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ELLIPTICALLY CONTOURED MODEL AND FACTORIZATION

OF WILKS’ Λ: NONCENTRAL CASE

A. K. GUPTA AND D. G. KABE

Abstract. Kshirsagar in a series of papers, see e.g., Kshirsagar (1964, 1971), McHenry and

Kshirsagar (1977), factorizes Wilks’ Λ into a number of factors and finds the independent cen-

tral multivariate beta densities of these factors. These factors are the Wilks’ likelihood ratio

test criteria for testing goodness of fit of certain canonical variables. Essentially the factors of

Wilks’ Λ are the factors of the determinants of certain multivariate beta distributed matrices.

The Bartlett decompositions of the underlying multivariate beta distribution into independent

factors, determine the distributions of these factors. The present paper generalizes Kshirsagar’s

(1971) normal central distribution theory to elliptically contoured model noncentral distribution

theory, showing that Kshirsagar’s (1971) nonnull normal theory is nonnull robust for elliptically

contoured model.

1. Introduction

Following Gupta and Kabe (1979), see also Kshirsagar (1971), we assume y and x

to be respectively p1 and p2 component (column) vectors normally distributed with zero
means and an unknown p× p, p1 + p2 = p, covariance matrix

Σ =

[

Σ11 Σ12

Σ21 Σ22

]

,Σ11(p1 × p1). (1)

Then the squared canonical correlation coefficients are the roots of the canonical corre-
lation matrix (Σ

−1/2
11 Σ12Σ

−1
22 Σ21Σ

−1/2
11 ). For a sample of size n on (y′ x′)′, we calculate

the sample dispersion matrix

S =

[

S11 S12

S21 S22

]

, S11(p1 × p1), (2)

and the sample quantities S11 = T = W + B, S12S
−1
22 S21 = B. The null hypothesis

Σ12 = 0 is tested by the Wilks’ likelihood ratio test (LRT) criterion

Λ = |W |/|T | = |I −R|, R = S
−1/2
11 S12S

−1
22 S21S

−1/2
11 , (3)
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R being termed the canonical correlation matrix.

Now Kshirsagar (1971) wishes to test the null hypothesis FΣ−1
22 Σ′

12 = Fβ′ = 0, where

F (g × p2) is unknown. Assuming all matrices in this paper to be full rank matrices, he

notes that

Var (F β̂′) = Var (FS−1
22 S

′

12)

= (n− p2 − 1)−1(FΣ−1
22 F

′) ⊕ (Σ11 − Σ12Σ
−1
22 Σ21), (4)

and that

Max
F

trVar (F β̂′) = (λ1 + · · · + λg) tr(Σ11 − Σ12Σ
−1
22 Σ21), (5)

where λ1 > λ2 > · · · > λp2
are the roots of Σ−1

22 . Thus testing F = F0 (specified)

amounts to the testing that certain linear functions of x are the canonical variables of

x. Note that E(Fy|x) = FΣ−1
22 Σ21x = Fβ′x, and hence testing Fβ′ = 0, amounts to

the testing that the first g canonical correlation coefficients are zero, i.e, some g linear

combinations of y cannot be predicated by any linear combinations of x.

For this testing purpose, Kshirsagar (1971) sets

F0β̂
′ = F0S

−1
22 S

′

12 = C′

xg, CxgC
−1/2
gg = Z, F0S

−1
22 F

′

0 = Cgg, (6)

Λ = Λ1Λ2Λ3, L = B − ZZ ′, (7)

Λ1 = |Cgg − C′

xgT
−1Cxg|/|Cgg |, (8)

Λ2 = |ΓLΓ′||Cgg|/|ΓTΓ′||Cgg − ΓTΓ′|, (9)

Λ3 = |L||ΓCxg|/|T ||ΓLΓ′|, (10)

where Γ′ = T−1Cxg. An alternative factorization of Λ is

Λ = Λ1Λ4Λ5, (11)

Λ4 = |L||C′

xgL
−1Cxg|/|T ||ΓCxg|, (12)

Λ5 = |Cgg||ΓCxg|/|Cgg − C′

xgT
−1Cxg||C′

xgL
−1Cxg|. (13)

Now if ABC = 0, and rank A = rank AB, then BC = 0; if ABC = 0, and

rankB = rank BC, then AB = 0. It follow that Σ12Σ
−1
22 Σ21 = 0 implies Σ12 = 0, and

under this condition Kshirsagar (1971) derives the independent central multivariate beta

densities of Λ1,Λ2,Λ3,Λ4,Λ5, (see also R. D. Gupta and Kabe, 1979). Unfortunately,

the simultaneous noncentral distribution theory of Λ1,Λ2,Λ3,Λ4, and Λ5 becomes very

involved. We derive the joint noncentral density of Λ2 and Λ3 or that of Λ4 and Λ5 un-

der the condition that F0Σ
−1
22 Σ′

12 = 0, although the distribution theory is not completely

solved unless we assume that F0Σ
−1
22 Σ′

12 6= 0.

The upper triangular Bartlett decomposition of a symmetric positive definite matrix

M is

M =

[

M11 M12

M21 M22

]

=

[

W
1/2
11 G12

0 M
1/2
22

][

W
1/2
11 0

G21 M
1/2
22

]

= UU ′, (14)
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where W11 = M11 −M12M
−1
22 M21, and M21 = M

1/2
22 G21.

The lower triangular Bartlett decomposition of M is

M =

[

M
1/2
11 0

G21 W
1/2
22

] [

M
1/2
11 G12

0 W
1/2
22

]

= LL′, (15)

where W22 = M22 −M21M
−1
11 M12, and M12 = M

1/2
11 G12.

The Bartlett decompositions of (I−M) are obvious and are used by Kshirsagar (1971),

and R. D. Gupta and Kabe (1979), to derive the densities of Λ1,Λ2,Λ3,Λ4,Λ5 respectively

to be Λ(n− p1, g, p1), Λ(n, g, p2 − g), Λ(n− 2g, p1 − g, p2 − g), Λ(n − g, p1 − g, p2 − g),

Λ(n− p+ g, g, p2), where Λ(n− q, p, q − g) denotes the density of p× p positive definite
symmetric M

φ(M) = K|M | 12 (n−q−p−1)|I −M | 12 (q−g−p−1),

with K denoting the normalizing constants of density functions in this paper.
An n-component vector y is said to have an n-variate elliptically contoured model

(ECM) density if its characteristic function g(t) is of the form

g(t) = exp{it′µ}Ψ(t′Σt), E(y) = µ. (16)

Thus e.g.,

φ(y) = K exp{−[(y − µ)′Σ−1(y − µ)]1/2},

has the characteristic function

g(t) = K exp{it′µ}(1 + t′Σt)−
1

2
(n+1).

In case y is complex, then

g(t) = K exp{it′µ}(1 + t
′

Σt)−
1

2
(2n+1)

and
φ(y) = K exp{−(y − µ)′Σ−1(y − µ)}.

Krishnaiah and Lin (1986) list several examples of complex symmetric ECM densities

(see also Gupta and Varga, 1993). Anderson, Fang, and Hsu (1986) derive and prove the

null robustness of normal theory Wilks’ Λ for the ECM. The present paper shows that
Kshirsagar’s (1971) normal nonnull Wilks’ Λ theory is nonnull robust for the ECM.

In the next section we study some aspects of the noncentral canonical correlation

matrix distribution theory for the ECM, and the densities of Λ1,Λ2,Λ3,Λ4,Λ5 are derived

in Section 3.
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2. Canonical Correlation Theory

Before we proceed with the canonical correlations distribution theory, we record the

following known results. If y has n-components, −∞ < y <∞, then

∫

y′Ay=u

f(y′Ay) exp{d′y}dy = K|A|− 1

2 f(u)u
1

2
(n−2)

0F 1

(1

2
n;

1

4
ud′A−1d

)

. (17)

∫

exp

{

−1

2
trPG

}

|G| 12 (n−p−1)(µ′Gµ)rdG = K2rΓ
(1

2
n+ r

)

(µ′P−1µ)r, G(p× p). (18)

For any absolutely continuous function g, we know that

[

g

[

d

dθ

]

exp{θx}
]

θ=0

= g(x),

where we also assume

[

exp

{

−
( d

dθ

)
1

2

}

exp{θx}
]

θ=0

= exp{−(x)
1

2 },

a result useful for translating normal theory results to similar results for ECM (16).

Now Anderson, Fang, and Hsu (1986) note that the density of any function h(G) of

the Wishart matrix G is nonnull robust for the ECM if h(θG) = h(G) for every scalar θ.

Obviously h(G) = R of (3) is such a function.

Given the Wishart density of a p× p positive definite symmetric matrix G to be

φ(G) = K exp

{

−1

2
trPG

}

|G| 12 (n−p−1),

where for convenience

P−1 = ρ =











1 ρ12 · · · ρ1p

ρ21 1 · · · ρ2p

...
...

...
...

ρp1 ρp2 · · · 1











,

denotes the population correlation matrix, the following results of the normal correlation

theory are known.

The squared sample multiple correlation coefficient R2
1·2...p is defined by

g′(1)G−1
22 g(1) = g11R

2
1·2...p′

where

G =

[

g11 g′

(1)

g(1) G22

]

, G22((p− 1) × (p− 1)),
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and conformably the population squared multiple correlation coefficient is

ρ2
1·2...p = ρ′(1)ρ−1

22 ρ(1) = p′(1)P−1
22 p(1)/p11,

P =











p11 p12 · · · p1p

p21 p22 · · · p2p

...
...

...
...

pp1 pp2 · · · ppp











=

[

p11 p′(1)

p(1) P22

]

.

The density of R2
1·2...p is

φ(R2
1·2...p) = K(1 − ρ2

1·2...p)
1

2
n(1 −R2

1·2...p)
1

2
(n−p−1)(R2

1·2...p)
1

2
(p−3)

·2F 1

[

1

2
n,

1

2
n;

1

2
(p− 1);R2

1·2...pρ
2
1·2...p

]

. (19)

When p = 2, the result (19) reduces to the density of the squared sample correlation

coefficient r2, ρ2 being the population counterpart

φ(r2) = K(1 − ρ2)
1

2
n(1 − r2)

1

2
(n−3)(r2)−

1

2 2F 1

(

1

2
n,

1

2
n;

1

2
; r2ρ2

)

. (20)

Recently Mathai (1981) sets

R = G
−1/2
11 G12G

−1
22 G21G

−1/2
11 , G22(p2 × p2), p1 + p2 = p,

ρ = p
−1/2
11 P12P

−1
22 P21p

−1/2
11 , P22(p2 × p2), p1 + p2 = p,

and finds the density of the canonical correlation R to be

φ(R) = K|I − ρ| 12n|R| 12 (p2−p1−1)|I −R| 12 (n−p−1) · 2F1

[

1

2
n,

1

2
n;

1

2
p2; ρR

]

. (21)

The partial canonical correlation matrix is defined by

R = Rp11p12·p1+1,...,p = D
−1/2
11 D12D

−1
22 D21D

−1/2
11 , (22)

where

D =

[

D11 D12

D21 D22

]

= G11 −G12G
−1
22 G21, p11 + p12 = p1, p1 + p2 = p,

G11 is p1 × p1, and D11 is p11 × p11. It follows from (21) that the density of R of (22) is

φ(R)=K|I−ρ| 12n|R| 12 (p12−p11−1)|I−R| 12 (n−p−1) ·2F 1

(

1

2
(n− p2),

1

2
(n− p2);

1

2
p12; ρR

)

,

(23)
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where ρ in (23) is defined by

ρ = ∆
−1/2
11 ∆12∆

−1
22 ∆21∆

−1/2
11 , ∆ =

[

∆11 ∆12

∆21 ∆22

]

,

with ∆ = P11 − P12P
−1
22 P21, P11 is p1 × p1 and ∆11 is p11 × p11.

Form (23), with p11 = 1, p12 = 1, p2 = (p − 2), the density of the squared partial

sample correlation coefficent R2
12·3...p is

φ(R2
12·3...p) = K(1 − ρ2

12·3...p)
1

2
n(R2

12·3...p)
−

1

2 (1 −R2
12·3...p)

1

2
(n−p−1)

·2F 1

[

1

2
(n− p+ 2),

1

2
(n− p+ 2);

1

2
; ρ2

12·3...pR
2
12·3...p

]

,

where ρ2
12·3...p is the population counterpart of R2

12·3...p.

Now before we proceed with the derivation of (19) for the ECM, we derive (20) to

clarify our methodology. Obviously the ECM Wishart density of G(2 × 2) is

φ(G) = Kg(trPG)|G| 12 (n−3)

= K

[

g

(

d

dθ

)

exp{tr(θP )G}
]

θ=0

|G| 12 (n−3), (24)

i.e., following Anderson, Fang, and Hsu (1986) we simply change P to θP . Next setting

θ = − 1
2α we write (24) as

φ(g11, g22, r
2) = Kg

(

d

dθ

)

(g11g22)
1

2
(n−2)(1 − r2)

1

2
(n−3)

· exp

{

−1

2
α(p11g11 − 2p12r

√
g11g22 + p22g22)

}

. (25)

Now in (25) set p11g11 = u exp{−v}, p22g22 = u exp{v}, and noting that the Jacobian of

this transformation is

J(g11, g22;u, v) = 2(p11p22)
−1,

we find that

φ(u, v, r2) = Kg

[

d

dθ

]

un−1(1 − r2)
1

2
(n−3) exp

{

−1

2
αu(cosh v − ρr)

}

,

i.e.,

φ(u, r2) = Kg

[

d

dθ

]

exp{θu}un−1

∫

∞

0

(cosh v − ρr)−ndv

= Kg(u)un−1ψ(r2), (26)

where ψ(r2) denotes the density (20).
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Evidently, the result (26) states that

φ(r2) = Kg

[

d

dθ

]
∫

R

exp{θ trPG}|G| 12 (n−3)dG

= Kg

[

d

dθ

]
∫

∞

0

exp{θu}un−1duψ(r2)

= K

∫

∞

0

g(u)un−1duψ(r2), (27)

the region R of integration is defined by the equation g11r
2 = g12g

−1
22 g12.

It follows now from (27) that the density of the squared multiple correlation coefficient
R2

1·2...p is

φ(R2
1·R...p) = Kg

[

d

dθ

]
∫

R

exp

{

−1

2
αp11 − αp(1)

′

g(1) −
1

2
α trP22G22

}

·(g11 − g(1)′G−1
22 g(1))

1

2
(n−p−1)|G22|

1

2
(n−p−1)dG, (28)

where the region R of integration is defined by

g(1)
′

G−1
22 g(1) = g11R

2
1·2...p.

We first use (17) and integrate out g(1) from (28) to obtain

φ(R2
1·2...p) = Kg

(

d

dθ

)
∫

exp

{

−1

2
αp11g11 −

1

2
α trP22G22

}

·g
1

2
(n+2r)−1

11 |G22|
1

2
(n−p)(1 −R2

1·2...p)
1

2
(n−p−1)(R2

1·2...p)
1

2
(p−3)

·0F 1

[

1

2
(p− 1);

1

4
R2

1·2...p(αp(1)′G22p(1)α)

)

.

The next step is to use (18) and first integrate out G22, and then integrate out g11, to
find that

φ(R2
1·2...p) = Kg

(

d

dθ

)

α−
1

2
pnψ(R2

1·2...p)

= Kg

(

d

dθ

)
∫

∞

0

e−
1

2
αuu

1

2
pn−1duψ(R2

1·2...p)

= K

∫

∞

0

g(u)u
1

2
np−1duψ(R2

1·2...p), (29)

where ψ(R2
1·2...p) denotes the density (19). Note that when p = 2, (29) yields (27).

The density (21) follows from (29) by noting that

φ(R) = K

∫

A

g(trPG)|G| 12 (n−p−1)dG

= K

∫

∞

0

g(u)u
1

2
np−1duψ(R),
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where ψ(R) is the density (21), and the regionA of integration is defined by G
1/2
11 RG

1/2
11 =

G12G
−1
22 G21.

We now proceed with the derivation of the densitites of Λ1,Λ2,Λ3,Λ4,Λ5. These are
derived under the condition that F0P12

′ = 0, i.e., F0P
−1
22 P

′

12 = 0.

3. Wilks’ Λ Factorization Theory

The simultaneous reduction of the quadratic form S12S
−1
22 S21 = B, and the linear

form F0S
−1
22 S

′

12 = C′

xgyields the result

B = S12S
−1
22 S

′

12 = Cxg(F0S
−1
22 F

′

0)
−1C′

xg + L = ZZ ′ + L,

and hence

|T −B| = |T − ZZ ′ − L| = |T − ZZ ′||I −M |, (30)

where M is defined by L = (T − ZZ ′)
1

2M(T − ZZ ′)
1

2 . Again, setting ZZ ′ = T
1

2 ∆T
1

2 ,

we reduce (30) to the identity

|I −R||T | = |T ||I − ∆||I −M |, (31)

i.e., to the factorization of |I −R| to be

|I −R| = |I − ∆||I −M |. (32)

The matrix factorization corresponding to (32) is

T −B = T − ZZ ′ − L = (T − ZZ ′)
1

2 (I −M)(T − ZZ ′)
1

2 .

The next two factorizations of (32) are

|I −R| = Λ = |I − ∆||I −M11||I −M22 −M21(I −M11)
−1M12| = Λ1Λ2Λ3

and

|I −R| = Λ = |I − ∆||I −M22||I −M11 −M12(I −M22)
−1M21| = Λ1Λ4Λ5.

Obviously, from (31) and (20), it follows that the joint density of ∆ and M is

φ(∆,M) = K|I −M | 12 (n−p−1)|M | 12 (p2−p1−g−1)|I − ∆| 12 (n−p1−g−1)

·|∆| 12 (p1−g−1)
2F 1

(

1

2
n,

1

2
n,

1

2
(p2 − g); ρ(I − ∆)M

)

, (33)

where ∆ is g × g, M is p1 × p1, M11 is g × g and M22 is (p1 − g) × (p1 − g).

Kshirsagar (1971) shows that Λ1 is useful for testing the hypothesis that the first g
canonical correlation coefficients are zero. He terms Λ2 and Λ5 to be direction factors

and Λ3 and Λ4 to be collinearity factors.
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By using the known integral

∫

|M |a− 1

2
(p+1)|I −M |b− 1

2
(p+1)

2F 1(α, β; δ;MT )dM = Bp(a, b)3F 2(α, β, a; δ, a+ b;T ),

the marginal densities of ∆ and M can be derived from (33).

However, it appears difficult to derive the marginal densities of Λ2, Λ3, Λ4, Λ5.
The equivalence of the conditions F0P

′

12 = 0 and F0P
−1
22 P

′

12 = 0, can be seen by

choosing Σ to be of the form

Σ =





Ip1
ρ 0

ρ Ip1
0

0 0 Ip−2p1



 , where ρ = diag(ρ1, . . . , ρg, 0, . . . , 0).
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