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ON THE BLUE OF THE SCALE PARAMETER OF THE GENERALIZED
PARETO DISTRIBUTION

SMILEY W. CHENG AND C. H. CHOU

Abstract. In this article, we will study the linear estimation of the scale parameter of the
generalized Pareto distribution (GPD) which has the probability density function (p.d.f.)

o~ (1 —rz/o)/TY p
m)_{ R A

o exp(—z/0), r=0.

We first derive the expected value, variances and covariances of the order statistics from the
GPD. Then proceed to find the best linear unbiased estimates of the scale parameter o based
on a few order statistics selected from a complete sample or a type-II censored sample. Results
of some chosen cases were tabulated.

Introduction

We consider the random variable X having the generalized Pareto distribution (GPD)
with a probability density function (p.d.f.)

o (1 —rz/a)/ L p
= {1 i

o~ lexp(—z/0), r=0.
and the cumulative distribution function (c.d.f)

1— (1 —ra/o)/", r#0
1 —exp(—z/0), r=0.

P ={

where o and r are, respectively, the scale and shape parameter. The range of x is
0<z<ooforr<0and0<z<g/rforr>D0.
Clearly, the standardized random variable U = X /o has the p.d.f.

— (1 - ru)l/T717 r 7é 0
Flu) = {exp(u), r=0.

and the c.d.f.
1—(1—ru)Y", 740
1 — exp(—u), r=0.

F = {
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The range of uis 0 <u < oo for r <0 and 0 < u < 1/r for r > 0.

The Pareto distribution was first proposed by Pareto (1897). The generalized Pareto
distribution was introduced by Pickands (1975). Maximum likelihood estimation of gen-
eralized Pareto was discussed by Davison (1984) and Smith (1984, 1985). Hosking and
Wallis (1987) derived estimators of parameters and quantiles by the method of mo-
ments and the method of probability weighted moments and restrict attention to the
case —1/2 < r < 1/2, for both practical and theoretical reasons. Also, they point out a
close connection between generalized Pareto and generalized extreme-value distributions
(GEV) with equal value for their shape parameters, and, as Hosking, Wallis, and Wood
(1985) remarked, applications of the GEV distributions, particularly in hydrology usually
involve the case —1/2 <r < 1/2.

For r < 0 the distribution has a heavy Pareto-type upper tail. The case r = 0 is the
exponential distribution for which many statistical techniques are available. When r > 0
the distribution has an upper endpoint at o/r. For r = 0.5 and r = 1 the distribution is
triangular and uniform respectively.

The applications of the GPD include the use in the analysis of extreme events, in the
modeling of large insurance claims, as a failure-time distribution in reliability studies.

Consider a sample of n order statistics

Xy <X < <X (1.1)

from a continuous distribution with the p.d.f. f[(x—p)/o]/o and the c.d.f. F[(z—pu)/0],
where p and o are the location and scale parameters respectively.

Lloyd (1952) obtained the generalized least-square estimators of the location and
scale parameters using order statistics. We would like to find the best linear unbiased
estimators (BLUE’s) of the parameters based on k(< n) order statistics selected from
(1.1).

Let E' and V denote the mean vector and the covariance matrix of the standardized
order statistics (X(,,) — p)/0 in X*, where

X*Z(X(n1)<X(n2) <---<Xv(nk))7 1< <---<np<n (1.2)

and 1’ denotes the unit vector with k components.
The BLUE ot of ¢ while u is known is

Elv—lX* EI
+
g = EV-1E  EV- 1E = Zb X(m)
2
-\ g
Var (o) = VIR’
RE(0+) = VAR|[BLUE based on (1.1)].

VAR(o)

Chan and Cheng (1982) obtained an algorithm to compute the coefficients, variance,
and relative efficiency of the best linear unbiased estimators of the location, u, and/or
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scale, o, parameters based on k optimally chosen order statistics from a sample which
could be a censored sample.

In estimating a parameter by a linear combination of k(< n) chosen order statistics
from a sample, the set of k order statistics which gives the minimum variance among all
possible choices of k order statistics is the preferred one.

The BLUE

In order to find the BLUE, we have to obtain the expected values, the variances and
the covariances of the order statistics. Hence we obtain the p.d.f. of order statistics and
the joint p.d.f. of any two order statistics and then derive the moments of order statistics.

Let X1, X5, ..., X, denote a random sample from a distribution of continuous type
having a p.d.f. f(z) that is positive, provided a < x < b. The from of (1.1) denotes the or-
der statistics from this sample. For convenience, we let X1y = Y1, X9y = Ya,..., X =
Y.

The p.d.f of Y;, the ith order statistics is given by

9i(y:) = C - [F(y)]" "1 — F(y)]" " (i), a<wi<b, (2.1)

n!

where C = m
The joint p.d.f. of any two order statistics ¥; and Yj, (¥; < Y;) is given by

9i3 (Wi, y;) = DIF(y)]" ' F(y;) = F(ua) V™ [1=F(y)]" 7 f (i) f(3), a<wi< yj(<b)7
2.9
G ree e 8

where D =

b
B(Y) = / Yi9i(yi)dyi, 1<i<n. (2.3)

The expected value of the cross product of any two order statistics Y; and Yj is

b b
Emwﬁ://ym%wmem, (2.4)

fora<y; <y;<band1<i<j<n.

When the shape parameter r > 0, the range of = is not the same as that of the shape
parameter r < 0. First, we consider the case r > 0. The range of z is 0 < z < o/r.
Thus, the p.d.f. of Y;, from the GPD, is given by

9i(y) = C+[L= (1= ry /)" L=y o]/ (1)L = /)10

Therefore,
o/r
E(Y) = /O ¥ 9i(y)dy

o/r 4 . .
= (C/o’) . /O ya[l _ (1 _ Ty/g)z/r]z—l(l _ Ty/O')(n_z_T—i_l)/rdy.
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Using transformation and binomial expansion to express the form (1 —¢")%, we then have

a

B(Y?) = S (<1 (@) - C - (o/r)* - Bln— i + vk + 1,i]
k=0

where Bla, b] stands for a beta function.
Hence, the first moment and the second moment of Y; are

n! o ) ) . .
E(Y;):m';'(B[n—l—l—l,l]—B[’I’L—’L-ﬁ-’l‘—f—l,’t]), (2.5)
and
n O (Bln—it+1,i]—-2-Bln—i+r+1, i+ Bln—i+2r+1,). (2.6)

PO = i

The joint p.d.f. of V;, Y; is
D[1—(1- 7"fE/U)l/T]Fl[(l - rsc/g)l/’” —
(1/0)(1 — mg/g)(l/r)—l S(1/o)(1 - ry/a)u—r)/r7

9i5 (x,y) = (L —ry/o) /Pt (L =y /o)

then

o/r
B(YsY?) = /O D2l — (1 —ra/o) ]t (1/02)(1 — ra/o) /M1 . Qdz,  (2.7)

where
Q= [~ ref ) - (0 g gy

After the substitutions, then we can obtain

(YY) =D-(o/r)"* i Z 1% (s,)(t)-Bln—j4br+1, j—i]- Bln—i+(a+b)r+1,1]
=0 b=0
(2.8)

When s =t =1, the
D.o? : o L : :
—-{B[’Il*j#’l,j*l][B[Tl*Z#’l,Z]7B[nfl+7”+1,l}

r2

B(Y:Y;) =
Bln j+7"+17j*i][B[nfiJrrJr1,2’]—B[n—i+2r+1,z’]}}. (2.9)

Secondly, we consider the case 7 < 0. Then 0 < x < co. Thus

E(Y?)=/ Y 9i(y)dy
0
C o 11— n—i—r r
_ / Y1 — (1 — ry /) (L = ryfo) im0y,
0

g
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After the substitutions, we can rewrite

EY®*)=C:(o/r)* Z(—l)“(ak) -Bln—i+kr+1,1.
k=0

When a = 1, then
E(Y;)=C-(o/r)- {B[n — i+ 1,4 —Bln—i+r+ 1,1]}. (2.10)

When a = 2, then

E(Y?) =C-(o/r)? {B[n—i+1,i]72~B[n—i+r+1,1]+B[n71+2r+1,z‘]}. (2.11)
And then,

EY?Y}) = /Oo D-z*[l—(1—rz/o)/ "t (1/0) - (1 —ry/o) /7L Fode (2.12)
where

F= [l = ) = (1= o) P (L= ry o)

After the substitutions, then we can also obtain

s t
E(YY!)=D-(c/r)*® 1)2%0(s4)(ty)-Bln—j+br—+1, j—i]- Bln—i+(a+b)r+1, ].
]
=0 =0

(2.13)
When s = ¢t = 1, then E(Y;Y;) is equal to the form of (2.9) for the shape parameter
r < 0.
We standardize the random variable of order statistics and express the beta function
in terms of gamma functions, then (2.5), (2.6), and (2.9) can be rewritten as follows:

E(Y;/o) = .{1F(n+1)F(nz‘+r+1

! )

r F(n—i+1)F(n+r+1)}' (2.14)
1 [Pln+1) Tn—it2r+1)
3 )

BPfo%) = Tn—i+1) T(n+2r+1 (2.15)

oy 1 F'n+1)-Tn—j+r+1)-T(n—i4+2r+1)
E(Yin/U)_r_f{F(nwl) F(nz‘)+r+1)~r(n+2r+1)}’ (2.16)

where I'(a) stands for the gamma function. And the covariance of ¥; and Y is given by

covm/g,yj/g):i.{F("H)T(nj+r+1)-r(nz‘+2r+1)

'n—j+1)-Tn—i+r+1)-I'(n+2r+1)
P41 T—j+r+1) -Th—itr+1)
MPh+r+1)-T'n—i+1)-T'(n—r+1)

} . (217)
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And (2.14) is the ith element component of the mean vector E’ and (2.17) is the (4, j)th
element of the convariance matrix V.

Let

/ . 1 .
E'=(E;), i=1,...,n. V:T_Q(Vij)’ ,j=1,...,n,

denote the means and the covariacnes of the order statistics of the standardized r.v., say,
Uny) <Up) < -Ugw).-

We rewrite the mean vector and the covariance matrix as

ElUqn=1/r)-1-Apl, 1,....n,
and
COV[U), U] = (Viy) - (1/r%) = 43D - (1/r%), i< ji ij=1,....m,
where

Fn+1)I'(n—i+r+1) Pn—i+1)P(n+2r+1)

Fn—i+1)(n+r+1) " T(n+)(n—i+2r+1)

A; =

We apply the theorem in Graybill (1983) [p.198-199], then the inverse of the matrix
V', denoted by Q = (€2;5), is a diagonal matrix of the second type having elements:

O = i _(Di—lAi+1 - Di+1Ai—1)
il 72 (DiflAi — D’L'A’L'*l)(DiAZ;Fl _ D'H»IAZ')’
1 1
Qi1 = 1= 7
o AR (Di—1A; — D;jAi—1)
= (n_ZH).(n_zHTH)'B", i=1,...,n,
—r
Q;; =0, forl|i—j|>1,
where Ao=Dpi1 =1, App1 =Dy =0.

Applying the generalized last-square method and the results in the above Section, we
can obtain the BLUE of ¢ based on k order statistics. When g is known, the BLUE o
of o is given by

T Elvle*
o= —
E'V-1E
and,
+ o’
VAR(T) = =g
AR[BLUE 11
and, RE(o+) = YAR[BLUE based on (1.1)]

VAR(ct)
Using the algorithm of Chan and Cheng (1982), we obtain the estimate for the finite

sample cases.
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The BLUE is the linear unbiased estimate which has the minimum variance of the
estimator among the set of all ,C}, estimators based on the k selected order statistics in
(1.1). When n and/or k is large, this algorithm for finding the minimum variance of the
estimator is time-consuming even with the use of a computer.

Here, the results for the complete sample and censored sample are summarized in
tables. The sample size n = 12; k£ = 2; number of left censored observations = IL;
number of right censored observations = I R; the optimum ranks n;; the coefficient, the
variance, and the relative efficiencies for the BLUE are all given in Table 1 for r = 0.2.

Table 1. The BLUE of ¢ of GDP for &k = 2 with r = 0.2

n k IL IR ny ) b1 b2 VAR RE(O’Jr)
12 |1 2 0 0 9 12 0.367805 0.265505 | 0.058199 | 0.924178
12 | 2 0 1 7 11 0.399065 0.417331 | 0.067634 | 0.955334
12 | 2 0 2 6 10 0.398564 0.562122 | 0.077634 | 0.972057
12 | 2 0 3 6 9 0.379265 0.696398 | 0.089361 | 0.981886
12 | 2 0 4 ) 8 0.385610 0.894100 | 0.103631 | 0.988675
12 | 2 0 5 4 7 0.391935 1.144834 | 0.121751 | 0.992937
12 | 2 0 6 3 6 0.395748 1.477544 | 0.145740 | 0.995342
12 | 2 0 7 3 ) 0.384193 1.870026 | 0.178896 | 0.997612
12 | 2 0 8 2 4 0.387486 2.542592 | 0.228423 | 0.999162
12 | 2 0 9 2 3 0.380764 3.536545 | 0.311076 | 0.999964
12 | 2 0 10 1 2 -0.082129 5.929866 | 0.476121 | 1.000000
12 | 2 1 1 7 11 0.399065 0.417331 | 0.067634 | 0.955341
12 | 2 1 2 6 10 0.398564 0.562122 | 0.077634 | 0.972065
12 | 2 1 3 6 9 0.379265 0.696398 | 0.089361 | 0.981897
12 | 2 1 4 5 8 0.385610 0.894100 | 0.103631 | 0.988687
12 | 2 1 ) 4 7 0.391935 1.144834 | 0.121751 | 0.992954
12 | 2 1 6 3 6 0.395748 1.477544 | 0.145740 | 0.995359
12 | 2 1 7 3 5 0.384193 1.870026 | 0.178896 | 0.997632
12 | 2 1 8 2 4 0.387486 2.542592 | 0.228423 | 0.999192
12 | 2 1 9 2 3 0.380764 3.536545 | 0.311076 | 1.000000
12 | 2 2 2 6 10 0.398564 0.562122 | 0.077634 | 0.972664
12 | 2 2 3 6 9 0.379265 0.696398 | 0.089361 | 0.982607
12 | 2 2 4 5 8 0.385610 0.894100 | 0.103631 | 0.989518
12 | 2 2 5 4 7 0.391935 1.144834 | 0.121751 | 0.993941
12 | 2 2 6 3 6 0.395748 1.477544 | 0.145740 | 0.996543
12 | 2 2 7 3 5 0.384193 1.870026 | 0.178896 | 0.999080
12 | 2 2 8 3 4 0.371073 2.454526 | 0.228666 | 1.000000
12 | 2 3 3 6 9 0.379265 0.696398 | 0.089361 | 0.984229
12 | 2 3 4 ) 8 0.385610 0.894100 | 0.103631 | 0.991423
12 | 2 3 ) 4 7 0.391935 1.144834 | 0.121751 | 0.996211
12 | 2 3 6 4 6 0.381847 1.418741 | 0.145777 | 0.999012
12 | 2 3 7 4 ) 0.372062 1.796979 | 0.179336 | 1.000000
12 | 2 4 4 5 8 0.385610 0.894100 | 0.103631 | 0.995404
12 | 2 4 ) ) 7 0.373716 1.096313 | 0.121999 | 0.998902
12 | 2 4 6 ) 6 0.365597 1.360425 | 0.146461 | 1.000000
12 | 2 ) ) 6 7 0.354217 1.050366 | 0.122932 | 1.000000
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We will now give an example below:

Example: Let n = 12, k = 2, IL = 1, IR = 3. The optimum ranks and the
coeflicients can easily be found from Table 1. The BULE of o is

ot =0.379265 - z(g) + 0.696398 - x(g).
And the RE(c) is 98.1897%.
Table 2. The BLUE of o of the GPD of the censored case The Sample Size
n = 11,12; k = 3; Number of Left Censored Observations = IL; Number

of the Right Censored Observation = IR; The Optimum Ranks n;; The
Coefficients b;

b1 bg b3 VAR(U*) RE(O’+)
0.640658 | 0.372749 | 0.075351 | 0.188997 | 0.931421
0.640658 | 0.372749 | 0.075351 | 0.188997 | 0.936657

3
~
~
~
ol
3
=
3
()
S
w

11
11

—_
o

—_
o

12
12

0.568369 | 0.192515 | 0.366662 | 0.189314 | 0.997138
0.513054 | 0.166076 | 0.575564 | 0.205072 | 1.000000

0101417

0111417
111012141719 ]0.642020 | 0.291606 | 0.158300 | 0.189399 | 0.961698
11/ 0131316 ] 8 ]0.646221 | 0.359718 | 0.296621 | 0.195992 | 0.976408
1111 111417 ]10]0.640658 | 0.372749 | 0.075351 | 0.188997 | 0.938145
1111 12141719 ]0.642020 | 0.291606 | 0.158300 | 0.189399 | 0.963269
1111 131316 | 8 10.646221 | 0.359718 | 0.296621 | 0.195992 | 0.978085
1111 141315 ] 7 10.557421 | 0.364114 | 0.490796 | 0.208627 | 0.987137
1112 12141719 ]0.642020 | 0.291606 | 0.158300 | 0.189399 | 0.968372
1112 31316 | 8 10.646221 | 0.359718 | 0.296621 | 0.195992 | 0.983531
1112 141315 ] 7 10.557421 | 0.364114 | 0.490796 | 0.208627 | 0.993047
111 2 151315 ] 6 ]0.612454 | 0.289550 | 0.689382 | 0.229243 | 0.996917
1113 131416 | 8 ]0.553698 | 0.298605 | 0.297820 | 0.196787 | 0.991748
1113 141416 | 7 10.592740 | 0.229569 | 0.437154 | 0.210668 | 0.996589
1113 151415 ] 6 [0.528182 | 0.201230 | 0.697418 | 0.231914 | 1.000000
1114 14156 | 7 ]0.504062 | 0.161792 | 0.446666 | 0.215248 | 1.000000
12, 010147 ]10]0.606517 | 0.371919 | 0.155689 | 0.172239 | 0.930469
12, 0 |1 )14 |7 110]0.606517 | 0.371919 | 0.155689 | 0.172239 | 0.934909
121 0 1214 |7 [10]0.606517 | 0.371919 | 0.155689 | 0.172239 | 0.957764
12, 01314117 19 10.623247 | 0.303180 | 0.249995 | 0.176987 | 0.971656
1201 111416 |10]0.606517 | 0.371919 | 0.155689 | 0.172239 | 0.936106
1201 12147 110]0.606517 | 0.371919 | 0.155689 | 0.172239 | 0.959020
1201 13141719 10.623247 | 0.303180 | 0.249995 | 0.176987 | 0.972984
1211 141316 ] 8 ]0.628210 | 0.368165 | 0.408112 | 0.185876 | 0.983489
1212 12147 ]10]0.606517 | 0.371919 | 0.155689 | 0.172239 | 0.962949
1202 |3 141719 10.623247 | 0.303180 | 0.249995 | 0.176987 | 0.977140
1212 141316 | 8 ]0.628210 | 0.368165 | 0.408112 | 0.185876 | 0.987948
1202 |5 13 [5 ] 7 10.550189 | 0.367417 | 0.624609 | 0.200062 | 0.994821
1213 1314117 19 10.623247 | 0.303180 | 0.249995 | 0.176987 | 0.986085
1213 141416 | 8 ]0.547885 | 0.303818 | 0.409504 | 0.186506 | 0.994191
120 3 151416 | 7 10.592340 | 0.237694 | 0.565931 | 0.201636 | 0.997467
121 3 16 145 ] 6 |0.534399 | 0.204022 | 0.853785 | 0.223672 | 1.000000

4 1415|718

4 15|56 |7
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Since too many censored cases are there, we cannot list all of them here. A few
selected cases for n = 11,12 and k£ = 3 are listed in Table 2. However the program for
other different cases can be obtained from the author.

Conclusion

In this paper we can see from the tables that most of the relative efficiencies are quite
high for the BLUE of ¢. From the results it is easy to obtain the linear estimate of the
scale parameter o of the GPD for the various shape parameters. We must notice one
point that the moments of order statistics may not exist if the argument of the gamma
function is negative integer.
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