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ON THE DIRECT PROBLEM AND SCATTERING DATA
FOR A SINGULAR SYSTEM OF DIFFERENTIAL
EQUATIONS WITH DISCONTINUOUS COEFFICIENTS

A. A. DARWISH

Abstract. A system of Sturm-Liouville differential equations of order n with a
density matrix function is considered. The direct problem of the considered system
is studied and hence the scattering data of the problem is obtained.

Introduction

We consider the system of Sturm-Liouville differential equations of order n
—y" +Qz)y = Ap(z)y, (0<z<00)

and the boundary condition
y'(0) =0,

ey

(2)

where Q(z) is a self-adjoint matrix function of order n with real elements defined and

continuous on [0, 00).
The condition

/ " 21Q@)lldz < oo

is assumed to hold throughout in this paper.
Also, the matrix function p(z) has the form

o) = a2, ap_1 <z <aq
E‘ny an S z < 0.
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where o, - 0,00 = 0,0 # apy1,m = 1,...,m —1,a,, # 1 and a, are the diagonal
elements of a matrix of order n x n such that they do not coinside with the identity
matrix F,.

Denote by W, and L(0, 00 : p(z)) to the set of the matrix functions p(z) and the
set of all vector functios
f(z) = {fi(x), fa(z), ..., fn(z)} with elements in Lo(0, c0) respectivey.

In L5(0, 00; p(z)) we introduce the scalar product (f.g.)— fooo Z?—;; fi(2)g;(z)dz and
consider that (1)-(2) arising in L5(0, 00; p(z)).

The problem (1)-(2) was investigated earlier in the scalar form in the papers [1.8]
when p(z) = E,, and for the case n = 1 this problem has been discussed in the works
[2,4,5,7]. So this paper is aimed to extend those previous results.

It is well known [4] that the collection of quantities {S(k), —72, M,, n = 1,...,m}
is called the scattering data of the system (1)-(2), where S(k) is the scattering matrix
function and M, are nonnegative matrices of order n whose ranks coincide with the
multiplicity of the eigenvalues —72 of the problem (1)-(2).

This article is aimed to study the direct problem and hence to obtain the scattering
data of the problem (1)-(2).

0. Notation

Throughout this paper we use the following notation:
—E,, is the unit matrix in n-dimensional Euclidean space.
—F denotes the transposed matrix of F.
—F™ is the adjoin matrix of F.
—F" denotes the differentiation with respect to .
—[|Q|| is the eculidcean cnorm of Q.

1. Solutions for the system (1) and its scattering function

We shall mainly use the basic solutions that have been in [8,9].
Every n vector solution Y (z,A) of (1) can be written in the form of quadratic matrix of
order n which satisfies the equation

YY"+ Q(z)Y = Ap(2)Y,0< z < 00 (5)

It is evident that the columns of any matrix solution of equation (5) are solutions of
equation (1). Thus, we consider the matrix differential equation (5) with the boundary

condition
Y'(0)=0 (6)

instead of (1)-(2).
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Denote by
k=A"?=p+irand 0<argk <7

and o(z) = [7|Q()ldt; 01(2) = [ t]|Q(®)lldt.

Let us denote by ¢, (z, k) and ¥, (z, k) the matrix solutions of the canonical equation
(5) as = € [an—1,an)-
These solutions satisfy the following conditions

(Pn(an—lyk) = 0» ¢n(an—17 k) = En
(P;.L(O,n__l, k) = ETL> T/};(an—lak) =0

As already known [1,4], these solutions can be represented in the form

(7

p(z, k) = coskan(z — an) + / Ay (z,t) coskan(t — an)dt,

i n — Gn . £ i k n t_ n _
— n(z k) = imﬁ._ﬁff.._a_)anl + / Bn(x,t)w%ldt;
k a1 k
where
1 2z—aln—1 a
Anfe,0) =3 [ i G A im0
and

1 2z—Qn—1
Bu(z,@) = 5/ gO)dt  Bu(2T — an-1,an1) = 0;
An—1

Lemma 1. If the condition (3) is satisfied, then for x > an and 7 > 0
equation (1) has a solution F(z,k) that can be represented in the form

F(z,k) = exp(ikz)E, +/ K(z,t) exp(ikt)dt,

where the kernel K (z,t) satisfies the inequality | K (z,t)|| < $o(*52) exp(o1(z)) and
the condition K(z,z) =1 [* dt.

Moreover, if q(x) is differential, then K(z,t) is twice differentiable and sat-
1sfies both equation 62;%” - 8225"’;’0 = q(z)K(z,t)

and the condition lim, 4,0 Q—k—é—%ﬂ = limg4too ?ﬁ%ﬂ_ﬁﬁ = 0.

The solution F(z,k) is an analytic function of k in the upper half plane 7 < 0 and
is continuous on the real line. This solution has the following asymptotic behaviour

F(z, k) = exp(ikz)[E, + 0(1)], Fi(z,k) = (ik) exp(izk)[E, + o(1)]
asz—ooforall >0, k#0

Also, F(x,k) = explike) [En + 0(%)]  FL(@,K) = (ik) exp(izk) [ B + 0(71—)]

as |k| — oo and for all 7 > 0.
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Next, if we continue the solution F(z, k) of the equation (1) [an—1,a,) thus we find
the following asymptotic form

F(z, k)
_ [ exp(ikay)[coskan(z — ay) + = sink,, (2 — an)] [Bn + O(3)]  san1 <7 <an
" | exp(ikz)[En + O(£] n < T < 00

First we introduce the concept of the Wronskian of a pair of solutions of the system (1).
Denote by W{pn,%n] to the Wronskian of two matrix solutions ¢n(z, k) and ¥, (z, k)
such that

W[‘Pny wn} = Pnlz, k)'l/);l(.’t, k) — ‘/3;1(3"’ k)tpn (zk).

The following property can be easily shown.

Lemma 2. The Wronskian of two matriz solutions of (1) does not depends

on .

Nezt since the matriz solutions F(z,k) and F(z,—k) are linearly independent
as T = 0. Thus, we have pn(z,k) = F(z,k)ci (k) + F(z, —k)co(k), where ¢, (k) and
co(k) are matrices of order n, which we have to find. For this purpose, we have

F'(an-1,k)c1(k) + Flan—1,—k)ca(k) = E,

and
F'(an—1,k)c1(k) + F'(an-1. — k)ca (k) = 0.

Multiplying the first equality from the left by F’(an—-1,—k) and then the second
equality by F(an—1,—k). As aresult we have ¢; (k)= — 5z F"(an—1, k). Similarly c;(k)=

mF’(an_l,k). Thus

on(z, k) = [F( ~k)F'(an-1,k) = F(z,k)F' (a1, —k)].

Since ¢!, (an—1, k) = 0, it yields
F'(an—1,—k)F'(an_1,k) = F'(an_1,k)F'(an_1. — k).

Let det F'(an—1,k) = 0 as 7 = 0,k # 0 thus we find a vector ¥ # 0 such that
F'(ap-1,k)7 =0 and 7* F* (an_1, k) = 0.
Evidently,

F*(z,k)F'(z,k) — F* (z,k)F(z, k) = %kE,.

Multiplying this equality from the left by ™ and the right by ¥ to have

F*[F*(z,k)F' (2, k) — F* (2, k)F(z, k)]7 = 0" 2k En v
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Setting z = a,,—1 to get "0 = 0. Then, if F'(an—1,%&)¥ = 0 we find ¥ = 0 which lead to
a contradiction.
Thus for all £ > a,_; and 7 = 0, k # 0 the matrix function F'(z, k) is non singular.

Hence 1 i
(2, k) = o [F(z, k) - F(a, k)S(k)F' (an-1, k).

where S(k) = F'(an_1,—k)[F'(an—1,k)] ™" is called scattering matrix of the equation (5)
with the initial conditions (7).

Hence:
Theorem 1. The identity

2ikpn(z, k)

Flana h) = F(z,—k) — S(k)F(z,k) (12)
s valid for all real k # 0.
where ) )
S(k) = F'(an-1, =k)[F'(an-1, k)] (13)

The scattering matriz S(k) satisfies the following properties:

(i) S(k)S*(k) = 5*(k)S(k) = En,

(i) S(—k) = S*(k). Here, taking into account formulas (8), (9), (10) and (11) to
prove that:

Theorem 2. For large real k, |k| — oo the following asymptotic form holds
1
S(k) = So(k) +0(3), (14)

where

So(k) =exp(—2ikay)[sin ko, (an — @n-1) + ia; ! coskan(an — an_1)]

[sin kan(an — an—1) — ia;t coskan(an — an-1)] + O(%) (15)

2. The discrete spectrum and Parsevals equation

We consider the singular boundary value problem arising from the canonical equation
(5) with the conditions (3), (4) and (6).

Theorem 2. The necessary and sufficient conditions that A # 0 be an
eigenvalue of the problem (5)-(6) are A = k*,7 = 0,det F'(an—1,k) # 0.
They are countable in number and its limit points can lie on the real axis.
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This theorem can be proved via [1,5]

Theorem 3. All the singular points of the matriz [F'(an—1,k)]"" are all
simple.

Proof. By differentiating the equation
—F"(z,k) + q(z)F(z,k) = k' p(z)F(z, k) (16)
with respect to k, and go over the hermitian conjugates of the matrices, we have
—[F*(z, k)" + q(z)F*(z,k) = 2kp(x)F*(z,k) + k> F(z, k) (17)

We multiply (16) on the left by F*(z, k) and (17) on the right by F(z, k) and subtract

to have
F*(z,k)F"(z,k) — [F*(z,k))"F(z,k) = —2kF*(z,k)F(z, k)

. Since the elements of F(z,k) and F(z,k), F'(z,k) lie in L2(0, oo, p(x)) thus it yields
F*(z,k)F'(z,k) — [F*(z, k)] F(z,k) = Zk/ F*(t,k)p(t)F(t, k)dt (18)
1

Suppose that the point ko = i,,,7 = 0 is a zero of det F'(an-1,k0) = 0. Then there
exists a non zero vector ¥ such that

F'an_1, k)7 =0 (19)

Multiplying (18) on the right by ¥ and on the left by ¥* and letting = goes to a,_;, we
get

FF*(an—lyk)Fl(an—la k)ﬁ——- W[F*(an—lak)]’F(an—la k)U
—2k / T E (4, k)p" () F(t, k)ddt, (20)

n~—1

From the behaviour of F(z,k); F*(z,k) and using Mean Value theorem to have
oo
T (an—1, k) TF (an-1,k)T = ~—2k/ F*(t, k)0 Ip*(t)F (¢, k)vdi #£ 0 (21)
An 1
Suppose that ¥ not only (19) but also the relation have

F'(an_l,ko)zﬁ+F’(an_l,ko)ﬁ: 0 (22)

Here, along the hermitian conjugate and multiplying on the right by
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IF'(an—1,ko)U, we have

B [F* (an—1, k) IF (an—1, k)0 [F*(an-1, k)] TF(an-1,k)7 =0 (23)
In view of [1] and the Wronskian of F(z,k); F*(z, k) to have

[F*(an_1,k) IF(an-1,k) == [F*(an-1, k)] TF'(an-1,k) =0

Then by (19) we have
’U-j* {Fl (an._l, k)]'IF'(an_l , k)’[f =0

Therefore (23) takes the form
T [F*(an-1,k)) TF'(an-1,k)T =0

which contradicts (21). Hence it follows from equations (19) and (22) that ¥ = 0 and
this complete the proof of the theorem.

Lemma 3. When 7 > 0, the matriz function

Ri(s,1) = F(z,k)F' N an-1,k)Ign(t,k), t<z
RO onla, DI an_1, E)F(t, k), t>z

is the kernel resolvent of the problem (5)-(6)

(24)

Proof. We can find Green functions of the problem (5)-(6) by using the method
of variation of parameters and thus the resolvent on the form (24).

Lemma 4. Suppose that the vector function f(t) is finite and has a contin-
uwous derivative Lo(0,00;p(z)) and satz'sﬁes the boundary condition (6). Then

/ Rk z,t)g(t)dt.

L/ Ry t)p(t)f(t)dt =

where
g(t) = =f"() + Q) f(t)

Moreover, if 7 > 0 and |k| = oo, then

/ Rela, 000 f 0t = T 4 0 (25)

Proof. Using formula (24) to get

[ee]

Ry (x, t)p(t) f(t)dt

=F'"an 1, W){F(z. k)] / S T;;IW”(tak) + %QUW('@ RHOLY

Gn—1

+ (@, k) / T WF"(;E K+ LowFa, B} st}
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Integrating this identity by parts, and taking into account Riemman Lebsegue theorem
it yields that f Ri(z,t)g(t)dt = o(1). Hence (25) follows directly.
The followmg lemma is well known:

Lemma 5. sz = Rj-2
With the help of these lemmas we can prove the following theorem:

Theorem 4. The following Parsevals equation is valid:

m/ u(z, k)u*(t, k)dk + ZU(SII i, T)ut(t, i) = 6(z — )p () E,, (26)

n=1
where
u(z, k) = Flz,~k) - S(k)F(z,k)
and
u(z,i,,) = MpF(z,i,,),m=1,...,m
such that My, M, ..., M, are non negative matrices.

Proof. Suppose that f(z) satisfies the conditions of lemma 4. Thus (25) holds.
Integrating both sides of (25) with respect to k over the semi-circle {k;|k| = r,r > 0}
in the uper-half plane k. It is evident that the integral f::_l Ry (z,t)p(t) f(t)dt is an
analytical function except the zeros {is,,4ry,...,%r, } Of the det F'(an—1,k).

Hence, upon using [3] we find that

f@) = / / [Resio (@, k) — Re_so(@, k)]p() f(£)didk

n ZRes 2% / Rie. £)p(t) £ (8)dtlo—s,. (27)

Next, let us compute the first quantity in the right - hand side of equation (27). By
lemma 5 it yields that Rg_;o = Rr.rs0. Then, we can compute Rytio and thus Ry_;o at
once. Therefore, using (24) to obtain

on(x, k)2ikpl (1, -—k)'

Rppio(z,t) — Rp—io(z, t) =

W(k)W=*(—k)
where W (k) = detF'(an—1.k)
Thus, taking into account (12) to have
u(z, k)u*(t, -k
Ryyio(z,t) = Re—io(,t) = ““("“j)_“é“;%““)

where
_ 2ikpn(z, k) _



ON THE DIRECT PROBLEM AND SCATTERING DATA 297

Hence
?i? T k[ Revio(e.k) = Rucale Do) f(t)dtdk
o wd’“ / OO u(e, K)u(t, ~k)p(t) (). 28)

Now we compute the second quantity on the right-hand side of (27).
From (24) we have

Resp—;, [k /00 Ry (z,t)p(t) f(t)dt]

=2 (Ploir ) Pal | 606 )OS Ot + o(a1r,) [T i )p0F (] (29

Gn-1

where P, is the residue of F'~1(a,_1,k) at k =i, .
Since F'(an-1, k) is analytical function as 7 > 0 and F'~(a,_1, k) has a simple pole
at i, , then the following relation is valied

F'(an-1,k) = F'(an-1,ir,) + F'(an—1,ir, )k =i, ) + - -

and
P,

F{_)+Pr(10)+"' (30)

F'Yan_1,k) =
From (30) and the relation
F'"Yap—1,k)F'Yap_1,k) = F'"Yan_1,k)F'""Y(an-1,k) = By,
it yields that

F'(an-1,k)P,

E, = PR n +F,(an_1’k)P"+F’(Cln__1,k)P(0)+--~

n

Hence

F'(ap—1,k)Py, = P,F'(an_1,k) = 0 and
F'(an—1,k)Pn+ F'(an-1, k)P = P,F'(an_1,k) + POF' (an_1,k) = E, (31)

Let H, be the operator of orthogonal projection onto P,. It is easily shown that [3] the
ranks of H, and P, are the same and that H,P; = P,. From (18), we have

F*(x,ir, ) F'(2,ir,) — [F*(2,i,,)] F(2,ir,) = -2k / T E i e F (i )t
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Thus, we have for x = a,—1 that

F*(an—lyirn)Fl(an—lairn) - [F*(an.——l,i‘rn)]’F(an~17i7n)
oo
— 2, / F* (1,2 ) p(t) F(t, ir, )dt = —2ir, An. (32)

Clearly, A, is a positive definite matrix multiplying equation (32) on the left by P; and
on the right by H, and taking into account that

F'(an—1,ir,)Hn = 0 to have PIF*(an_1,ir, ) [F(an—1,ir,)Hn = 2ir, Py AnH,  (33)

Since the matrix function F(z,4,, )H, and ¢(z,i,,) are the solutions of the same equa-

tion, thus we have
F(z,i. )H, = o(x,ir, ) Fan-1,ir, ) Hn. (34)

It follows from (31) and (33) that

P F* (an_1,ir ) [F(an_1,ir, )Hn
=[E, — PXOF (an_1,ir, )~ Fan—1,ir,) Hn
=F(an_1,ir,)Hn = PrOF* (ap_1,ir, ) F(an—1,ir,)Hn = F(an-1,i;)Hn.

Therefore, equation (33) takes the form
Fan_1,ir,)Hn = 2i,, P* A H,
Now, from (34) we have

Flz,iy VH, = o(z,ir, ) Flan—1,i-, ) H)n
=2, p(x,i; \PrAH, = 2ir @(z,ir, ) [ Pi|HyAyHy + En — Hy)
=2i, o(z, i, )IP;D)n, (35)

where
D, =H,A,H,+E, - H,.

Evidently, D, H,, = H,D, and D, is a positive definite matrix. Thus, there exists the
matrix M2 = H,D;! = D' H, is nonnegative and its rank is the same rank of Hy, i.e.
the multiplicity of the zeros of deal F'(an—1,k).

Multiplying both sides of (35) on the left by D;' to have F(z,i,, ) M2 = 2i,,
o(z,i,, )Pr. We multiply both sides of this formula on the right by F(t,i,,) to give
%, p(z,ir, ) IP F(t,ir ) = F(z,ir,)M2F*(t,i,,). Thus, it follows from (29) that

Resis, [2k / oo Re(z,)p(8) f(8)dt] = F(w, iy, ) M2 / T P e (0 (36)
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Hence, by (28) and (36) we conclude that

5@ = [k [ utw bt —Rp0f O+ Fla,in )32 [ F i o050t

n—1 QAn—1

Then, multiplying both sides of the last formula by f(z)p(zr) and integrating from a,_;
to oo to obtain Parsevals equation (26) and the theorem is proved.

We claim that the collection of quantities {S(k),i.,, Mp, n=1,...,m} is called the
scattering data of the problem (1)-(2).

Note. In the forthcoming article I plan to study the inverse scattering problem of
the problem (1)-(2).
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