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Some results on quantile-based dynamic survival

and failure Tsallis entropy
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Abstract. Non-additive entropy measures are important for many applications. In

this paper, we introduce a quantile-based non-additive entropy measure, based on

Tsallis entropy and study their properties. Some relationships of this measure with

well-known reliability measures and ageing classes are studied and some character-

ization results are presented. Also the concept of quantile-based shift independent

entropy measures has been introduced and studied various properties.
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1 Introduction

It is very much common in machine learning to quantify the expected amount of information
associated with stochastic events, and to quantify the similarity between probability distributions.
In both cases, entropy is used as a measure for information content of probability distributions.
To measure the uncertainty associated with a probability distribution, Shannon [34] proposed a
measure called Shannon entropy. Here and throughout the article, X is absolutely continuous
nonnegative random variable with probability density function f(x), the Shannon entropy is
defined as,

H(X) = −
∫ ∞

0

f(x) log f(x)dx . (1.1)

The characteristic property of Shannon entropy is additivity, in the sense that for two independent
random variables X and Y

H(X ∗ Y ) = H(X) +H(Y ),

where X ∗ Y denotes the joint random variable. If a unit is known to have survived up to an age
t, then (1.1) is not applicable. Accordingly, Ebrahimi [8] considered the entropy of the residual
lifetime Xt = [X − t|X > t] as a dynamic version of uncertainty given by

H(X; t) = −
∫ ∞
t

f(x)

F̄ (t)
log

f(x)

F̄ (t)
dx, t ≥ 0. (1.2)
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A well known generalization of Shannon entropy is Tsallis entropy that was first introduced by
Havrda and Charvat [12] in the context of cybernetics theory. Then, Tsallis [31] exploited its
non-extensive features and placed it in a physical setting. This measure is defined as

Hα(X) =
1

(1− α)

(∫ ∞
0

fα(x)dx− 1

)
, α > 0, α 6= 1. (1.3)

As α −→ 1, (1.3) reduces to (1.1). Generalizing the concept of Ebrahimi [8], Asadi et al. [2] and
Kumar and Taneja [20] presented Tsallis entropy of residual lifetime and studied some properties
of it. Moreover, the Tsallis entropy is a non-additive entropy as for any two independent random
variables X and Y

Hα(X ∗ Y ) = Hα(X) +Hα(Y ) + (1− α)Hα(X)Hα(Y ).

Extensive or non-extensive statistical mechanics arise from the additivity or non-additivity of
the corresponding entropy measures. The concept of Tsallis entropy provides an extension of
thermodynamics and statistical physics. In physics, Tsallis entropy is used to describe a number
of non-extensive systems (Hamity and Barraco, [10], image processing (Yu et al., [39] and signal
processing (Tong et al., [30]. In the ecology, Tsallis entropy is proposed to a new class of diversity
indicies which covers many common diversity indicies found in ecological literature. Also, the
Tsallis entropy has been applied to a wide spectrum of problems in water engineering.

Rao et al. [28] have pointed out some basic shortcomings of the Shannon differential entropy,
and defined a new measure of uncertainty based on the survival function of a random variable X
instead of its density function, as

ξ(X) = −
∫ ∞

0

F̄ (x) log F̄ (x)dx, (1.4)

and called it cumulative residual entropy (CRE). CRE is always nonnegative; however H(X) and
Hα(X) are nonnegative for discrete random variables and can be negative in a continuous case.
Some properties and applications of CRE in reliability engineering and computer vision have
been studied by Rao [29] and Wang and Vemuri [38]. Asadi and Zohrevand [3] have considered
the dynamic version of CRE, which is defined as

ξ(X; t) = −
∫ ∞
t

F̄ (x)

F̄ (t)
log

F̄ (x)

F̄ (t)
dx, t ≥ 0. (1.5)

There have been attempts by several authors for the parametric generalization of CRE. The
alternate form for Tsallis entropy proposed by Rajesh and Sunoj [27] based on the survival
entropy (SE) of order α is given as

ξα(X) =
1

(1− α)

(∫ ∞
0

F̄α(x)dx− E(X)

)
, α > 0, α 6= 1 , (1.6)

and called it the cumulative residual Tsallis entropy (CRTE). Measure (1.6) approaches the CRE
as α −→ 1. Also, they have considered the dynamic version of CRTE, which is defined as

ξα(X; t) =
1

(1− α)

(∫∞
t
F̄α(x)dx

F̄α(t)
− E(Xt)

)
, (1.7)

and called it the dynamic cumulative residual Tsallis entropy (DCRTE). For more properties and
applications of these information measures we refer to Abbasnejad et al. [1] and Kumar [17].
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All the theoretical investigations and applications using these information measures are based
on the distribution function, but may not be suitable in situations where the distribution is not
analytically tractable. An alternative approach to the study is to use the quantile function (QF),
defined by

Q(u) = F−1(u) = inf{x | F (x) ≥ u}, 0 ≤ u ≤ 1. (1.8)

Quantile functions (QFs) have several properties that are not shared by distribution functions,
refer to Gilchrist [9] and Nair et al. [23]. Quantile functions can be properly employed to formulate
properties of entropy function and other information measures. The study of entropy functions
using quantile functions is of recent interest. Quantile-based information measures have been
used by many researchers in the context of information theory. We refer to the reader, Sunoj and
Sankaran [35], Sunoj et al. [37], Nanda et al. [26], Kumar and Rekha [18], Kayal and Tripathy
[14] and Krishnan et al. [16] and many others.

Motivated by these in the present study we consider the quantile-based dynamic (residual
and past, both) cumulative Tsallis non-additive entropy measure, since non-additivity rather
than additivity is more prevalent in many physical situations. It has been indicated that the
use of different entropy measures may lead to different models or statistical results than those
obtained by Shannon and Kullback-Leibler measures.

The text is organized as follows. In Section 2, we introduce the quantile-based cumulative
residual Tsallis entropy (CRTE) in residual lifetime and various properties of the measure are
discussed. Section 3 proves some characterization results based on the measure considered in
Section 2. In Section 4, the proposed quantile measure is used to study two ageing classes
of distribution. In Section 5, the quantile-based cumulative Tsallis entropy (CTE) in reversed
residual (past) lifetime are discussed. In Section 6, we derive the weighted form of this measure
and call it weighted cumulative residual Tsallis quantile entropy (WCRTQE) and study some
characterization results.

2 Quantile-based Cumulative Residual Tsallis Entropy

We assume that X is a nonnegative random variable with absolutely continuous distribution
function F (x) and probability density function f(x). When F (x) is strictly increasing, the
quantile function Q(u) is the solution of F (x) = u as x = Q(u). The mean of the distribution
assumed to be finite, is

E(X) =

∫ 1

0

Q(p)dp =

∫ 1

0

(1− p)q(p)dp,

where q(u) = dQ(u)
du is the quantile density function. Defining the density quantile function by

fQ(u) = f(Q(u)) and the quantile density function by q(u), we have

q(u)fQ(u) = 1. (2.1)

The hazard quantile function defined by

K(u) = h(Q(u)) =
fQ(u)

(1− u)
=

1

(1− u)q(u)
, (2.2)

where h(x) = f(x)
1−F (x) is the hazard rate of X. Another useful measure closely related to hazard

QF is the mean residual quantile function, as given by

M(u) = m(Q(u)) = (1− u)−1

∫ 1

u

(1− p)q(p)dp , (2.3)
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where m(t) = E(X − t|X > t) is the mean residual life function (MRLF) of X. It is well known
that both hazard quantile function and mean residual quantile function uniquely determine the
quantile density function q(u). Further the relationship between the quantile density function
and mean residual quantile function is given by

q(u) =
M(u)− (1− u)M ′(u)

(1− u)
. (2.4)

Recently, Sankaran and Sunoj (2017) have introduced the quantile versions of the cumulative
residual entropy (6.1) and its dynamic form (1.5). The quantile-based dynamic cumulative resid-
ual entropy (DCRE) is defined by

ξ(u) = ξ(X;Q(u)) =
log(1− u)

(1− u)

∫ 1

u

(1− p)q(p)dp− (1− u)−1

∫ 1

u

log(1− p)(1− p)q(p)dp. (2.5)

When u −→ 0, (2.5) reduces to ξ = −
∫ 1

0
(log(1− p))(1− p)q(p)dp, a quantile version of CRE.

Following with Sankaran and Sunoj [32], the quantile version of cumulative residual Tsallis en-
tropy (CRTE) of the nonnegative random variable X is defined as

ξα =
1

(1− α)

(∫ 1

0

(1− p)αq(p)dp−
∫ 1

0

(1− p)q(p)dp
)

. (2.6)

There are some models that do not have any closed form expressions for distribution and density
function, but have simple QFs or quantile density functions.

Example 1. A lambda family of distribution that is of interest in reliability is the Davis distri-
bution proposed by Hankin and Lee [11] with quantile function

Q(u) = Cuλ1(1− u)−λ2 , C, λ1, λ2 ≥ 0 ≥; 0 ≤ u ≤ 1.

This is a flexible family for right skewed nonnegative data that provides good approximations to
the exponential, gamma, lognormal, and Weibull distributions. A special feature of these families
is that they are expressed in terms of QFs for which distribution functions are not available in
closed form to facilitate the conventional analysis.
The cumulative residual Tsallis quantile entropy (CRTQE) (2.6), for Davis (power-Pareto) dis-
tribution is given as

ξα =
C

(1− α)
[λ1{β(λ1, α− λ2 + 1)− β(λ1, 2− λ2)}

+ λ2{β(λ1 + 1, α− λ2)− β(λ1 + 1, 1− λ2)}] . (2.7)

As λ2 −→ 0, (2.7) reduces to ξα = Cλ1

(1−α)

(
β(λ1, 1 + α)− 1

λ1(1+λ1)

)
, corresponding to the power

distribution. Also as λ1 −→ 0, (2.7) reduces to ξα = Cλ2

(1−λ2)(α−λ2) , corresponding to the Pareto

II distribution.

Example 2. If X is a random variable following the Govindarajulu’s distribution (1977) with
the quantile fuction Q(u) = a{(b + 1)ub − bub+1}, 0 ≤ u ≤ 1; a, b > 0, then ξα becomes ξα =
ab(b+1)
(1−α) [β(α+ 2, b)− β(b, 3)] .
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An equivalent definition for the dynamic cumulative residual Tsallis entropy (DCRTE) in terms
of QF is given by

ξα(u) = ξα(X;Q(u)) =
1

(1− α)

(∫ 1

u

(F̄ (Q(p)))αq(p)dp

(1− u)α
−
∫ 1

u

(F̄ (Q(p)))q(p)dp

(1− u)

)
,

=
1

(1− α)

(
1

(1− u)α

∫ 1

u

(1− p)αq(p)dp− 1

(1− u)

∫ 1

u

(1− p)q(p)dp
)
. (2.8)

The measure (2.8) may be considered as the dynamic cumulative residual Tsallis quantile entropy
(DCRTQE) measure. When α −→ 1, the measure (2.8) reduces to (2.5). Equation (2.8) can be
written as

(1− α)ξα(u) =
1

(1− u)α

∫ 1

u

(1− p)αq(p)dp−M(u). (2.9)

(1− u)α ((1− α)ξα(u) +M(u)) =

∫ 1

u

(1− p)α−1

K(p)
dp, (2.10)

where (2.9) and (2.10) are the expressions of ξα(u) in terms of the mean residual quantile function
M(u) and hazard quantile function K(u), respectively. Using (2.4), Equation (2.9) can be written
as

(1− u)α ((1− α)ξα(u) +M(u)) =

∫ 1

u

(1− p)α−1M(p)dp−
∫ 1

u

(1− p)αM ′(p)dp (2.11)

Applying integration by parts on the last term and simplify, we obtain

(1− u)αξα(u) =

∫ 1

u

(1− p)α−1M(p)dp. (2.12)

Differentiating (2.9) with respect to u both sides, and using (2.4) reduces to

M(u) = αξα(u)− (1− u)ξ′α(u). (2.13)

Since Tsallis entropy for residual lifetime does not determines distribution function uniquely,
refer to Nanda and Paul [25]. However Equations (2.12) and (2.13) provide a direct relation-
ship between mean residual quantile function M(u) and ξα(u), which show that ξα(u) uniquely
determines the quantile density function q(u).

Remark 1. When α −→ 1 then (2.12) reduces to

(1− u)ξ(u) =

∫ 1

u

M(p)dp,

a result obtained by Sankaran and Sunoj [32].

The next theorem gives necessary and sufficient conditions for ξα(u) to be an increasing (decreas-
ing) function of u. In this context, we state the following theorem without proof.

Theorem 2.1. Let X be a nonnegative absolutely continuous random variable having survival
function F (x), then ξα(u) is increasing (decreasing), if and only if for u ≥ 0

ξα(u) ≥ (≤)
M(u)

α
. (2.14)

We observe that, the monotone behavior of ξα(u) purely depends on the mean residual quantile
function M(u). For some univariate continuous distributions, the expression (2.3) is evaluated
as given below in Table 2.1. It is clear from the Table 2.1 that for uniform distribution ξα(u) =
M(u)
α+1 and thus it belongs to the decreasing dynamic cumulative residual Tsallis quantile entropy

(DDCRTQE).
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Table 2.1 Mean residual quantile function M(u) and DCRTQE ξα(u) for some
lifetime distributions

Distribution Quantile function Q(u) M(u) ξα(u)

Uniform a+ (b− a)u (b−a)(1−u)
2

(b−a)(1−u)
2(α+1)

Exponential −λ−1 log(1− u) 1
λ

1
αλ

Gompertz 1
log c(1−

log c log(1−u)
B ) 1

B
1
Bα

Pareto II a[(1− u)−
1
b − 1] b(1−u)−

1
a

a−1
ab(1−u)−

1
a

(a−1)(aα−1)

Generalized Pareto b
a

[
(1− u)−

a
a+1 − 1

]
b(1− u)−

a
a+1

(
b(a+1)(1−u)

− a
a+1

αa+α−a

)
Finite Range b(1− (1− u)

1
a ) b(1−u)

1
a

a+1
ab(1−u)

1
a

(a+1)(aα+1)

Log-Logestic 1
a

(
u

(1−u)

) 1
b β̄u( 1

b
,1− 1

b
)

ab(1−u)
1

(1−α)ab [
β̄u( 1

b
,α− 1

b
)

(1−u)α − β̄u( 1
b
,1− 1

b
)

(1−u) ]

Linear Mean

Residual Quantile −(a+ b) ln(1− u)− 4u −(a+ b+ 2) + 2u − (a+b)
α − 2(1−u)

α+1

3 Characterization of Lifetime Distribution Functions

By considering a relationship between the dynamic cumulative residual Tsallis quantile entropy
ξα(u) and the mean residual quantile function M(u), we characterize some lifetime distributions
based on the quanlile entropy measure (2.8). We give the following theorem.

Theorem 3.1. Let X be a nonnegative continuous random variable with quantile function Q(u)
and mean residual quantile function M(u). The relationship

ξα(u) = cM(u), (3.1)

where c =
(

a+1
α(a+1)−a

)
is constant, holds for all u, if and only if, X has generalized Pareto

distribution with quantile function

Q(u) =
b

a

[
(1− u)−

a
a+1 − 1

]
; b > 0, a > −1.

Proof. The mean residual quantile function of generalized Pareto distribution is M(u) = b(1 −
u)−

a
a+1 . Taking c =

(
a+1

α(a+1)−a

)
gives the if part of the theorem. To prove the only if part,

consider (3.1) to be valid. Using (2.13) in equation (3.1) and simplifying, we get

M ′(u)

M(u)
=

(cα− 1)

c(1− u)
.

Integrate it with respect to u both sides, we get

M(u) = A(1− u)−(α− 1
c ).

Substituting the value of c, this gives

M(u) = A (1− u)
− a
a+1 ,

which characterizes the generalized Pareto distribution. Hence proved.
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Corollary 3.2. Let X be a nonnegative continuous random variable with quantile function Q(u)
and mean residual quantile function M(u). The relationship

ξα(u) = cM(u)

holds for all u, if and only if, for (i) c = 1
α , X has exponential distribution (ii) c < 1

α , X has
Pareto II distribution (iii) c > 1

α , X has finite range distribution.

Next, we extend the result (3.1) given by Theorem 3.1 to a more general case. We state the
following result which is easy to prove, and hence omitted.

Theorem 3.3. Let X be a nonnegative continuous random variable with mean residual quantile
function M(u) and DCRTQE ξα(u) given by

ξα(u) = c(u)M(u) for u ≥ 0, (3.2)

then

M(u) =
exp

(
−
∫ 1

u
du

(1−u)c(u)

)
c(u)(1− u)α

. (3.3)

In particular if c(u) = au+ b, and a, b ≥ 0, then (3.3) gives

M(u) =
1

(au+ b)(1− u)α

(
(1− u)(a+ b)

(au+ b)

) 1
a+b

. (3.4)

Further we note that the expression (3.4) for a = 0, gives the characterization result given by the
Corollary 3.2.

4 Ageing Classes Based on DCTRQE

The notion of ageing plays an important role in reliability analysis and in identifying life distri-
bution. One of the objectives of ageing concepts in the distribution function approach to quantile
forms is to analyse lifetime data using quantile functions which do not have tractable distribu-
tion function. Based on the dynamic cumulative Tsallis residual quantile entropy (DCTRQE)
function, we define the following ageing classes.

Definition 1. A nonnegative random variable X is said to have decreasing (increasing) dynamic
cumulative residual Tsallis quantile entropy (DDCRTQE (IDCRTQE)) if ξα(u) is decreasing
(increasing) in u ≥ 0.

The following theorem show that exponential distribution is the only distribution which is both
DDCRTQE and IDCRTQE.

Theorem 4.1. If a distribution is DDCRTQE as well as IDCRTQE for some constant α, then
it must be exponential.

Proof. X is DDCRTQE means

1

1− α

(∫ 1

u

(1− p)αq(p)dp
(1− u)α

−
∫ 1

u

(1− p)q(p)dp
(1− u)

)
is decreasing in u. (4.1)
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X is IDCRTQE means

1

1− α

(∫ 1

u

(1− p)αq(p)dp
(1− u)α

−
∫ 1

u

(1− p)q(p)dp
(1− u)

)
is increasing in u. (4.2)

If X satisfies (4.1) and (4.2) both, we must have

1

1− α

(∫ 1

u

(1− p)αq(p)dp
(1− u)α

−
∫ 1

u

(1− p)q(p)dp
(1− u)

)
= Constant.

This is equivalent to saying that∫ 1

u

(1− p)αq(p)dp = [a(1− α) +M(u)](1− u)α,

where a is constant. Differentiating both sides of the above expression with respect to u, we get
M(u)= constant, which means that the distribution is exponential. The theorem is proved.

Below we see how the ageing classes are affected by increasing transformation. Before the main
result we state the following lemma by Nanda et al. [26] which is easy to prove, and hence
omitted.

Lemma 4.1. Let f(u, x) : <2
+ −→ <+ and g : <+ −→ <+ be any two functions. If

∫∞
u
f(u, x)dx

is increasing and g(u) is increasing (decreasing) in u, then
∫∞
u
f(u, x)g(x)dx is increasing (de-

creasing) in u, provided the integrals exist.

Theorem 4.2. Let X be a nonnegative and continuous random variable with quantile function
QX(u) and quantile density function qX(u). Define Y = φ(X), where φ(.) is a nonnegative,
increasing and convex (concave) function.
(i) For 0 < α < 1, ξα(Y ;QY (u)) is increasing (decreasing) in u whenever ξα(X;QX(u)) is
increasing (decreasing) in u.
(ii) For α > 1, ξα(Y ;QY (u)) is decreasing (increasing) in u whenever ξα(X;QX(u)) is increasing
(decreasing) in u.

Proof. (i) The probability density function of Y = φ(X) is g(y) = f(φ−1(y))
φ ′(φ−1(y)) ; hence density

quantile funtion is g(QY (u)) = 1
qY (u) = f(QX(u))

φ′(QX(u)) = 1
qX(u)φ′(QX(u)) . Thus we have

ξα(Y ;QY (u)) =
1

1− α

(∫ 1

u

(1− p)αqY (p)dp

(1− u)α
−
∫ 1

u

(1− p)qY (p)dp

(1− u)

)
=

1

1− α

(∫ 1

u

(1− p)αqX(p)φ′(QX(p))dp

(1− u)α
−
∫ 1

u

(1− p)qX(p)φ′(QX(p))dp

(1− u)

)
.

(4.3)

Since φ is non negative, increasing convex, we have φ′(QX(p)) is increasing and is non negative.
Moreover, by the assumption X is IDCRTQE. Hence by Lemma 4.1, (4.3) is increasing. This
proves (i). The proof of part (ii) is similar.

The following example illustrates the utility of Theorem 4.2.
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Example 3. Let X be nonnegative random variable with exponential distribution with quantile

function Q(u) = λ−1(− log(1 − u)), λ > 0, and let Y = X
1
β , β > 0. Then Y has Weibull

distribution with Q(u) = λ
−1
β (− log(1− u))

1
β . The nonnegative increasing function φ(X) = X

1
β ,

is convex (concave) if 0 < β < 1 (β > 1) and is nonnegative. Then, by Theorem 4.2, for 0 < α < 1
and 0 < β < 1 the Weibull distribution is IDCRTQE. For α > 1, β > 1, Weibull distribution is
DDCRTQE.

5 Quantile Based Cumulative Tsallis entropy for Inactivity
time

Suppose at time t, one has under gone a medical test to check for a certain disease. Let us assume
that the test is positive. If we denote by X the age when the patient was infected, then it is
known that X < t. Now the question is, how much time has elapsed since the patient had been
infected by this disease. In this situation, the random variable X̃t = [t − X|X ≤ t], which is
known as inactivity time is suitable to describe the time elapsed between the failure of a system
and the time when it is found to be ”down”.

The past lifetime random variable X̃t is related with two relevant ageing functions, the

reversed hazard rate defined by µF (x) = f(x)
F (x) , and mean inactivity time (MIT) defined by

m(t) = E(t−X|X < t) = 1
F (t)

∫ t
0
F (x)dx. The quantile versions of reversed hazard rate function

and mean inactivity time (MIT) are given as

K̄(u) = K̄(Q(u)) = u−1f(Q(u)) = [uq(u)]−1, (5.1)

and

M̄(u) = m(Q(u)) = u−1

∫ u

0

[Q(u)−Q(p)]dp =
1

u

∫ u

0

pq(p)dp, (5.2)

respectively. The relationship between quantile density function q(u) and mean inactivity quantile
function M̄(u) are related as follows

q(u) =
M̄(u) + uM̄(u)

u
, (5.3)

refer to Nair and Sankaran [24]. Di Crescenzo and Longobardi [7] introduced a dual measure
based on the cumulative distribution function F (x), called the cumulative entropy (CE) and its
dynamic version which is analogous to CRE, as follow

ξ̄(X) = −
∫ ∞

0

F (x) logF (x)dx , (5.4)

ξ̄(X; t) = −
∫ t

0

F (x)

F (t)
log

F (x)

F (t)
dx . (5.5)

Analogous to the Tsallis entropy measure (1.3), Sati and Gupta [33] proposed a cumulative Tsallis
entropy (CTE) measure and its dynamic version, parallel to the cumulative entropy (CE), which
are given as

ξ̄α(X) =
1

(1− α)

(∫ ∞
0

Fα(x)dx− E(X)

)
, (5.6)
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and

ξ̄α(X; t) =
1

(1− α)

(∫ t

0

Fα(x)dx

Fα(t)
− E(X̃t)

)
, t ≥ 0 (5.7)

respectively. For more details and application of these information measures refer to Kumar [17].
When α −→ 1 (5.6) and (5.7) reduces to cumulative entropy (5.4) and past cumulative entropy
(5.5) respectively.

Sankaran and Sunoj [32] have considered the quantile version of cumulative past entropy
(5.5), which is defined as

ξ̄(u) = ξ̄(X;Q(u)) =
log u

u

∫ u

0

pq(p)dp− u−1

∫ u

0

p(log p)q(p)dp. (5.8)

In analogy to (2.8), we propose a past cumulative Tsallis quantile entropy (PCTQE) that com-
putes the uncertainty related to past. It is defined as

ξ̄α(u) = ξ̄α(X;Q(u)) =
1

(1− α)

(
1

uα

∫ u

0

pαq(p)dp− 1

u

∫ u

0

pq(p)dp

)
. (5.9)

When u −→ 1, (5.9) reduces to ξ̄α = 1
(1−α)

(∫ 1

0
pαq(p)dp−

∫ 1

0
pq(p)dp

)
, a quantile version of

CTE. Equation (5.9) can be written as

(1− α)ξ̄α(u) =

(
1

uα

∫ u

0

pαq(p)dp− M̄(u)

)
, (5.10)

uα
(
(1− α)ξ̄α(u) + M̄(u)

)
=

∫ u

0

pα−1

K̄(p)
dp, (5.11)

where (5.10) and (5.11) are the expressions of ξ̄α(u) in terms of the mean inactivity quantile
function M̄(u) and reversed hazard quantile function K̄(u), respectively. Differentiating (5.9)
with respect to u both sides, and after some algebraic simplification we get

M̄(u) = αξ̄α(u) + uξ̄′α(u). (5.12)

Like ξ̄α(u), equation (5.12) provides a simple relationship between ξ̄α(u) and M̄(u) and thus
ξ̄α(u) uniquely determines the quantile density function q(u).
To find an upper bound to ξ̄α(X;Q(u)), we state the following theorem without proof.

Theorem 5.1. If past cumulative Tsallis quantile entropy (PCTQE) ξ̄α(u) is increasing (de-
creasing) in u, if and only if

ξ̄α(u) ≤ (≥)
M̄(u)

α
, for 0 ≤ u ≤ 1.

Example 4. If X be a random variable having the Tukey lambda distribution with the quan-

tile fuction Q(u) = uλ−(1−u)λ

λ , 0 ≤ u ≤ 1; define for all non-zero lambda values. Then past
cumulative Tsallis quantile entropy (5.9) for Tukey lambda distribution is given as

(1− α)ξ̄α(u) =

[
1

uα

∫ u

0

pα{pλ−1 + (1− p)λ−1}dp− 1

u

∫ u

0

p{pλ−1 + (1− p)λ−1}dp
]
,

which gives

ξ̄α(u) =
uλ

(α+ λ)(1 + λ)
+

1

(1− α)

(
βu(α+ 1, λ)

uα
− βu(2, λ)

u

)
, (5.13)
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where βu(a, b) are known as the incomplete beta functions. When u→ 1, (5.13) gives

ξ̄α =
1

(1− α)

(
β(α+ 1, λ)− 1

α+ λ
− 1

λ

)
,

the expression of past cumulative Tsallis quantile entropy for Tukey Lambda distribution.

Let X have the power distribution with cumulative distribution function (cdf)

F (x) =
(x
a

)b
, 0 < x < a, b > 0.

In the following theorem we show that the power distribution can be characterized in terms of
ξ̄α(X;Q(u)).

Theorem 5.2. Let X be a nonnegative continuous random variable with quantile function Q(u)
and mean residual quantile function M(u). The relationship

ξ̄α(u) = CM̄(u) (5.14)

where C = b
(αb−b+1) is constant, holds for all u, if and only if, X has power distribution function.

The proof is similar to that of Theorem 3.1 and hence is omitted.

Next, we extend the result (5.14) to a more general case taking C as a function of u. We
state the following result:

Theorem 5.3. Let X be a nonnegative continuous random variable with mean inactivity quantile
function M̄(u) and PCTQE ξ̄α(u) given by

ξ̄α(u) = C(u)M̄(u) for u ≥ 0, (5.15)

then

M̄(u) =
exp

(∫ u
0

du
(uC(u)

)
uαC(u)

. (5.16)

Proof. Substituting (5.15) in (5.12), we get

M̄(u) = αC(u)M̄(u) + uξ̄′α(u). (5.17)

Differentiating (5.15) with respect to u and substituting for ξ̄′α(u), from (5.17) we obtain

M̄ ′(u)

M̄(u)
=

1

uC(u)
− α

u
− C ′(u)

C(u)
.

Integrating with respect to u both side between 0 to u in the above expression and simplifying,
we obtain

M̄(u) =
exp

(∫ u
0

du
(uC(u)

)
uαC(u)

.

This proves the result.

Example 5. Let C(u) = au+ b, and a, b ≥ 0. From (5.15), we obtain the general model with
mean inactivity quantile function

M̄(u) =
1

uα(au+ b)

(
ub

(au+ b)

) 1
b

. (5.18)

Further for if a = 0, (5.18) gives the characterization result given by the Theorem 5.2.
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6 Weighted Tsallis Quantile Entropy

The Shannon entropy (1.1) is not scale invariant but it is a shift-independence measure, because
H(C+X) = H(X) for some constant C. However, in some practical situations, such as reliability
or neurobiology, a shift-dependent measure of uncertainty is desirable. Considering this, Belis
and Guiasu [4] and later Di Crescenzo and Longobardi [6] considered the notion of weighted
entropy. Which is defined as

Hw(X) = −
∫ ∞

0

xf(x) log f(x)dx , (6.1)

The factor x inside the integral on the right-hand side of above expression yields a length-biased
shift-dependent information measure assigning greater importance to larger values of the random
variable X. The use of weighted entropy are also motivated by the need arising in various com-
munication and transmission problems of expressing the usefulness of events with an information
measure, refer to Kumar and Taneja [19]. Das [5] has studied the importance of weighted gener-
alized entropy for residual and past problems.

Let Xw be a weighted random variable corresponding to X with weight function w(x) which
is positive for all values of x ≥ 0. Then the corresponding p.d.f. fw(x) of the random variable
Xw is given by

fw(x) =
w(x)f(x)

E(w(X))
, 0 ≤ x <∞,

with 0 < E(w(X)) < ∞. When w(x) = x, Xw is said to be a length biased (or a size biased)
random variable. Using fw(x), the corresponding density quantile function is given by

fw(Q(u)) =
w(Q(u))f(Q(u))

µ
,

where µ =
∫ 1

0
w(Q(p))f(Q(p))d(Q(p)) =

∫ 1

0
w(Q(p))dp. Therefore, the quantile-based weighted

Tsallis entropy is of the form

Hw
α (Q(u)) =

1

1− α

(
1

µα

∫ 1

0

[w(Q(p))]α(q(p))1−αdp− 1

)
.

In case of length (size) biased random variable the above expression known as length biased
weighted Tsallis quantile entropy, which is given as

HL
α (Q(u)) =

1

1− α

(
1

µα

∫ 1

0

Q(p)α(q(p))1−αdp− 1

)
. (6.2)

For some specific univariate continuous distributions, the expression (6.2) is evaluated as given
below in Table 6.1.

Now, we consider a random variable XE with density function fE(x) = F̄ (x)
µ , with µ =

E(X) <∞. Then, XE is called the equilibrium random variable of the original random variable
X, and its distribution as equilibrium distribution of original random variable. The equilibrium
distribution arises as the limiting distribution of the forward recurrence time in a renewal process.

We have fE(Q(u)) = F̄ (Q(u))
µ = 1−u

µ .

Thus quantile density function for equilibrium distribution is given by qE(u) = 1
fE(Q(u)) = µ

1−u .
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Distribution Quantile function Q(u) HL
α (Q(u))

Uniform a+ (b− a)u 1
1−α

{
(b1+α−a1+α)2α

(a+b)α(b−a)α(1+α) − 1
}

Exponential −λ−1 log(1− u) 1
1−α

{
λα−1γ(1+α)

α1+α − 1
}

Power au
1
b

1
1−α

{
b1−α(b+1)
bα+1 − 1

}
Pareto-I b(1− u)−

1
a

1
1−α

{
b1−α(a−1)α

(αa−1) − 1
}

Finite Range b(1− (1− u)
1
a ) 1

1−α

{
β(1+α,1−α+a)

a−αbα−1 − 1
}

Log-Logestic 1
a

(
u

(1−u)

) 1
b 1

1−α

{
aαβ(α+ 1

b
,α− 1

b
)

a2αbα(β(1+ 1
b
,1− 1

b
))α
− 1
}

Weibull
(− 1

a
log(1−u))

1
b
−1

ab(1−u)
1

1−α

{
(ab)α−1( 1

a
)
1
b
−1γ(α+1

b
)

α
1+α
b (γ(1+ 1

b
))α

− 1

}
Table 6.1 Length biased weighted Tsallis quantile entropy ξLα (X) for some lifetime
distributions

From (2.8), the dynamic cumulative residual Tsallis quantile entropy (DCRTQE) for equilibrium
distribution is given by

ξα(XE ;Q(u)) =
1

1− α

(
1

(1− u)α

∫ 1

u

(1− p)αqE(p)dp− 1

(1− u)

∫ 1

u

(1− p)qE(p)dp

)
(6.3)

Theorem 6.1. Let X be a nonnegative continuous random variable, with relationship for DCRTQE
for equilibrium distribution is given as ξα(XE ;Q(u)) = µ

α , if and only if X has equilibrium dis-
tribution.

Proof. If part of the theorem is easy to proves, to prove only if part let us assume that

ξα(XE ;Q(u)) =
µ

α
.

From equation (6.3), we have∫ 1

u

(1− p)αqE(p)dp− (1− u)α−1

∫ 1

u

(1− p)qE(p)dp =
µ(1− α)(1− u)α

α
.

Differentiating it with respect to u both sides, after some simplification we get∫ 1

u

(1− p)qE(p)dp = µ(1− u).

Again, differentiating with respect to u, we obtain qE = µ
(1−u) , the quantile density function for

equilibrium distribution. Hence proved.

The following theorem characterizes power distribution using the ξα(XE ;Q(u)). The proof of the
result is direct.

Theorem 6.2. The random variable X is distributed power function with Q(u) = au
1
b ; a, b > 0,

holds for all u if and only if satisfies the relationship

(1− α)ξα(XE ;Q(u)) = C

where C is constant.
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Remark 2. The mean residual quantile function satisfies the relation M(XE ;Q(u)) = µ if and
only if X follows equilibrium distribution.

6.1 Weighted Cumulative Residual Tsallis Entropy)

When the weight function depends on the length of the component, the resulting distribution is
called length biased weighted function. Di Crescenzo and Longobardi [6] have considered a length
based shift dependent information measure, related to the differential entropy and also introduced
the concept of weighted residual entropy and weighted past entropy. Further, Misagh et al. [22]
proposed a weighted information which is based on the CRE, called weighted cumulative residual
entropy (WCRE). This measure is defined as

ξ̄w(X) = −
∫ ∞

0

xF̄ (x) log F̄ (x)dx . (6.4)

Several authors studied properties of (6.4) and its dynamic version, refer to Kayal and Moharana
[13] and Mirali et al. [21]. An important feature of the human visual system is that it can
recognize objects in a scale and translation invariant manner. However, achieving this desirable
behavior using biologically realistic network is a challenge. Analogous to (6.4), Khammar and
Jahanshahi [15] have introduced the concepts of weighted cumulative residual Tsallis entropy
(WCRTE), and its residual form, defined as

ξwα (X) =
1

1− α

(∫ ∞
0

xF̄α(x)dx− 1

)
, α 6= 0, α > 1, (6.5)

and

ξwα (X, t) =
1

1− α

(∫∞
t
xF̄α(x)dx

F̄α(t)
− 1

)
, (6.6)

respectively. The factor x in the integral on right-hand side yields a ”length-biased ” shift
dependent information measure assigning greater importance to larger values of the random
variable X. From (1.8) and (2.1), we propose the quantile version of WCTRE and its residual
form of a nonnegative random variable X, defined as

ξwα =
1

1− α

(∫ 1

0

Q(u)(1− u)αq(u)du− 1

)
, (6.7)

and

ξwα (u) = ξwα (X;Q(u)) =
1

1− α

{∫ 1

u
Q(p)(1− p)αq(p)dp

(1− u)α
− 1

}
, (6.8)

respectively. The measure (6.8) may be considered as the dynamic weighted cumulative residual
Tsallis quantile entropy (DWCRTQE) measure. An alternative expression for the DWCRTQE
in terms of mean residual quantile function M(u) of random variable X is the following

ξwα (u) =
1

1− α

{∫ 1

u
(1− p)α−1Q(p)M(p)dp

(1− u)α
−
∫ 1

u
(1− p)α−1Q(p)M ′(p)dp

(1− u)α
− 1

}
.

Example 6. Let X follow lambda family of distribution as given in example 2.1, then weighted
cumulative residual Tsallis quantile entropy (WCRTQE)(6.7) is given as

ξwα =
1

(1− α)

{
C2λ1β(2λ1, 1 + α) + C2λ2β(2λ1 + 1, α− 2λ2)− 1

}
(6.9)
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As λ1 −→ 0, (6.9) reduces to

ξwα =
1

(1− α)

(
C2λ2

α− 2λ2
− 1

)

corresponding to Pareto II distribution. Also, as λ2 −→ 0, (6.9) reduces to

ξwα =
1

(1− α)

(
C2λ1β(2λ1, 1 + α)

)

corresponding to Power distribution.

For some well-known univariate continuous families of distributions, the expression (6.8) is eval-
uated as given below in Table 6.2.
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Table 6.2 DWCRTQE for some well-known families of distributions

Distribution Quantile function Q(u) ξwα (u)

Uniform a+ (b− a)u 1
1−α

{
a(b−a)(1−u)

1+α + (b−a)2(1−u)
1+α − (b−a)2(1−u)2

2+α − 1
}

Exponential −λ−1 log(1− u) 1
1−α

{
γ̄− log(1−u)(2,α)

λ2(1−u)α
− 1
}

Power au
1
b

1
1−α

{
a2β̄u( 2

b
,1+α)

b(1−u)α − 1
}

Pareto-I b(1− u)−
1
a

1
1−α

{
b2(1−u)

−2
a

(αa−2) − 1

}
Folded Cramer u

θ(1−u)
1

1−α

{
(1−u)−2

θ2(α−2)
− (1−u)−1

θ2(α−1)
− 1
}

Generalized Pareto b
a

[
(1− u)−

a
a+1 − 1

]
1

1−α

{
b2(1−u)

−2a
a+1

a(aα+α−2a) −
b2(1−u)

−a
a+1

a(αa+α−a) − 1

}
Finite Range b(1− (1− u)

1
a ) 1

1−α

{
b2(1−u)

1
a

(aα+1) −
b2(1−u)

2
a

(αa+2) − 1

}
Log-Logestic 1

a

(
u

(1−u)

) 1
b 1

1−α

{
β̄u( 2

b
,α− 2

b
)

a2b(1−u)α
− 1
}

Weibull
(
− 1
a log(1− u)

) 1
b 1

1−α

{
( 1
a

)
2
b
−1γ̄− log(1−u)(

2
b
,α)

ab(1−u)α − 1

}
Rayleigh

(
− 1
a log(1− u)

) 1
2 1

1−α
{

1
2aα − 1

}
Gompertz 1

logC

{
1− logC log(1−u)

B

}
1

1−α

{
1

αB logC +
γ̄− log(1−u)(2,α)

B2(1−u)α
− 1
}

Govindarajulu’s a
(
(b+ 1)ub − bub+1

)
1

1−α

{
a2b(b+1)2β̄u(2b,α+2)

(1−u)α − a2b2(b+1)β̄u(2b+1,α+2)
(1−u)α − 1

}
where γ̄x(a, b),and β̄u(a, b) known as the incomplete gamma and incomplete beta function
defined as γ̄x(a, b) =

∫∞
x ya−1e−bydy, and β̄x(a, b) =

∫ 1
x y

a−1(1− y)b−1dy, a, b > 0, x > 0
respectively.

The following lemma gives the properties of ξwα (X;Q(u)). It shows that ξwα (X;Q(u)) is a shift
dependent measure.

Lemma 6.1. If Y = aX + b,with a > 0 and b ≥ 0,then

ξwα (Y ;Q(u)) =
a2 + ab− 1

1− α
+ a2ξwα (X;Q(u)) + abξwα (X;Q(u)).

In order to provide some characterization results for DWCRTE of a nonnegative random variable
X. Let us define the quantile version of weighted mean residual lifetime (WMRL), as follows

Mw(u) = mw(Q(u)) =

∫ 1

u
(1− p)Q(p)q(p)dp

1− u
, (6.10)

here mw(t) =
∫∞
t
xF̄ (x)dx

F̄ (t)
is the WMRL of random variable X. In the following theorem, we

characterize Rayleigh distribution using a relationship between DWCRTE and quantile based
WMRL.

Theorem 6.3. Let X be an absolutely continuous random variable. Then the relation

(1− α)ξwα (X;Q(u)) =
Mw(u)

α
− 1, (6.11)

holds if and only if X follows the Rayleigh distribution.
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Proof. The quantile based WMRL (6.10), for rayleigh distribution is given as

Mw(u) =
1

2a(1− u)

∫ 1

u

(
−1

a
log(1− p)

) 1
2
(
−1

a
log(1− p)

)−1
2

dp =
1

2a
.

The weighted cumulative residual Tsallis quantile entropy (6.10), for Rayleigh distribution is

ξwα (X;Q(u)) =
1

1− α

(
1

2aα
− 1

)
.

This proves the if part of the Theorem. To prove only if part, let (6.11) holds. Then

α(1− u)

∫ 1

u

(1− p)αQ(p)q(p)dp = (1− u)α
∫ 1

u

(1− p)Q(p)q(p)dp.

Differentiating both sides with respect to u, we have

α

∫ 1

u

(1− p)αQ(p)q(p)dp+α(1− u)α+1Q(u)q(u)

= α(1− u)α−1

∫ 1

u

(1− p)Q(p)q(p)dp+ (1− u)α+1Q(u)q(u),

after some algebraic simplification, this gives

α

(1− u)Q(u)q(u)

(
1

(1− u)α

∫ 1

u

(1− p)αQ(p)q(p)dp− 1

1− u

∫ 1

u

(1− p)Q(p)q(p)dp

)
= 1− α.

Using (6.8) and (6.10), we get

α

(1− u)Q(u)q(u)
{(1− α)ξwα (X,u) + 1−Mw(u)} = 1− α . (6.12)

Substituting (6.11) in (6.12), we obtain

α

(1− u)Q(u)q(u)

(
Mw(u)

α
−Mw(u)

)
= 1− α,

which leads to
Mw(u)

(1− u)
= Q(u)q(u). (6.13)

Again using (2.2), we have

Mw(u)K(u) = −Q(u) (6.14)

Differentiating (6.10) with respect to u both sides, we have

dMw(u)

du
− Mw(u)

1− u
= −Q(u)q(u).

Substituting (6.13), gives dMw(u)
du = 0 or equivalently Mw(u) = k (constant). From (6.13)

Mw(u) = Q(u)
k or equivalently gives the survival function F̄ (x) = exp(− x

2a2 ) of Rayleigh distri-
bution.
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Theorem 6.4. For a nonnegative random variable X, the relationship

ξwα (X;Q(u)) = C, (6.15)

where C is a constant holds, then X has the Rayleigh distribution.

Proof. The necessary part follows from the Table 6.2. For the sufficiency part, let us assume
(6.15) holds. From (6.8) we have

{(1− α)ξwα (X;Q(u)) + 1}(1− u)α =

∫ 1

u

Q(p)(1− p)αq(p)dp.

Taking derivative with respect to u both sides we have, after some algebraic simplification

(1− α)ξ′ wα (X;Q(u))− α [(1− α)ξwα (X;Q(u)) + 1]

1− u
= −q(u)Q(u).

Using (2.2), this gives

(1− α)ξ′ wα (X;Q(u))− α [(1− α)ξwα (X;Q(u)) + 1]

1− u
= − Q(u)

(1− u)K(u)
. (6.16)

From (6.15), we get ξ′ wα (X;Q(u)) = 0. Substitute this value in the above expression we obtain

α [(1− α)ξwα (X;Q(u)) + 1]K(u)−Q(u) = 0,

which leads to K(u)
Q(u) = 1

α[C(1−α)+1] = 2a (constant). Thus X follows Rayleigh distribution with

survival function F̄ (x) = exp
(
− x

2a2

)
. Hence, the proof is completed.

7 Conclusion

An important generalization of Shannon entropy is the non-additive Tsallis entropy measure
which finds justifications in many physical, biological and chemical phenomena. In several clinical
studies, particularly when the associated diseases are chronic or/and incurable, it is of great
concern to patients to know residual and past lifetime. The present work introduced an alternative
approach to Tsallis dynamic (residual and past both) entropy using quantile functions. Also
there are several uncertainty measures that play a central role in understanding and describing
reliability. Most of these information measures do not take into account the values of a random
variable. They consider only its probability density. We describing this we proposed the shift
dependent quantile-based Tsallis entropy and studied it, with properties similar to those of the
legacy entropies.
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