ON A SUBRING OF PRIME RING WITH DERIVATION

CHEN-TE YEN

Abstract. Let R be a noncommutative prime ring of characteristic not 2, and let d be a nonzero derivation of R. We prove that the subring V of R generated by all $[d(x), y], x, y \in R$ contains a nonzero two-sided ideal of R.

I. Introduction

Throughout the note, R will represent an associative ring. An additive mapping d of R is called a derivation if $d(xy) = d(x)y + xd(y)$ holds for all x, y in R. Let R be a prime ring with center Z. We shall denote the commutator by $[x, y] = xy - yx$ for all x, y in R. Posner [2] proved the

Lemma 1[2]. Let R be a noncommutative prime ring, and let d be a nonzero derivation of R. Then the subring of R generated by all $[d(x), x], x \in R$ is not contained in Z.

Lemma 2[2]. Let R be a prime ring of characteristic not 2. If there exist derivations d and g of R such that gd is a derivation of R, then either $d = 0$ or $g = 0$.

Recently, M. Brešar and J. Vukman showed the

Theorem A[1]. Let R be a noncommutative prime ring of characteristic not 2, and let d be nonzero derivation of R. Then U, the subring of R generated by all $[d(x), x], x \in R$, contains a nonzero left ideal of R and a nonzero right ideal of R.

There is an open question [1]: is it possible to generalize Theorem A by proving that U contains a nonzero two-sided ideal? A linearization of this assumption gives
\[[d(x), y] + [d(y), x] \in U \] for all \(x, y \) in \(R \). In the note, we prove that this question is true under the stronger hypothesis \([d(x), y] \in U\) for all \(x, y \) in \(R \).

2. Result

Theorem. Let \(R \) be a noncommutative prime ring of characteristic not 2, and let \(d \) be a nonzero derivation of \(R \). Then \(V \), the subring of \(R \) generated by all \([d(x), y], x, y \in R\), contains a nonzero two-sided ideal of \(R \).

Proof. By the assumption, we get
\[[d(x), y] \in V \text{ for all } x, y \text{ in } R. \]
(1)
Replacing \(y \) by \(yz \) in (1), we have \([d(x), yz] \in V\) and so
\[[d(x), y]z + y[d(x), z] \in V \text{ for all } x, y, z \text{ in } R. \]
(2)
Then with \(y = v \in V \) and \(z = u \in V \) in (2) respectively, and using (1), and noting that \(V \) is a subring of \(R \), we obtain
\[[d(x), v]z \in V \text{ for all } x, z \in R \text{ and } v \in V. \]
(3)
and
\[y[d(x), u] \in V \text{ for all } x, y \in R \text{ and } u \in V. \]
(4)
Replacing \(y \) by \(yt \) in (2), we have \([d(x), yt]z + yt[d(x), z] \in V\) and so
\[[d(x), y]tz + y[d(x), t]z + yt[d(x), z] \in V \text{ for all } x, y, t, z \in R. \]
(5)
For all \(y, z, w \in R \), and \(u \in V \), by (3) and (4) we get \([d(w), u]z \in V \) and \(y[d(w), u] \in V \).
Replacing \(t \) by \([d(w), u] \) in (5), and applying these and (1), we obtain
\[y[d(x), [d(w), u]]z \in V \text{ for all } x, y, z, w \in R \text{ and } u \in V. \]
(6)
We suppose that the Theorem is not true. Thus \(V \) does not contain nonzero two-sided ideals of \(R \). Hence (6) implies
\[[d(x), [d(w), u]] = 0 \text{ for all } x, w \in R \text{ and } u \in V. \]
(7)
Assume that \(w \in R \) and \(u \in V \). Let \(g \) be the inner derivation defined by \(g(x) = [x, [d(w), u]] \), for all \(x \) in \(R \). Then using (7), we get \(gd(x) = 0 \). Thus \(gd = 0 \). By Lemma 2 and \(d \neq 0 \), this implies \(g = 0 \). Hence \([d(w), u] \in Z\). Applying this and (3), we have that \([d(w), u]R \) is an ideal of \(R \) and \([d(w), u]R \subseteq V \). Therefore, we obtain
\[[d(w), u] = 0 \text{ for all } w \in R \text{ and } u \in V. \]
(8)
Let \(h \) be the inner derivation defined by \(h(w) = [w, u] \) for all \(w \in R \). Then by (8), we get \(hd(w) = 0 \). Thus \(hd = 0 \). By Lemma 2 and \(d \neq 0 \), this implies \(h = 0 \). Hence \(u \in Z \). Thus, \(V \subseteq Z \) which contradicts Lemma 1. This completes the proof of the Theorem.
References

Department of Mathematics, Chung Yuan University, Chung Li, Taiwan, 320, Republic of China.