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SPECIAL RADICALS FOR NEAR-RING

GARY F. BIRKENMEIER, HENRY E. HEATHERLY AND ENOCH K. S. LEE

Abstract. The concept of a special radical for near-rings has been treated in
several nonequivalent, but related, ways in the recent literature. We use the version
due to K. Kaarli to establish that various prime radicals and the nil radical are
special radicals on the class A of all near-rings which satisfy an extended version
of the Andrunakievich Lemma. Since A includes all d.g. near-rings—and much
more-—these results significantly extend results previously obtained by Kaarli and
by Groenewald. We also obtain special radical results for the Jacobson type radicals
Jo and J;, albeit on less extensive classes. Examples are given which illustrate
and delimit the theory developed.

Introduction

Let p be a radical map (a Hoehnke radical) on the class Ry of all zero symmetric
left near-rings and let 7 be a nonempty subclass of Rg which is homomorphically closed
(ie.,if R € T and S is a homomorphic image of R, then S € T). Following Kaarli, [17],
we say p is a spectal T - radical if there exists a nonempty class C of prime near-rings
such that the following hold:

()ifReCnT and I <R, then I €C;

(2) f Re T and K < I < R,with I/K € C, then K < R and R/(K : I) € C;

(3) for each R € Ro, p(R) =nN{I: I < R,R/I € C}.

(Here X < A means X is an ideal of the near-ring A and (K : I) = {r € R: Ir C K}.
Recall that a radical map on Ry is a function p: Ry — R such that for each R € Ry:
(i) p(R) < R;(ii) p(R/p(R)) = 0; and (iii) #(p(R)) C p(4(R)), for each homomorphism 8
of R).

In this paper we show that many of the standard radicals for near-rings are special
A-radicals, where A is the subclass of Ry composed of all R such that each ideal of R is
an A-ideal. An ideal I of R is an A-ideal if for each ideal K of the near-ring I there is
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some n > 1, perhaps depending on K, such that ((K)g)"® C K. (Here (X)r is the ideal
of R generated by the nonempty set X. If no ambiguity will arise we drop the subscript).
The class A is wide and varied, including all d.g. near-rings and all near-rings which
are either nilpotent or strongly regular. These and many other examples and the basic
properties of near-rings in class A and A-ideals are given in [7].

For convenience of the reader we list below the radicals which will be encountered
in the sequel, together with a brief description of each.

Radical Description
J.(R),v=0,1,2 intersection of all v-primitive ideals
Bo(R) intersection of all prime ideals
Bs(R) intersection of all 3-prime ideals
¢(R) intersection of all completely prime ideals
N(R) sum of all nil ideals, or intersection of all s-prime ideals

The radicals Bg, N, and J,,, v = 0,1, 2, are well-known and are covered at length in
[20], [21]. For a thorough discussion of B3 and € see [4], [12] and [5], [11], respectively. (Be
advised that various other notations have been used for these two radicals. In particular,
in [4] and [5] we used Py and P, respectively.)

The condition of being a special Ro-radical is a stringent one. It is known that J,
is a special Ro-radical, [23]; however, Jo, 31, Bo, and 91 are not. That these four radicals
are not Rg-special radicals is implicit in the list of radical properties given in Kaarli’s
survey article, [17]. Kaarli, [16], has shown that Jo, Bo and I are special D-radicals,
where D is the class of all d.g. near-rings. Groenewald proved that B3 and € are special
D-radicals; see [12, Theorem 4.8] and [11, Theorem 4.3], respectively. In Theorems 2
and 6 we extend the results obtained by Kaarli on O and B, to the wider class 4; in
Theorems 3 and 4 we extend the results of Groenewald on B3 and € to 4. We also
give some special radical results for Jy and J;. (There are at least three nonequivalent
definitions of a special radical for near-rings: Kaarli, [17]; Booth and Groenewald, [8]; and
Veldsman, [23]. We use the version given by Kaarli. The other two are more restrictive
and imply Kaarli’s conditions.)

Throughout this paper R will be in Ro. If G is an R-module, then Anng(G) =
{re R:Gr=0}.

Main Results. We begin with a lemma which will be used frequently.
Lemma 1. Let I be an A-ideal of R.
(i) Each prime ideal of the near-ring I is an ideal of R.

(i) If h: R — S is a subjective near-ring homomorphism then h(I) is an A-ideal
of S.

Proof. (i) Let K be a prime ideal of the near-ring I. From this and ((K)g)" C K
we get (K)p =K.
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(ii) Consider the restriction of h to the near-ring I. Then any ideal of the near-ring h(J)
has the form h(X), where X is an ideal of the near-ring I. Since ((X)r)" C X, apply ~
in its unrestricted mode to this containment to obtain: ((h(X))s)™ C h(X). So h(X) is
an A-ideal of S.

Note. In part (i), semiprime can be used in place of prime. From (ii) we immedi-
ately have that the class A is homomorphically closed.

Theorem 2. By, is a special A-radical.

Proof. Let C be the class of all prime near-rings in Ro and let I be an ideal of
R e CnA. Consider X,Y < I such that XY = 0. Then there exist m,n such that :
({(X)r)™({(Y)R)" C XY = 0. Since R is prime we have (X)r = 0 or (Y))p = 0. So either
X =0 or Y = 0 and hence 0 is a prime ideal of the near-ring I; so I € C.

Next, take R € A and K < I < R with K # I, so that I/K € C. From Lemma 1
we have K < R; hence (K : I) < R. Consider A, B < R such that AB C (K : I). Then
IAB C K. Consequently, I - (INA)-(INB) CIAB C K. Since K is a proper prime
ideal of the near-ring I, this yields either TN A C K or IN B C K. If the former, then
TACINACK and hence A C (K : I). Similarly for 7N B C K. Hence (K : I) is a
prime ideal of R and R/(K : I) € C. The proof concludes by recalling that By (R) is the
intersection of all prime ideals contained in R.

Recall [12] that an ideal P of R is a 3-prime tdeal if whenever z,y € R such that
xRy C P, then z € P ory € P. Also, R is said to be a 3-prime near-ring if 0 is a
3-prime ideal of R.

Theorem 3. B3 s a special A-radical.

Proof. Let C be the class of all 3-prime near-rings in R, and let I be an ideal of
R e Cn A. Consider z,y € I such that zIy = 0. Suppose y # 0. Then for each u € I,
zuRy C xIRy C zIy = 0. Since 0 is a 3-prime ideal of R we have zu = 0. Thus 2/ =0
and hence zRI C zI = 0. Proceed similarly to obtain z = 0. So 0 is a 3-prime ideal of
I and hence I € C.

Next, take R € 4 and K < I < R, with K # I, so that I/K € C. Lemma 1 gives
K < R and hence (K : I) is an ideal of R. Consider a,b € R such that aRb C (K : I).
So IaRb C K and hence (Ia)Ib C K. If Ib ¢ K, then since K is a 3-prime ideal of I,
from (Ia)I(Ib) C Ialb C K, we obtain Ia C K. Hence a € (K : I). This establishes
that (K : I) is a 3-prime ideal of R and R/(K : I) € C. Conclude the proof by recalling
that B3(R) is the intersection of all 3-prime ideals of R, [4], [12].

Since prime is equivalent to 3-prime in the class of rings, and since there is some
confusion on the subject in the near-ring literature, it is worthwhile to point out that
the concepts are not equivalent in Ro. In fact Example 1.1 of [4] gives a d.g. near-ring
which is prime but not 3-prime.
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Theorem 4. ¢ is a special A-radical.

Proof. Let C be the class of all integral near-rings in Rg. Since for any R € C, if
I < R, then I is also integral, we have I € C. The rest of the proof is similar enough to
that of Theorem 3 to warrant leaving the details to the reader.

In [22] it is shown that 9(R) is the intersection of all s-prime ideals of R. Recall,
[22], that a subset S of R is called an s-system if S contains a multiplicative semigroup
S* such that for each s € S, we have (s)r N S* # 0; here 0 is defined to be an s-system
also. An ideal P of R is called an s-prime ideal if its complement in R, written R\ P, is
an s-system. An s-prime near-ring is one for which 0 is an s-prime ideal. Note every
s-prime ideal (near-ring) is a prime ideal (near-ring).

We say an ideal I of R is a nilprime ideal if I is a prime ideal and 9U(R/I) = 0. A
near-ring with 0 as a nilprime ideal is called a nilprime near-ring. In the next result
we establish that each s-prime ideal of a near-ring is a nilprime ideal and also that 91(R)
is equal to the intersection of all the nilprime ideals of R.

Lemma 5. Let S and N be the sets of all s-prime ideals and nilprime ideals
of R, respectively. Then S C N and NS = NN = N(R).

Proof. Let P be an s-prime ideal of R. Assume M(R/P) # 0 for purposes of
contradiction. Then there is an ideal Y of R such that P C Y and Y/P = M(R/P).
Let y € Y, y ¢ P. Since R\P is an s-system, there is a multiplicative semigroup S*
contained in R\P such that @ # S* N (y)r. So there exists some z € S* N (y) g and some
positive integer m such that 2™ € S* N P, a contradiction. Thus each s-prime ideal is a
nilprime ideal.

Next, take K to be a nilprime ideal of R and observe that: M(R)/K C M(R/K) = 0.
So 91(R) C K and hence 9(R) C N. But van der Walt has shown that 9(R) = NS. So
NS = N(R) CNN CNS.

Left open is the question whether every nilprime ideal is an s-prime ideal.

Theorem 6. N is a special A-radical.

Proof. Let C be the class of all nilprime near-rings in Rg. Take R € CN A
and I <« R. As in the proof of Theorem 2 we have I is a prime near-ring. Also,
NI CI(R) =0;s0] €C.

Next, take R € A, K < I < R, with I/K € C. Proceed as in the proof of Theorem
2 to get K and (K : I) are ideals of R and (K : I) is a prime ideal of K. Assume
MN(R/(K : I)) # 0; then there is an ideal X of R such that (K : I) C X and X/(K : 1)
is a nil ideal of R/(K : I). So K C InNX. Since IX ¢ K and hence IN X Z K, we
have K # INX. Ifz € IN X, then 2™ € (K : I), for some n, and hence Iz" C K. So
z"*! € K. This yields z+ K is a nilpotent element in R/K. Thus (/NX)/K is a nonzero
nil ideal of I/K; but M(I/K) = 0. Thus M(R/(K : I)) = 0 and hence R/(K : I) € C.
These remarks and Lemma 5 yield 91 is a special A-radical.
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Note. Kaarli [15] observed that the nil radical is equal to the intersection of all the
prime ideals P such that R/P is nil semisimple. He wrote that the proof is essentially
that given for rings by Divinsky; see [10, p.147]. This characterization of the nil radical
for near-rings can also be obtained using certain results from general radical theory. The
proof we have given above has the virture of being self contained within near-ring theory
and also relatively elementary.

Since J, is a special Rg-radical one might think that for any class 7 C Ry which
is homomorphically closed and for which Jo(R) = Jo(R) for each R € T, then it is
immediate that J, is a special 7-radical. However, difficulties arise in pursuing this line
of reasoning because there could be some R € 7 with an ideal I such that Jo(I) # Jo(I).
Another difficulty can occur if a O-primitive subideal of some R € 7T is not itself an ideal
of R. To circumvent these difficulties and obtain that J, or J; are special radicals on'
certain broad classes we introduce the following mechanism.

In the sequel we will use the following known result without further comment: if
m < n and G is an R-module of type n, then G is an R-module of type m. (See [20,p.50]).

Theorem 7. Let W be any nonempty, homomorphically closed subclass of
A. Assume that whenever R € W, then each R-module of type zero is also of
type 2. Then 3, and J; are special W-radicals.

Proof. Let m = 0 or 1. Let C be the class of all m-primitive near-rings in Ry.
Consider R € CNW and I < R. So R must be 2-primitive. Recall [21, 4.49 Theorem)]
that each ideal of a 2-primitive near-ring is itself a 2-primitive near-ring. So I € C.

Next, take R€ W, K < I < R, with k # I and I/K € C. Since K is a O-primitive
ideal of I it is a prime ideal of I. Using this and R € A, with Lemma 1 we have that
K <t R and then (K :I) <« R. There is a type 0 I-module T such that Ann;(T) = K,
(20, Lemma 5.3]. Since T is a monogenic I-module, there exists ¢ € T such that tI = T.
SoTR=tIRCtI=Tand T =tI CtR C T, yielding that T is a monogenic R-module.
Since T contains no nonzero proper I-ideals, it cannot contain any nonzero proper R-
ideals. Thus 7T is a type 0 R-module and hence T is a type 2 R-module. A routine
calculation shows that (K : I) =Anng(T). So (K : I) is a m-primitive ideal of R and
hence R/(K : I) € C. The proof concludes by recalling that J,,(R) is the intersection of
all m-primitive ideals of R, [20, pp.84-85].

At this point we introduce some terminology.

Let K,S,T and X be subsets of R, with K,7T and X nonempty.

(i) We say K is (S, T)-distributive if s(ky + ko)t = skyt + skot, for each k1, ks € K, 5 € S,
and t € T. (If S is empty, then delete the corresponding factors in the above equation).
(ii) We say K is (5,7T)-d.g. on X if K is (S, X)-distributive and T is contained in the
subgroup of R generated by X.

If the set X plays no direct role in a discussion or if it is clear from the context what
X is, we often just say “K is (S,T)-d.g.” for convenience.

These two concepts were first introduced in [2] and generically are called “localized
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distributivity conditions”. (See [13] for a survey on this topic). Observe that R is a
distributive near-ring if and only if R is (@, R)-distributive. Furthermore, R is d.g. if and
only if R is (#, R)-d.g. on the set of distributive elements of R.

Corollary 8. Let £ be the class of all near-rings R such that for some h >0,
m >0, then R" is (R™, R)-distributive. Then J, and J; are special L-radicals.

Proof. In [14, Proposition 4] it is shown that if R"M is (R™, R)-distributive, then
each R-module of type 0 is of type 2. In [3, Proposition 1.12] it is shown that such an R
is an A-near-ring. Thus £ is a class as described in Theorem 7 and hence J, and J, are
special L-radicals.

It is known in the near-ring folklore that J, is not a special D-radical. Since, to our
knowledge, this fact is not yet in the literature, we make it manifest with the following
example.

Example 9. Let R = I(Ay), the near-ring generated by the inner automorphisms
on the alternating group on nine symbols, Ag. For each z € R define o, via: (y)a, = zoy,
for each y € R. (Here the operation “o” is composition of functions.) Let T' be the near-
ring generated by {a, : z € R}.

For basic facts about this near-ring see [19]. [1, Example 2], [21, p.429, no.65],
[4, Example 1.1]. It is known that T is a d.g. near-ring with unity, O-primitive, with
3:1(T) # 0. So T contains a miminal ideal I such that I # 0 and I C J;(T). From
[18, Corollary 6] and [15, Theorem 5], we have that I is a 1-primitive near-ring. The
assumption that J; is a special D-radical leads to a contradiction, for if this were so,
then J,(I) = INJ(T). However, 0 = J;(I) and INJ,(T) = I.

Although this example slams shut the door to getting that J; is a special D-radical,
the next result shows some progress in that direction can be made.

Corollary 10. Let U be the class of all near-rings R such that for some m > 0,
then R is (R™,R)-d.g. and for each ideal I of R there exists n > 0 such that I is
(I",I)-d.g.. Then J) is a special U-radical.

Proof. In [14, Proposition 9] it is shown that if R is (R™, R)-d.g., then each R-
module of type 1 is of type 2. In [7, Corollary 3.8] it is shown that such an R is an
A-near-ring. Using these facts, the remainder of the proof is similar to the proof of
Theorem 7.

We next list some examples, or construction schemes to produce examples, of near-
rings which satisfy the hypothesis of Corollary 10, but not necessarily that of Corollary
8.

Example Schemes 11. (i) Let R = A® B, where A is a simple d.g. near-ring
and B is a distributive near-ring. In particular, take A = E(G), where G is a finite
simple nonabelian group, and B is one of the examples given in [9, Section 26].



SPECIAL RADICALS FOR NEAR-RINGS 287

(ii) Let R be a d.g. near-ring which is not distributive, yet all of its proper ideals are d.g.
themselves. In particular, if every proper ideal is either square zero or a ring, then this
holds. Two concrete examples are number 36 on the group S3 and number 139 on the
group Dg in the appendix of 21, pp.411 and 418]. The latter is of interest because it is a
d.g. near-ring with unity; it has three proper, nonzero ideals: two of them are rings and
the other one is square zero.

Corollary 12.
(i) If p is any one of Bo, B3, ¢, or N then p(I) = INp(R), for each R € A and
each I < R.
(i) If R€ £ and I < R, then Jo(I) = I N 3o(R).
(iii) If Re€ LNU and I < R, then 3,(I) = I N3 (R).

Proof. For each part we make use of the following result due to Kaarli [17]: if
p is a special T-radical and R € 7T, then p(I) = I N p(R), for each I << R. Then (i)
follows from Theorems 2, 3, 4, and 6; (ii) follows form Corollary 8; and (iii) follows from
Corollaries 8 and 9.

Immediately form Corollary 12 together with Lemma 5 we have the following char-
acterization of near-rings which are ideals of nil semisimple near-rings.

Corollary 13. If (R) = 0 then R is a subdirect product of nilprime near-
rings. If R € A, then each ideal of R is a subdirect product of nilprime near-rings.

In this sense nilprime near-rings can be considered to be basic building blocks for
structure in Ry.

If p is a Hoehnke radical on Rg, but is not a special Ro-radical, an interesting
problem is to find the largest class 7 for which p is a special 7-radical. One would
like 7" to contain D. We leave unresolved the question of whether or not J, is a special
A-radical.

References

[1] J. C. Beidleman, “On the theory of radicals in d.g. near-rings II. The nil radical,” Math. Ann., 173
(1967), 200-218.

[2] G. Birkenmeier and H. Heatherly, “Permutation identity near-rings and localized distributivity
conditions,” Monatsh. Math., 111 (1991), 265-285.

[3] G. Birkenmeier and H. Heatherly, “Minimal ideals in near-rings and localized distributivity condi-
tions,” J. Austral. Math. Soc. (Ser. A), 54 (1993), 156-168.

[4] G. Birkenmeier, H. Heatherly, and E. Lee, “Prime ideals in near-rings,” Results Math., 24 (1993),
27-48.

[5] G. Birkenmeier, H. Heatherly, and E. Lee, “Prime ideals and prime radicals in near-rings,” Monatsh.
Math., 117 (1994), 179-197.

[6] G. Birkenmeier, H. Heatherly, and E. Lee, “Completely prime ideals and radicals in near-rings,”
in: Near-Rings and Near-Fields, Y. Fong et al. (eds.), Kluwer, Netherlands, 1995, pp.63-73.



288

(7]

GARY F. BIRKENMEIER, HENRY E. HEATHERLY AND K. S. LEE

G. Birkenmeier, H. Heatherly, and E. Lee, “An Andrunakievich lemma for near-rings,” Comm.
Algebra, 23(8)(1995), 2825-2850.

G. L. Booth and N. J. Groenewald, “Special radicals in near-rings,” Math. Japonica, 37 (1992),
701-706.

J. R. Clay, Near rings, Geneses and Applications (Oxford Univ. Press, Oxford, 1992).

N. Divinsky, Rings and Radicals (Univ. Toronto Press, Ontario, 1965).

N. J. Groenewald, “The completely prime radical in near-rings,” Acta Math. Hungar., 51 (1988),
301-305. '

N. J. Groenewald, “Different prime ideals in near-rings,” Comm. Algebra, 19 (1991), 2667-2675.
H. Heatherly, “Localized distributivity conditions,” in: Near-Rings and Near-Fields, Y. Fong et al.
(eds.), Kluwer, Netherlands, 1995, pp. 13-29.

H. Heatherly and E. Lee, “Primitivity in near-rings with localized distributivity conditions,”
Quaest. Math., (to appear).

| K. Kaarli, “Minimal ideals in near-rings (in Russian),” Tartu Riikl. Ul. Toimetised, 366 (1975),

105-142.

K. Kaarli, “Special radicals of near-rings (in Russian),” Tartu Riikl. UL Toimetised, 610 (1982),
53-68.

K. Kaarli, “Survey on the radical theory of near-rings,” in: Contributions to General Algebra 4
(Teubner, Stuttgart, 1987), 45-62.

K. Kaarli, “On minimal ideals of distributively generated near-rings,” in: Contributions to General
Algebra 7 (Teubner, Stuttgart, 1991), 201-204.

R. R. Laxton, “Prime ideals and the ideal-radical of a distributively generated near-ring,” Math.
Z., 83(1964), 8-17.

J. D. P. Meldrum, Near-rings and their links with groups (Research Notes in Math. 134, Pitman,
Boston, 1985).

G. Pilz, Near-Rings, rev. ed. (North-Holland, Amsterdam, 1983).

A.P. J. van der Walt, “Prime ideals and nil radicals in near-rings,” Arch. Math., 15 (1964), 408-414.
S. Veldsman, “Special radicals and matrix near-rings,” J. Austral. Math. Soc. (Ser. A), 52 (1992),
356-367.

Department of Mathematics, University of Southwestern Louisiana, Lafayette, LA 70504, U.S.A.



