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A different approach for multi-level distance

labellings of path structure networks

Laxman Saha, Mosaddek Hossain and Kalishankar Tiwary

Abstract. For a positive integer k, a radio k-labelling of a simple connected graph

G = (V,E) is a mapping f from the vertex set V (G) to a set of non-negative integers

such that |f(u)−f(v)| > k+1−d(u, v) for each pair of distinct vertices u and v of G,

where d(u, v) is the distance between u and v in G. The span of a radio k-coloring f ,

denoted by spanf (G), is defined as max
v∈V (G)

f(v) and the radio k-chromatic number of

G, denoted by rck(G), is min
f
{ spanf (G)} where the minimum is taken over all radio

k-labellings of G. In this article, we present results of radio k-chromatic number of

path Pn for k ∈ {n− 1, n− 2, n− 3} in different approach but simple way.

Keywords. Frequency assignment problem, radio k-coloring, radio k-chromatic number,
span

1 Introduction

In the frequency assignment problem (FAP) the task is to assign radio frequencies to transmitters
at different locations without causing interference and also minimizing the span. FAP plays an
important role in wireless networking and is a well-studied interesting problem. Due to rapid
growth of wireless networks and to the relatively scarce radio spectrum the importance of FAP
is growing significantly. In 1980, Hale [5] has modelled FAP as a Graph labelling problem (in
particular as a generalized graph coloring problem) which is an active area of research now. In
1988, Roberts [6] proposed an FAP with two levels of interference which Griggs adapted to graphs
and extended to a more general graph problem of distance-constrained labelling [4] as follows:

Let j1, j2, . . . , jd ∈ N be any integers, traditionally assumed that j1 ≥ j2 ≥ . . . ≥ jt. An
L(j1, j2, . . . , jd)-labelling of a graph G(V (G), E(G)) is an assignment f : V (G) → {0, 1, 2, . . .}
such that |f(u) − f(v)| ≥ jt for all pairs of vertices u, v whose distance in G is equal to t
(t = 1, 2, . . . , d). The span of an L(j1, j2, . . . , jd)-labelling f is the largest label assigned by f
to the vertices of G. The λj1,j2,...,jd(G) is defined as the smallest possible span taken over all
L(j1, j2, . . . , jd)-labellings of G, i.e.,

λj1,j2,...,jd(G) = min
f

max
v∈V (G)

f(v).
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Motivated by the problem of channel assignment to FM radio stations of Federal Communi-
cations Commission of the United States, Chartrand et al. [7, 8] introduced the following concept
of radio k-labellings of graphs.

For a positive integer k, a radio k-labelling of a simple connected graph G = (V,E) is a
mapping f from the vertex set V (G) to a set of non-negative integers such that |f(u)− f(v)| >
k+1−d(u, v) for each pair of distinct vertices u and v of G, where d(u, v) is the distance between u
and v in G. The span of a radio k-coloring f , denoted by spanf (G), is defined as max

v∈V (G)
f(v) and

the radio k-chromatic number of G, denoted by rck(G), is min
f
{spanf (G)} where the minimum

is taken over all radio k-labellings of G. For some specific values of k there are specific names for
radio k-labellings as well as the radio k-chromatic number in the literature. For k = diam(G),
diam(G)−1 diam(G)−2, the rck(G) is known as radio number (rn(G)), antipodal number (ac(G))
and nearly antipodal number (ac′(G)) of G, respectively.

The rck(G) for k = n − 1, n − 2, n − 3 are known and each of them are in different papers
[14, 11, 15]. We obtained an improve lower bound for rck(Pn) for any k and use this bound to
determine rck(Pn), for k = n− 1, n− 2, n− 3 that unifying the proof given in [14, 11, 15]. The
lower bound presented in this paper is used to prove the above conjecture for k = n − 4. This
method can be extended to prove the above conjecture for most of the cases and this will be
reported in a subsequent paper.

The importance and complexities to prove the existing results on Pn motivated us to combine
and reprove all the results in a simple way. In this article, we determine the exact value of rn(Pn)
in Section 3, then we give a lower bound of rck(Pn) in Section 4, and use it in Section 5 to find
the exact value ac(Pn), ac′(Pn) in a simple but different approach.

2 Preliminaries

Definition 1. For a path Pn = (v0, v1, . . . , vn−1), a middle vertex is called a centroid of Pn. For
even integer n, Pn has two centroids, namely, vn

2−1 and vn
2 +1 whereas for even integer n, Pn has

unique centroid vn−1
2

. We always fix a centroid s = vt for paths Pn. Then the left and right

branch, denoted by L(Pn) and R(Pn), are the (v0, vt−1) section and (vt+1, vn−1) section of Pn,
respectively.

Definition 2. Let s be the centroid of n-vertex path Pn. Define the level of u ∈ V (Pn) (with
respect to s) by L(u) = d(s, u). A vertex u of T is in level l if L(u) = l. For two paths P : (u, s)
and Q : (v, s), define φ(u, v) is the length of P ∩ Q. The weight of Pn,denoted by w(Pn), is
defined by

w(Pn) =
∑

u∈V (Pn)

L(u).

It is known that w(Pn) does not depend on the choice of s.

Lemma 1. Let Pn be an n-vertex path and s be a centroid of Pn. Then for distinct vertices
u, v ∈ V (Pn) the following hold.

(a) w(Pn) =

{
n2

4 , if n is even;
n2−1

4 , if n is odd.

(b) There exists a sequence u0, u1, u2, . . . , un−1 of vertices of Pn such that no two consecutive
vertices are in same branch of Pn − {s}.
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(c) If s ∈ {u0, un−1} and {u0, un−1}/S is not in maximal cardinality branch with respect to the
centroid s, then then there exist no alternating sequence γ : u0, u1, u2, . . . , un−1 of vertices
of Pn with respect to the centroid S.

3 Radio labelling of Path

Let V (Pn) = {v0, v1, v2, . . . , vn−1} be the vertex set of an n-vertex path Pn. A radio labelling
is a one-to-one function. On the other hand, any one-to-one integral function f on V (Pn), with
0 ∈ f(V ), induces an ordering of V (Pn), which is a line-up of the vertices with increasing images.
We denote this ordering by U(f), where V (Pn) = U(f) = {u0, u1, u2, . . . , un−1} with

0 = f(u0) < f(u1) < f(u2) < . . . < f(un−1).

Notice, if f is a radio labelling, then the span of f is f(un−1). Now from the radio conditions we
have the following for 0 ≤ i ≤ n− 2

f(ui+1)− f(ui) ≥ n− d(ui, ui+1). (3.1)

To make it an equality, we add a positive quantity Jf (ui, ui+1), called jump of f from ui to ui+1,
in right hand side of the inequality (3.1). Therefore,

f(ui+1)− f(ui) = n− d(ui, ui+1) + Jf (ui, ui+1).

Summing up these n− 1 equations, we have

f(un−1) =

n−2∑
i=0

[f(ui+1)− f(ui)] + f(u0)

=

n−2∑
i=0

[n− d(ui, ui+1) + Jf (ui, ui+1)] + f(u0)

≥ n(n− 1)− 2

n−2∑
i=0

LS(ui) + LS(u0) + LS(un−1)

+

n−2∑
i=0

[Jf (ui, ui+1) + 2φ(ui, ui+1)] + f(u0) (3.2)

= n(n− 1)− 2w(Pn) + f(u0) + LS(u0) + LS(un−1) + σ(f)

where σ(f) =

n−2∑
i=0

σf (ui, ui+1) and σf (ui, ui+1) = Jf (ui, ui+1) + 2φ(ui, ui+1). Here total jump

J(f) =

n−2∑
i=0

Jf (ui, ui+1). So the relation between σ(f) and J(f) is σ(f) = J(f)+2

n−2∑
i=0

φ(ui, ui+1).

Definition 3. A radio k-labeling f is said to be alternating labelling if two consecutive colored
vertices are in different branches of Pn with respect to a centroid of Pn.

Observation 1. From above discussion, we can observe the following points

(a) φ(u, v) ≥ 0, equality hold if u and v are in different branch or the centroid S ∈ {u, v}.
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(b) σ(f) ≥ J(f) ≥ 0, equality hold if f is an alternating labelling.

(c) LS(u0) + LS(un−1) ≥ 1.

(d) If n is odd and LS(u0) + LS(un−1) = 1, then at least one of
(
n−1
2

)
-level vertices is in

{u2, u3, . . . , un−2}.

In the following we give a general lower bound for radio number of Pn in terms of first colored
vertex u0, last colored vertex un−1, weight w(Pn) and total jump J(f).

Theorem 1. Let Pn be an n-vertex path and f be any radio labelling of Pn with first and last
colored vertices u0 and un−1, respectively. Then

spanf (Pn) ≥ n(n− 1)− 2w(Pn) + f(u0) + LS(u0) + LS(un−1) + J(f),

where J(f) is total jump in Pn under the radio labelling f .

Proof: From Equation (3.2), above result follows immediately.

The above theorem immediately gives the lower bound of rn(Pn) when n is even.

Theorem 2. Let Pn be a path of even number of vertices n. Then rn(Pn) ≥ n2

2 − n+ 1.

Proof: From Lemma 1, w(Pn) = n2

2 . Also LS(u0)+LS(un−1) ≥ 1, f(u0) ≥ 0 and J(f) ≥ 0.
Thus from Theorem 1, by simple calculation, above result follows immediately.

In the next lemma, we determine the jump from ui to ui+1 and then ui+1 to ui+2.

Lemma 2. If ui and ui+2 are in the same branch of Pn and ui+1 is in a different branch of Pn,
then

Jf (ui, ui+1) + Jf (ui+1, ui+2) ≥ max{2L(ui+1) + 2φ(ui, ui+2)− n, 0}.

Proof: f(ui+1)−f(ui) = n−d(ui, ui+1) +Jf (ui, ui+1) = n−L(ui)−L(ui+1) + 2φ(ui, ui+1)
and f(ui+2)−f(ui+1) = n−d(ui+1, ui+2)+Jf (ui+1, ui+2) = n−L(ui+1)−L(ui+2)+2φ(ui+1, ui+2).
Summing up we get

f(ui+2)− f(ui) = 2n− L(ui)− L(ui+2)− 2L(ui+1)

+Jf (ui, ui+1) + Jf (ui+1, ui+2)

where Jf (ut, ut+1) = Jf (ut, ut+1) + 2φ(ut, ut+1) for t = i, i+ 1. On the other hand, since f is a
radio labeling, we have

f(ui+2)− f(ui) ≥ n− d(ui, ui+2)

= n− L(ui)− L(ui+2) + 2φ(ui, ui+2).

Combining the two expressions above, we get Jf (ui, ui+1)+Jf (ui+1, ui+2) ≥ 2L(ui+1)+2φ(ui, ui+2)−
n. Since the value Jf (ut, ut+1) ≥ 0 for t = i, i+ 1, the result follows immediately.

From here to onwards, the highest level vertices with respect to a centroid S we mean the
vertices which are

⌊
n
2

⌋
distances from the centroid S.

Observation 2. If ui and ui+2 are in the same branch of Pn and ui+1 is in a different branch of
Pn, then from Lemma 2, we can observe the following points

(a) Jump is due to highest level vertices.
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(b) If n is even and the vertex ui+1 is in highest level, then Jf (ui, ui+1) + Jf (ui+1, ui+2) ≥ 2
when S 6∈ {ui, ui+2}.

(c) If n is odd and the vertex ui+1 is in highest level, then Jf (ui, ui+1) + Jf (ui+1, ui+2) ≥ 1
when S 6∈ {ui, ui+2}.

(d) If f is not an alternating labelling, then σ(f) ≥ 2 because there exist vertices ut and ut+1

which are in same branch i.e., φ(ut, ut+1) ≥ 1.

Notice that, jump is due to highest level vertices. When n is odd and LS(u0)+LS(un−1) = 1,
from Observation 1(d) and Lemma 2, we have J(f) ≥ 1 if f is alternating labelling. Again
if f is not alternating then σ(f) ≥ 2. Thus in each case whether f is alternating or not,
LS(u0) +LS(un−1) + σ(f) ≥ 2 if n is odd. Using this fact, following we give a theorem on lower
bound of rn(Pn) when n is odd.

Theorem 3. Let Pn be a path of odd number of vertices n. Then spanf (Pn) ≥ (n−1)2
2 + 2.

Proof : Let f be any radio labelling of Pn. Using Lemma 1, the weight of Pn is w(Pn) =
n2−1

4 . Then from Theorem 1, spanf (G) ≥ (n−1)2
2 +f(u0)+LS(u0)+LS(un−1)+σ(f) ≥ (n−1)2

2 +2.

The lower bound given in Theorem 2 and Theorem 3 are coincide with the exact value of
rn(Pn) which has been shown in Section 5.

4 Lower bound of radio k-chromatic number of path Pn
with k ≤ n− 2

Definition 4. Let f : E → F be a mapping from a set E to a set F . For a set A ⊂ E, we call
the mapping f |A : A→ F as the restriction of f on A.

Lemma 3. For an n-vertex path Pn, rck(Pn) ≥ rn(Pk+1) for any sub-path Pk+1 of Pn with
k < n− 1.

Proof: Let f be a radio k-labelling of Pn. Here the diameter of Pk+1 is k with k < d. Thus
V (Pk+1) ⊂ V (Pn). Let g = f |V (Pk+1) be the restriction of f on V (Pk+1). Then spanf (Pn) >
spang(Pk+1) and this is true for any radio k-labelling of Pn and its restriction g = f |V (Pk+1).
Since the diameter of Pk+1 is k, we obtain the required result.

Following we give a general lower bound for rck(Pn) where k ≤ n− 2.

Theorem 4. For an n-vertex path Pn and a positive integer k ≤ n− 2,

rck(Pn) ≥

{
k2

2 + 2, if k is even;
(k+1)2

2 − k, if k is odd.

Proof: Consider a sub-path Pk+1 of Pn. Now find the radio number of Pk+1, using Theorem
2 and Theorem 3. Then using Lemma 2, we get the result by simple calculation.

Now we study some special types of radio k-labelling for k = n − 2, k = n − 3 separately
and try to improve the general lower bound for them.

Definition 5. A radio labelling f of Pn is said to be an optimal radio labelling, if

spanf (Pn) =

{
n2

2 − n+ 1, if n is even;
(n−1)2

2 + 2, if n is odd.
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The following lemma give that the position of first and last colored vertices for an optimal
radio labelling f .

Lemma 4. Let f be an optimal radio labelling of Pn. Then f has following properties:

(a) The labelling f is alternating labelling.

(b) First and last colored vertices are adjacent and one of them must be a centroid of Pn.
Moreover, when n is even then first and last colored vertices are the centroids of Pn

Theorem 5. For an n-vertex path Pn,

ac(Pn) ≥

{
n2

2 − 2n+ 4, if n is even;
(n−1)2

2 − n+ 3, if n is odd.

Proof: Case-I: n is even. In this case k = n− 2 is also even. Hence from Theorem 4 result
follows immediately.
Case-II: n is odd. In this case k = n−2 is odd. There are two (k+ 1)-vertex sub-paths P 1

k+1 and
P 2
k+1 of Pn. Two sub-paths P 1

k+1 and P 2
k+1 are obtained from Pn by removing a vertex from right

end and left end of Pn, respectively. Let f be any radio k-labelling of Pn. For each i ∈ {1, 2},
let gi : V

(
P i
k+1

)
→ {0, 1, 2, . . .} be a restriction of f on P i

k+1. So gi is a radio labelling of P i
k+1.

Here spanf (Pn) ≥ max
i

spangi

(
P i
k+1

)
.

Our claim: All gi are not optimal and there exist one gt, t ∈ {1, 2} such that spangt ≥
rn
(
P t
k+1

)
+ 1.

If possible, let both g1 and g2 are optimal. So both g1 and g2 satisfy the properties of Lemma
4. With out loss of generality we consider the first and last colored vertices u0, un−1 be the
centroids of P 1

k+1. Then {u0, un−1} 6= {C1, C2}, where Ci denote the centroids of P 2
k+1. Thus

from Lemma 4, we get g2 is not optimal, which is a contradiction.

Theorem 6. For an n-vertex path Pn,

ac′(Pn) ≥

{
n2

2 − 3n+ 7, if n is even;
(n−1)2

2 − 2n+ 7, if n is odd.

where ac′(Pn) denotes the nearly antipodal number of Pn.

Proof: Let k = n− 3. Then there are three (k+ 1)-vertex sub-paths P i
k+1, i = 1, 2, 3 of Pn.

Let P 1
k+1 be the sub-path removing two consecutive vertices from right end of Pn; P 2

k+1 be the
sub-path removing two end vertices of Pn; and P 3

k+1 be the sub-path removing two consecutive
vertices from left end of Pn. Let f be any radio k-labelling of Pn. For each i ∈ {1, 2, 3}, let
gi : V

(
P i
k+1

)
→ {0, 1, 2, . . .} be a restriction of f on P i

k+1. So gi is a radio labelling of P i
k+1 for

each i ∈ {1, 2, 3}. Here spanf (Pn) ≥ max
i

spangi

(
P i
k+1

)
.

Our claim: All gi are not optimal and there exist one gt, t ∈ {1, 2, 3} whose span

spangt

(
P t
k+1

)
≥
{
rn
(
P t
k+1

)
+ 1, if k is even;

rn
(
P t
k+1

)
+ 2, if k is odd.

Case-I : n is odd. In this case three centroid Si, i = 1, 2, 3 of P i
k+1 are consecutive vertices

of Pn. So it is not possible for all the restriction function gi to satisfy the properties of Lemma

4. So there exist one gt, t ∈ {1, 2, 3} which is not optimal and spangt(P
t
k+1) ≥ k2

2 + 3.
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Case-II : n is even. Since k + 1 = n − 2 is even, so each t ∈ {1, 2, 3} the path P t
k+1 has

exactly two centroids and let them Ct
1 and Ct

2. For each t ∈ {1, 2, 3}, define Ct = {Ct
1, C

t
2}.

If d(u0, un−1) ≥ 3, then LS(u0) + LS(un−1) ≥ 3 for all S ∈ ∪3t=1C
t. Thus in this case

spangt

(
P t
k+1

)
≥ rn

(
P t
k+1

)
+ 2 for each t ∈ {1, 2, 3}. Again if d(u0, un−1) ≤ 2, using Lemma 1(e)

either spang1

(
P 1
k+1

)
≥ rn

(
P 1
k+1

)
+ 2 or spang3

(
P 3
k+1

)
≥ rn

(
P 3
k+1

)
+ 2.

So there exist one gt, t ∈ {1, 2, 3} whose spangt ≥
(k+1)2

2 − k + 2.

5 Radio k-chromatic number of Pn for k = n− 1, n− 2, n− 3

Let V (Pn) = {v1, v2, . . . , vn} be the vertex set of an n-vertex path Pn. In this section, we give
the exact value of rn(Pn), ac(Pn) and ac′(Pn). The lower bound of rn(Pn), ac(Pn) and ac′(Pn)
are given in Theorems 2, 3, 5, and 6 respectively. To prove equality, our task is to find a radio
k-labelling f of Pn with the span as specified in their respective lower bound theorem. Reader
can easily verify that the following defined labellings f satisfy radio k-condition and are optimal.

5.1 A radio labelling of Pn

Define a mapping f : V (Pn)→ {0, 1, 2, . . .} as follows:
Case I : n is even. f(vi) = n

2 + (i−1)(n−1), 1 ≤ i ≤ n
2 ; f

(
vn

2 +1+j

)
= j(n−1), 1 ≤ j ≤ n

2 −1.

Case I : n is odd. f(v1) = n+1
2 ; f

(
vn−1

2 −i

)
= n(i + 1) + 2, 0 ≤ i ≤ n−1

2 − 2; f
(
vn+1

2

)
= 0;

f
(
vn−1

2 +j

)
= f(vj) + n+1

2 , 2 ≤ j ≤ n−1
2 ; f(vn) = n+1

2 + 1.

5.2 An antipodal labelling of Pn

Define a mapping f : V (Pn)→ {0, 1, 2, . . .} as follows:

Case I : n is even. f(v1) = n
2 −1; f(vi) = (n−1)(n

2 −i)+1, 2 ≤ i ≤ n
2 −1; f

(
vn

2

)
= n2

2 −2n+4;

f
(
vn

2 +j

)
= n2

2 − 2n+ 4− f
(
un

2 +1−j
)
, 1 ≤ j ≤ n

2 .

Case II : n is odd. f(v1) = 3(n−1)
2 + 1; f(v2) = n−1

2 ; f(vi) = i(n− 2)− n−1
2 + 2, 3 ≤ i ≤ n−1

2 ;

f
(
vn+1

2

)
= n; f

(
vn+1

2 +1

)
= 0; f

(
vn−1

2 +j

)
= j(n− 2)− n+ 3, 3 ≤ j ≤ n−1

2 ; f(vn) = 1.

5.3 An nearly antipodal labelling of Pn

Define a mapping f : V (Pn)→ {0, 1, 2, . . .} as follows:
Case I : n is even. f(v1) = n

2 − 2; f
(
vn

2−1−i
)

= (i + 1)(n − 3) + 1, 0 ≤ i ≤ n
2 − 3;

f
(
vn

2

)
= n2

2 −3n+7; f
(
vn

2 +1

)
= 0; f

(
vn

2−1−j
)

= n2

2 +j(n−3), 0 ≤ j ≤ n
2−3; f(vn) = n2

2 −
7n
2 +9.

Case II : n is odd. f(v1) = n−1
2 ; f(v2) = (n−1)2

2 − 5(n−1)
2 + 6; f(v3+i) = 3(n−1)

2 + i(n − 2),

0 ≤ i ≤ n−1
2 −4; f

(
vn−1

2 +j

)
= (n−2)j, 0 ≤ j ≤ 1; f

(
vn−1

2 +2

)
= (n−1)2

2 −2n+7; f
(
vn−1

2 +3+l

)
=

(n− 2)(l + 1)− 1, 0 ≤ l ≤ n−1
2 − 4; f(vn−1+m) = n−1

2 +m(n− 2)− 1, 0 ≤ m ≤ 1.
Following theorem is the summery of radio k-chromatic number for each k ∈ {n−1, n−2, n−3}.

Theorem 7. Let Pn be an n-vertex path Pn and l ∈ {1, 2, 3}. Then radio (n − l)-chromatic
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number is given by

rcn−l(Pn) =

{
n2

2 − l.n+ 3l − 2, if n is even;
(n−1)2

2 − (l − 1)(n− 1) + 3
⌊
l
3

⌋
+ 2, if n is odd.
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