B is a total dominating set in G.

(c) ω(f) =
∑1+⌈∆

2 ⌉
i=1 i|Vi| − |V−1|.

Proposition 2.2. Let f = (V−1, V1, . . . , V1+⌈∆
2 ⌉) be an SSTRDF on a graph G of order n. Let

δ = δ(G) and ∆ = ∆(G). Then the following holds:

(i)
∑1+⌈∆

2 ⌉
i=1 (i∆− 1)|Vi| ≥ (δ + 1)|V−1|.

(ii)
∑1+⌈∆

2 ⌉
i=1 (i∆+ δ)|Vi| ≥ (δ + 1)n.
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Proof. (i) We have

n ≤
∑
v∈V

f(N(v)) =
∑
v∈V

d(v)f(v)

=

1+⌈∆
2 ⌉∑

i=1

∑
v∈Vi

id(v)−
∑

v∈V−1

d(v)

≤
1+⌈∆

2 ⌉∑
i=1

i∆|Vi| − δ|V−1|

by Observation 2.1 (a), the desired result follows.

(ii) It follows immediately from Part (i) by substituting |V−1| = n−
∑1+⌈∆

2 ⌉
i=1 |Vi|.

Observation 2.3. For any connected graph G with ∆ ≤ 2, γssTR(G) = γstR(G).

We make use of the following results which have been proved in [9].

Proposition A. [9] For n ≥ 3,

γstR(Cn) =


n
2 n ≡ 0 (mod 4)
n+3
2 n ≡ 1, 3 (mod 4)

n+6
2 n ≡ 2 (mod 4)

and

γstR(Pn) =

{
n
2 n ≡ 0 (mod 4)

⌈n+3
2 ⌉ otherwise.

By Observation 2.3 and Proposition A, we have the following corollary.

Corollary 2.4. For n ≥ 3,

γssTR(Cn) =


n
2 n ≡ 0 (mod 4)
n+3
2 n ≡ 1, 3 (mod 4)

n+6
2 n ≡ 2 (mod 4)

and

γssTR(Pn) =

{
n
2 n ≡ 0 (mod 4)

⌈n+3
2 ⌉ otherwise.

The signed strong total Roman domination number is well-defined for all graphs G without
isolated vertices. Thus we assume throughout this paper that δ(G) ≥ 1.

Observation 2.5. Let G be a graph of order n. Then γssTR(G) ≤ n, and this bound is tight.

Proposition 2.6. Let G be a graph of order n. Then γssTR(G) ≥ 2γt(G)− n.
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Proof. Suppose that f is a γssTR(G)-function on G. Then by Observation 2.1, one has

γssTR(G) =

1+⌈∆
2 ⌉∑

i=1

i|Vi| − |V−1|

=

1+⌈∆
2 ⌉∑

i=1

(i+ 1)|Vi| − n

≥ 2

1+⌈∆
2 ⌉∑

i=1

|Vi| − n

≥ 2γt(G)− n.

3 Bounds on the signed strong total Roman domination
number

In this section, we present some sharp bounds for the signed strong total Roman domination
number of graphs in terms of several parameters.

The next theorem gives a simple lower bound for the signed strong total Roman domination
number using order of a graph, maximum and minimum degree.

Theorem 3.1. Let G be a graph of order n with maximum degree ∆ and minimum degree δ.
Then γssTR(G) ≥ n(δ+1)

∆ − n. Moreover, this bound is sharp.

Proof. Suppose that f is a signed strong total Roman dominating function for G. Define g :
V (G) → {0, 2, 3, . . . , ⌈∆

2 ⌉+ 2} by g(v) = f(v) + 1. So we have

∑
x∈V (G)

g(N(x)) =
∑

x∈V (G)

(d(x) + f(N(x))

≥
∑

x∈V (G)

(δ + 1) = n(δ + 1).

One also has ∑
x∈V (G)

g(N(x)) =
∑

x∈V (G)

d(x)g(x)

≤
∑

x∈V (G)

∆g(x)

=∆
∑

x∈V (G)

g(x) = ∆g(V ).

Since f(V ) = g(V )− n, we obtain

f(V ) ≥
∑

x∈V (G) g(N(x))

∆
− n ≥ n(δ + 1)

∆
− n.
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This implies that γssTR(G) ≥ n(δ+1)
∆ −n. This Bound occurs for Cn, n ≡ 0 (mod 4), by Corollary

2.4.

As an immediate consequence of Theorem 3.1, we obtain a lower bound on the signed strong
Roman domination number of a regular graph.

Corollary 3.2. If G is an r-regular graph of order n, then γssTR(G) ≥ n
r .

We propose a so called Nordhaus-Gaddum type inequality for the signed strong total Roman
domination number of regular graphs. The proof of next result is similar to the proof of [3,
Theorem 6] and therefore it is omitted.

Theorem 3.3. Let G be an r-regular graph of order n. Then

γssTR(G) + γssTR(G) ≥

{
4n
n−1 if n is odd
4(n−1)
n−2 if n is even.

Proposition 3.4. If G is a graph of order n with maximum degree ∆, then γssTR(G) ≥ 1+∆−n.

Proof. Let f be a γssTR(G)-function and v be a vertex of degree ∆. Since f(N(v)) ≥ 1, we have

γssTR(G) = ω(f) ≥ f(N(v))− 1− (n−∆− 1) ≥ 1 + ∆− n.

The next results give a lower and upper bound for the signed strong total Roman domination
number using 2-packing number.

Proposition 3.5. If G is a graph of order n with δ ≥ 1, then γssTR(G) ≥ ρ(G)(δ + 1)− n.

Proof. Let {v1, v2, . . . , vρ(G)} be a 2-packing of G, and let f be a γssTR(G)-function. Assume
that A =

∪ρ(G)
i=1 N(vi). Since {v1, v2, . . . , vρ(G)} is a 2-packing, one has

|A| =
ρ(G)∑
i=1

d(vi) ≥ ρ(G)δ.

So we have

γssTR(G) =
∑

x∈V (G)

f(x) =

ρ(G)∑
i=1

f(N(vi)) +
∑

x∈V (G)−A

f(x)

≥ ρ(G) +
∑

x∈V (G)−A

f(x) ≥ ρ(G)− (n− |A|)

≥ ρ(G)− n+ ρ(G)δ

= ρ(G)(δ + 1)− n.

Proposition 3.6. Let G be a graph of order n with minimum degree δ ≥ 3. Then γssTR(G) ≤
n− ρ.
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Proof. Suppose that S = {v1, v2, . . . , vρ} is a 2-packing set of G. For 1 ≤ i ≤ ρ, choose an
element ui ∈ NG(vi) and define f as follows:

f(x) =

 −1 x ∈ S
2 x = ui and i = 1, . . . , ρ
+1 otherwise.

We have δ ≥ 3, so clearly, f is a signed strong total Roman dominating function on G. Since S
is a 2-packing set, one has

γssTR(G) ≤ ω(f) = −ρ+ 2ρ+ n− 2ρ = n− ρ

as desired.

The following corollary is an immediate consequence of Proposition 3.6.

Corollary 3.7. Let G be a cubic graph of order n different from the Peterson graph. Then
γssTR(G) ≤ ⌈ 7n

8 ⌉.

Proof. By [4, Lemma], G contains a 2-packing set of at least n
8 vertices which in turn implies

that γssTR(G) ≤ n− ⌊n
8 ⌋ = ⌈ 7n

8 ⌉, by Proposition 3.6.

We next present a lower bound for signed strong total Roman domination number with
regard to the diameter.

Proposition 3.8. Let G be a graph of order n with δ ≥ 1. Then

γssTR(G) ≥ (δ + 1)(1 + ⌊diam(G)

3
⌋)− n.

Proof. Suppose that v0, . . . , vdiam(G) is a diametral path, diam(G) = 3t + r with integers t ≥ 0
and 0 < r ≤ 2. It is easy to see that A = {v0, v3, . . . , v3t} is a 2-packing set of G such that
|A| = 1 + ⌊diam(G)

3 ⌋. Then we have ρ ≥ |A|. So by Proposition 3.5, one has

γssTR(G) ≥ (δ + 1)ρ− n ≥ (δ + 1)|A| − n = (δ + 1)(1 + ⌊diam(G)

3
⌋)− n.

The following proposition bounds the signed strong total Roman domination number in
terms of the maximum degree, when γ(G) = 1.

Proposition 3.9. Let G be a graph and γ(G) = 1. Then 0 ≤ γssTR(G) ≤ 2 + ⌈∆
2 ⌉. Moreover,

these bounds are sharp.

Proof. Suppose that {v} is an arbitrary γ(G)-set. Hence d(v) = ∆ = n − 1. Let V (G) =
{v, v1, v2, . . . , v∆}. Suppose first that ∆ is even and define f : V (G) → {−1, 1, 2, . . . , ⌈∆

2 ⌉+1} by
f(v) = 1+⌈∆

2 ⌉, f(vi) = (−1)i for 1 ≤ i ≤ n−2 and f(vn−1) = 2. Assume now that ∆ is odd and
define f : V (G) → {−1, 1, 2, . . . , ⌈∆

2 ⌉+1} by f(v) = 1+ ⌈∆
2 ⌉ and f(vi) = (−1)i for 1 ≤ i ≤ n− 2

and f(vn−1) = +1. Clearly in each cases f is a signed strong total Roman dominating function
for G and one has

γssTR(G) ≤ ω(f) = 2 + ⌈∆
2
⌉.
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To prove the left inequality, assume that g is a γssTR(G)-function. Then one has

γssTR(G) = ω(g) = g(v) + g(N(v)) ≥ 0.

We next present a trivial necessary and sufficient condition for a graph G with γ(G) = 1

such that γssTR(G) = 2 + ⌈∆(G)
2 ⌉.

Proposition 3.10. Let G be a graph of order n and γ(G) = 1. Then γssTR(G) = 2+⌈∆(G)
2 ⌉ if and

only if there exists a γssTR(G)-function f = (V−1, V1, V2, . . . , V1+⌈∆(G)
2 ⌉) such that

∪⌈∆(G)
2 ⌉

i=2 Vi = ∅,

|V−1| = |V1| − 1 when n is even and
∪⌈∆(G)

2 ⌉
i=3 Vi = ∅ and |V−1| = |V1|+ 1 when n is odd.

Proof. Suppose that n is even and there exists a γssTR(G)-function f = (V−1, V1, . . . , V⌈∆(G)
2 ⌉+1

)

such that
∪⌈∆(G)

2 ⌉
i=2 Vi = ∅, |V−1| = |V1| − 1. Hence one has

γssTR(G) = |V1| − |V−1|+ (1 + ⌈∆(G)

2
⌉)|V

1+⌈∆(G)
2 ⌉| ≥ 2 + ⌈∆(G)

2
⌉.

By Proposition 3.9, we have γssTR(G) = 2+ ⌈∆(G)
2 ⌉. Assume now that n is odd and there exists

a γssTR(G)-function f = (V−1, V1, . . . , V⌈∆(G)
2 ⌉+1

) such that
∪⌈∆(G)

2 ⌉
i=3 Vi = ∅ and |V−1| = |V1|+ 1.

So
γssTR(G) = |V1| − |V−1|+ 2|V2|+ (1 + ⌈∆(G)

2
⌉)|V1+⌈∆

2 ⌉| ≥ 2 + ⌈∆(G)

2
⌉.

By Proposition 3.9, this yields γsstR(G) = 2+ ⌈∆(G)
2 ⌉. Conversely is clear according to the proof

of the Proposition 3.9.

Proposition 3.11. If T is a tree of order n and maximum degree ∆(T ) ≥ 2, then

γssTR(G) ≥ ∆(T ) + 4− n.

Moreover this bound is sharp for graphs K1,3 and K1,4.

Proof. Let f = (V−1, V1, . . . , V1+⌈∆(T )
2 ⌉) be a γssTR(T )-function, v a vertex of maximum degree

∆(T ) and ∆i = Vi

∩
N(v) for i = {−1, 1, . . . , 1 + ⌈∆(T )

2 ⌉}. Suppose first that f(v) = 1. Each
vertex x in ∆−1 must have a neighbor x′ with label at least two. Note that if y ̸= x ∈ ∆−1, then
y′ ̸= x′. Thus we have

γssTR(G) ≥ f(v) +

1+⌈∆(T )
2 ⌉∑

i=2

i∆i −∆−1 +∆1 + 2∆−1 − (n− (∆(T ) + 1 +∆−1))

≥ 1 + 2

1+⌈∆(T )
2 ⌉∑

i=2

∆i + 2∆−1 +∆1 − n+∆(T ) + 1

≥ 1 + ∆(T )− n+∆(T ) + 1

≥ ∆(T )− n+ 4.
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Assume that f(v) ≥ 2. Then we have

γssTR(G) ≥ f(v) +

1+⌈∆(T )
2 ⌉∑

i=2

i∆i −∆−1 +∆1 − (n− (∆(T ) + 1))

≥ 2 + 1− n+∆(T ) + 1

≥ ∆(T )− n+ 4.

Finally, suppose that f(v) = −1 and note that each vertex x in N(v) have a neighbor x′

with label at least two. Note that if y ̸= x ∈ ∆−1, then y′ ̸= x′. Thus we have

γssTR(G) ≥ f(v) +

1+⌈∆(T )
2 ⌉∑

i=2

i∆i −∆−1 +∆1 + 2∆(T )− (n− (2∆(T ) + 1))

≥ 2∆(T )− n+ 2∆(T ) + 1

= 4∆(T )− n+ 1

> ∆(T )− n+ 4.

as desired.

In the following theorem, a lower bound is presented for signed strong total Roman domi-
nation number in terms of order and size of a graph.

Theorem 3.12. Let G be a graph with minimum degree δ ≥ 1. Then

γssTR(G) ≥
17 + 11⌈∆

2 ⌉
1 + ⌈∆

2 ⌉
n− 12m.

Where n and m are order and size of graph, respectively.

Proof. Suppose that f = (V−1, V1, V2, . . . , V1+⌈∆
2 ⌉) is an γssTR(G)-function. Every vertex in V−1

is adjacent to at least one vertex in B =
∪1+⌈∆

2 ⌉
i=2 Vi. So one has

n−1 = |V−1| ≤ |[V−1, B]| =
∑

v∈G[B]

dV−1
(v). (3.1)

On the other hand, for every vertex v in G[B] we have

1 ≤ f(N(v)) ≤ (1 + ⌈∆
2
⌉)dB(v) + dV1

(v)− dV−1
(v). (3.2)

Remember that mB and nB are size and order of G[B], respectively. As mentioned in the
introduction, V1B = V1 ∪ B. Note that m1 +mB + |[V1, B]| = m1B and n1B = n1 + nB . Hence
from (3.1) and (3.2), we obtain the following inequality

n−1 ≤
∑

v∈G[B]

dV−1(v)

≤
∑

v∈G[B]

((1 + ⌈∆
2
⌉)dB(v) + dV1

(v)− 1)
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=
∑

v∈G[B]

(1 + ⌈∆
2
⌉)dB(v) +

∑
v∈G[B]

dV1(v) +
∑

v∈G[B]

(−1)

≤ 2(1 + ⌈∆
2
⌉)mB + |[V1, B]| − nB

= 2(1 + ⌈∆
2
⌉)m1B − 2(1 + ⌈∆

2
⌉)m1 + (−2(1 + ⌈∆

2
⌉) + 1)|[V1, B]| − nB .

It follows that

m1B ≥
n−1 + nB + 2(1 + ⌈∆

2 ⌉)m1 − (−2(1 + ⌈∆
2 ⌉) + 1)|[V1, B]|

2(1 + ⌈∆
2 ⌉)

.

On the other hand, one has m = m1B + |[V−1, V1B ]|+m−1 and n = n−1 +n1B . Hence we obtain
the following inequality

m ≥ m1B + |[V−1, V1B ]|

≥ 1

2(1 + ⌈∆
2 ⌉)

(n−1 + nB + 2(1 + ⌈∆
2
⌉)m1 − (−2(1 + ⌈∆

2
⌉) + 1)|[V1, B]|) + n−1

=
1

2(1 + ⌈∆
2 ⌉)

((2(1 + ⌈∆
2
⌉) + 1)n−1 + n1B − n1 + 2(1 + ⌈∆

2
⌉)m1 − (−2(1 + ⌈∆

2
⌉) + 1)|[V1, B]|)

=
1

2(1 + ⌈∆
2 ⌉)

((2(1 + ⌈∆
2
⌉) + 1)(n− n1B) + n1B − n1 + 2(1 + ⌈∆

2
⌉)m1

+ (2(1 + ⌈∆
2
⌉)− 1)|[V1, B]|)

≥ 1

2(1 + ⌈∆
2 ⌉)

((2(1 + ⌈∆
2
⌉) + 1)n− n1 + 2(1 + ⌈∆

2
⌉)m1 + (2(1 + ⌈∆

2
⌉)− 1)|[V1, B]|)− 1

4
n1B .

This means that

n1B ≥ 4

2(1 + ⌈∆
2 ⌉)

(2(1+⌈∆
2
⌉)+1)n−n1+2(1+⌈∆

2
⌉)m1+(2(1+⌈∆

2
⌉)−1)|[V1, B]|−(2(1+⌈∆

2
⌉))m).

It yields that

γssR(G) ≥ 2nB + n1 − n−1

= 3n1B − n− n1

≥ 3
4

2(1 + ⌈∆
2 ⌉)

((2(1 + ⌈∆
2
⌉) + 1)n− n1

+ 2(1 + ⌈∆
2
⌉)m1 + (2(1 + ⌈∆

2
⌉)− 1)|[V1, B]| − (2(1 + ⌈∆

2
⌉))m)− n− n1

=
17 + 11⌈∆

2 ⌉
1 + ⌈∆

2 ⌉
n− 12m+

−7− ⌈∆
2 ⌉

1 + ⌈∆
2 ⌉

n1 + 12m1 +
6 + 12⌈∆

2 ⌉
1 + ⌈∆

2 ⌉
|[V1, B]|.

To complete the proof, we claim that −7−⌈∆
2 ⌉

1+⌈∆
2 ⌉ n1 + 12m1 +

6+12⌈∆
2 ⌉

1+⌈∆
2 ⌉ |[V1, B]| ≥ 0. Suppose first

that n1 = 0. Then obviously the assertion holds. So assume that n1 ≥ 1. Since δ ≥ 1, if v ∈ V1

and dV1B
(v) = 0, then every neighbor of v belongs to V−1. Hence f(N(v)) ≤ −1 and this is a

contradiction. Therefore dV1B
(v) > 0, for every v ∈ V1. So we have

−7− ⌈∆
2 ⌉

1 + ⌈∆
2 ⌉

n1+12m1 +
6 + 12⌈∆

2 ⌉
1 + ⌈∆

2 ⌉
|[V1, B]|
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= 12m1 + 6|[V1, B]|+
6⌈∆

2 ⌉
1 + ⌈∆

2 ⌉
|[V1, B]|

− n1 −
6

1 + ⌈∆
2 ⌉

n1

≥ 6
∑
v∈V1

dV1(v) + 6
∑
v∈V1

dB(v) +
6⌈∆

2 ⌉
1 + ⌈∆

2 ⌉
|[V1, B]| − 4n1

≥ 6
∑
v∈V1

dV1B
(v) +

6⌈∆
2 ⌉

1 + ⌈∆
2 ⌉

|[V1, B]| − 4n1

≥ 2n1 +
6⌈∆

2 ⌉
1 + ⌈∆

2 ⌉
|[V1, B]|

> 0.

4 Special values of signed strong Roman domination num-
ber

In this section, we determine the signed strong total Roman domination number of special classes
of graphs including star graphs and complete graphs.
Proposition 4.1. For n ≥ 2, γssTR(K1,n−1) = 2 + ⌈n−2

4 ⌉.

Proof. Let G = K1,n−1 and V (G) = {w, v1, v2, . . . , vn−1}. Suppose that w is central vertex of
the star graph. Consider the following two cases:
Case 1. Suppose first that n is odd and define f : V (K1,n−1) −→ {−1, 1, 2, . . . , 1 + ⌈n−1

2 ⌉} as
follows:

f(x) =

 1 + ⌈n−2
4 ⌉ x = w

2 x = vn−1

(−1)i+1 x = vi and 1 ≤ i ≤ n− 2.

Obviously, f is a signed strong total Roman dominating function for K1,n−1 of weight ω(f) =
2 + ⌈n−1

4 ⌉.
Case 2. Assume now that n is even. Define f : V (K1,n−1) −→ {−1, 1, 2, . . . , 1 + ⌈n−1

2 ⌉} as
follows:

f(x) =

 1 + ⌈n−2
4 ⌉ x = w

1 x = vn−1

(−1)i+1 x = vi and 1 ≤ i ≤ n− 2.

One can see easily that f is a signed strong total Roman dominating function for K1,n−1 of weight
ω(f) = 2 + ⌈n−2

4 ⌉.
The proof is completed by showing that this inequality becomes an equality. To this, suppose

that g is an γssTR(K1,n−1)-function, for n ≥ 2. If |V−1| = 0, then one has ω(g) = n ≥ 2 + ⌈n−2
4 ⌉

and we are done. So assume that |V−1| > 0. Since g is a signed strong total Roman dominating
function, it is clear that g(w) ≥ 1. Let |V−1 ∩ {v1, . . . , vn−1}| = t. Then one has g(w) ≥ 1 + ⌈ t

2⌉
and ω(g) = g(N(w)) + g(w) ≥ 2 + ⌈ t

2⌉. If t ≥ ⌈n−1
2 ⌉, then

ω(g) ≥ 2 + ⌈ t
2
⌉ ≥ 2 + ⌈n− 1

4
⌉ ≥ 2 + ⌈n− 2

4
⌉
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and we are done.
Suppose thus t < ⌈n−1

2 ⌉. In this case

ω(g) ≥ 1 + ⌈ t
2
⌉+ (n− t− 1) + (−t) ≥ n− ⌊3t

2
⌋.

Consider the following two subcases.
Subcase 1. Assume that n is even. Hence t ≤ n

2 − 1, so ⌊ 3t
2 ⌋ ≤ ⌊ 3n

4 ⌋ − 2. Then

ω(g) ≥ n− ⌊3t
2
⌋ ≥ ⌈n

4
⌉+ 2 ≥ ⌈n− 2

4
⌉+ 2.

Subcase 2. Assume now that n is odd. Hence t ≤ n−1
2 − 1, so ⌊ 3t

2 ⌋ ≤ ⌊ 3n
4 ⌋ − 3. Then

ω(g) ≥ n− ⌊3t
2
⌋ ≥ ⌈n

4
⌉+ 3 ≥ ⌈n− 2

4
⌉+ 2

and the assertion holds.

Proposition 4.2. For n ≥ 4, γssTR(Kn) =

{
1 + ⌈n−2

4 ⌉ n is even

1 + ⌈n−3
4 ⌉ n is odd.

Proof. Let G = Kn and V (G) = {v1, v2, . . . , vn}. Suppose first that n is even. Then the function
f : V (G) −→ {−1, 1, 2, . . . , 1 + ⌈n−1

2 ⌉} define by f(v1) = 1 + ⌈n−2
4 ⌉, f(vn) = 1 and f(vj) =

(−1)j+1 for 2 ≤ j ≤ n− 1, is a signed strong total Roman dominating function on Kn of weight
1 + ⌈n−2

4 ⌉. Assume now that n is odd. Then the function g : V (G) −→ {−1, 1, 2, . . . , 1 + ⌈n−1
2 ⌉}

define by g(v1) = 1 + ⌈n−3
4 ⌉, g(v2) = g(vn) = 1 and g(vj) = (−1)j for 3 ≤ j ≤ n− 1, is a signed

strong total Roman dominating function on Kn of weight 1 + ⌈n−3
4 ⌉. Hence For n ≥ 4,

γssTR(Kn) ≤

{
1 + ⌈n−2

4 ⌉ n is even

1 + ⌈n−3
4 ⌉ n is odd.

The proof is completed by showing that this inequality becomes an equality. To this, suppose
that h is an γssTR(Kn)-function, for n ≥ 2. If |V−1| = 0, then one has

ω(h) = n ≥ 2 + ⌈n− 2

4
⌉

and we are done. So assume that |V−1| = t > 0. Without loss of generality, let h(v1) = −1. So
there exist a vertex vj , 2 ≤ j ≤ n, such that h(vj) ≥ 1 + ⌈ t

2⌉. One has

ω(h) = h(N(vj)) + h(vj) ≥ 2 + ⌈ t
2
⌉.

If t ≥ ⌈n−1
2 ⌉, then

ω(h) ≥ 2 + ⌈ t
2
⌉ ≥ 2 + ⌈n− 1

4
⌉ ≥ 1 + ⌈n− 2

4
⌉

and we are done.
Suppose thus t < ⌈n−1

2 ⌉. In this case

ω(h) ≥ 1 + ⌈ t
2
⌉+ (n− t− 1) + (−t) ≥ n− ⌊3t

2
⌋.
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Consider the following two cases.
Case 1. Assume that n is even. Hence t ≤ n

2 − 1, so ⌊ 3t
2 ⌋ ≤ ⌊ 3n

4 ⌋ − 2. Then

ω(h) ≥ n− ⌊3t
2
⌋ ≥ ⌈n

4
⌉+ 2 ≥ 1 + ⌈n− 2

4
⌉.

Case 2. Assume now that n is odd. Hence t ≤ n−1
2 − 1, so ⌊ 3t

2 ⌋ ≤ ⌊ 3n
4 ⌋ − 3. Then

ω(h) ≥ n− ⌊3t
2
⌋ ≥ ⌈n

4
⌉+ 3 ≥ 1 + ⌈n− 3

4
⌉

and the assertion holds.

Proposition 4.3. For n ≥ 1, γssTR(Kn,n) = 2.

Proof. Let X = {u1, u2, . . . , un} and Y = {v1, . . . , vn} be the partite sets of Kn,n for n ≥ 1.
Consider the following two cases:
Case 1. Suppose first that n is odd. Define f : V (Kn,n) −→ {−1, 1, 2, . . . , 1 + ⌈∆

2 ⌉} by f(ui) =
f(vi) = −1 for 1 ≤ i ≤ n− 2, f(un−1) = f(vn−1) =

n−1
2 + 1 and f(un) = f(vn) =

n−1
2 − 1.

Obviously, f is a signed strong total Roman dominating function on Kn,n of weight ω(f) = 2.
Case 2. Assume now that n is even. Define f : V (Kn,n) −→ {−1, 1, 2, . . . , 1 + ⌈∆

2 ⌉} by
f(ui) = f(vi) = −1 for 1 ≤ i ≤ n− 2, f(un−1) = f(vn−1) =

n−2
2 + 1 and f(un) = f(vn) =

n−2
2 .

One can see easily that f is a signed strong total Roman dominating function on Kn,n of
weight ω(f) = 2. Therefore for n ≥ 1, one has γssTR(Kn,n) ≤ 2.

The proof is completed by showing that this inequality becomes an equality. To this, suppose
that g is a γssTR(Kn,n)-function, for n ≥ 1. By definition, we have g(N(u1)) ≥ 1 and g(N(v1)) ≥
1. Hence ω(g) ≥ 2 and the assertion holds.

Proposition 4.4. For 2 ≤ r ≤ s, γssTR(Kr,s) ≤
{

2 r − s
2 ≥ 2

⌈ s−2
2 ⌉ − r + 3 r − s

2 < 2.

Proof. Let X = {u1, . . . , us} and Y = {v1, . . . , vr} be the partite sets of Kr,s. Consider the
following two cases:
Case 1. Suppose that r ≥ s

2 + 2 and consider the following two subcases:

Subcase 1.1. Suppose first that s is even. We define f : V (Kr,s) −→ {−1, 1, 2, . . . , 1 + ⌈ s
2⌉}

by f(vi) = (−1) for 1 ≤ i ≤ r − 2, f(vr−1) = s−2
2 + 1, f(vr) = r − 2 − ( s−2

2 ), f(ui) = −1 for
1 ≤ i ≤ s − 2, f(us−1) =

s−2
2 and f(us) =

s−2
2 + 1. Clearly f is a signed strong total Roman

dominating function on Kr,s and ω(f) = 2.

Subcase 1.2. Assume now that s is odd. We define f : V (Kr,s) −→ {−1, 1, 2, . . . , 1 + ⌈ s
2⌉}

by f(vi) = (−1) for 1 ≤ i ≤ r − 2, f(vr−1) = s−1
2 + 1, f(vr) = r − 2 − ( s−1

2 ), f(ui) = −1 for
1 ≤ i ≤ s − 2, f(us−1) =

s−1
2 and f(us) =

s−1
2 . It is easy to see that f is a signed strong total

Roman dominating function on Kr,s and ω(f) = 2.

Case 2. Let r < s
2 + 2 and consider the following two subcases:

Subcase 2.1. Suppose first that s is even. We define f : V (Kr,s) −→ {−1, 1, 2, . . . , 1 + ⌈ s
2⌉}

by f(vi) = (−1) for 1 ≤ i ≤ r − 1, f(vr) = s−2
2 + 1, f(ui) = −1 for 1 ≤ i ≤ s − 2,
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f(us−1) = s−2
2 and f(us) = s−2

2 + 1. Then f is a signed strong total Roman dominating
function and ω(f) = ⌈ s−2

2 ⌉ − r + 3.

Subcase 2.2. Assume that s is odd. We define f : V (Kr,s) −→ {−1, 1, 2, . . . , 1 + ⌈ s
2⌉} by

f(vi) = (−1) for 1 ≤ i ≤ r − 1, f(vr) = s−1
2 + 1, f(ui) = −1 for 1 ≤ i ≤ s − 2, f(us−1) =

s−1
2

and f(us) = s−1
2 . Clearly f is a signed strong total Roman dominating function and ω(f) =

⌈ s−2
2 ⌉ − r + 3.

Proposition 4.5. For 1 ≤ r ≤ s, γssTR(DSr,s) ≤ ⌈ s
2⌉ − r + 4.

Proof. Suppose that u and v are non-leaf vertices. Let u1, . . . , ur and v1, . . . , vs are leaves adja-
cent to u and v, respectively. Consider the following three cases:

Case 1. Assume that r = ⌈ s
2⌉+ 1 and consider the following two subcases:

Subcase 1.1. Suppose first that s is even. We define f : V (DSr,s) −→ {−1, 1, 2, . . . , 1 + ⌈ s
2⌉}

by f(vi) = −1 for 1 ≤ i ≤ s − 1, f(vs) = s
2 , f(v) = s

2 + 2, f(ui) = −1 for 1 ≤ i ≤ r, f(u) = s
2 .

Obviously f is a signed strong total Roman dominating function on DSr,s and ω(f) = 2.
Subcase 1.2. Assume now that s is odd. We define f : V (DSr,s) −→ {−1, 1, 2, . . . , 1 + ⌈ s

2⌉} by
f(vi) = −1 for 1 ≤ i ≤ s − 1, f(vs) = s+1

2 − 1, f(v) = s+1
2 + 2, f(ui) = −1 for 1 ≤ i ≤ r and

f(u) = s+1
2 . Clearly f is a signed strong total Roman dominating function on DSr,s and ω(f) = 2.

Case 2. Assume that r > ⌈ s
2⌉+ 1 and consider the following two subcases:

Subcase 2.1. Suppose first that s is even. We define f : V (DSr,s) −→ {−1, 1, 2, . . . , 1 + ⌈ s
2⌉}

by f(vi) = −1 for 1 ≤ i ≤ s − 1, f(vs) = s
2 − 1, f(v) = s

2 + 1 f(ui) = −1 for 1 ≤ i ≤ r − 1,
f(ur) = r − ( s2 + 1) and f(u) = s

2 + 1. It is easy to see that f is a signed strong total Roman
dominating function on DSr,s and ω(f) = 2.

Subcase 2.2. Assume that s is odd. We define f : V (DSr,s) −→ {−1, 1, 2, . . . , 1 + ⌈ s
2⌉} by

f(vi) = −1 for 1 ≤ i ≤ s− 1, f(vs) = s+1
2 − 1 and f(v) = s+1

2 + 1, f(ui) = −1 for 1 ≤ i ≤ r − 1,
f(ur) = r − ( s+1

2 + 1) and f(u) = s+1
2 . Then f is a signed strong total Roman dominating

function on DSr,s and ω(f) = 2.

Case 3. Let r < ⌈ s
2⌉+ 1 and consider the following two subcases:

Subcase 3.1. Assume that ⌈ r
2⌉+1 ≤ 4r− s+1. Then define f : V (DSr,s) −→ {−1, 1, 2, . . . , 1+

⌈ s
2⌉} by f(vi) = −1 for 1 ≤ i ≤ 2r, f(vi) = +1 for 2r + 1 ≤ i ≤ s, f(v) = r + 1, f(ui) = −1 for

1 ≤ i ≤ r and f(u) = 4r − s+ 1. Clearly f is a signed strong total Roman dominating function
on DSr,s and ω(f) = 2.

Subcase 3.2. Let ⌈ r
2⌉ + 1 > 4r − s + 1 and define f : V (DSr,s) −→ {−1, 1, 2, . . . , 1 + ⌈ s

2⌉} by
f(vi) = −1 for 1 ≤ i ≤ ⌈ r

2⌉, f(vi) = (−1)i for ⌈ r
2⌉ + 1 ≤ i ≤ s, f(v) = ⌈ s+⌈ r

2 ⌉
4 ⌉ + 1, f(ui) = −1

for 1 ≤ i ≤ r and f(u) = ⌈ r
2⌉ + 2. Then f is a signed strong total Roman dominating function

on DSr,s and ω(f) = −r + ⌈ s+⌈ r
2 ⌉

4 ⌉+ 4.



On the Signed strong total Roman domination number of graphs 279

5 Concluding remarks
In this section we indicate some possible directions of future research. We present some questions
and open problems about signed strong total Roman domination number which can be a new
fields of research.

Let k ≤ |V (G)| be a positive integer. Does G have a signed strong total Roman dominating
function of weight at most k? Since we can check in polynomial time that a function f : V (G) →
{−1, 1, 2, . . . , ⌈∆

2 ⌉+ 1} has weight at most k and is a signed strong Roman dominating function,
so SSTRDF is a member of NP and we conjecture that:

Conjecture 5.1. Problem SSTRDF is NP -complete for bipartite graphs.

We gave an upper bound for the signed strong total Roman domination number of Kr,s, for
2 ≤ r ≤ s and double stars. So the following problem is another thing worth trying could be to
see.

Problem 5.2. Give equality for Proposition 4.4 and Proposition 4.5.

We conclude the section and the paper by the following problem.

Problem 5.3. Characterize all connected graphs G of order n and size m attaining the bound
of Theorem 3.12.
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