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ON A CLASS OF POLYA PROPERTY PRESERVING OPERATORS

CHIU-CHENG CHANG

Abstract. In this paper, we show that every continuous linear operator from
H(Qw % §2) to H(Qy X Q¢ ) has an integral representation with a kernel function
M(z,w,(). We give two sufficient conditions on M(z,w,() to ensure that its
corresponding operator preserves Pélya property. We also prove that a continuous
linear operator from H (S x 2. ) to H (S X (1¢) either preserves the Polya property
for all functions with that property or does not preserve the Pdlya property for
any function.

Introduction

Let €2, and €2, be simply connected domains in C. Let m(w, z) be holomorphic on
0y x ;. Then m is said to have the Pélya property with respect to z on €2, if and only
if for all simple closed contours I' C €., if f is analytic on I and if [. m(w, z) f(z)dz = 0,
then f has an analytic continuation to the Jordan region enclosed by I'. An equivalent
definition for m to have the Pdlya property with respect to z on ), is that for all
simple closed contours I' C ., if F' is analytic outside and on I" with F(co) = 0 and if
Jpm(w,2)F(z) =0, then F = 0.

In [4], Chang introduces the concept of Pélya property for holomorphic functions of
two variables to study the uniqueness problem for entire functions of exponential type.
Using functions which have the Pélya property, he obtains stronger and more general
results on the uniqueness problem than those of Gelfond [10], Buck [3] and DeMar [7,8,9].
In [5], Chang further utilizes functions which have the Pélya property as generating kernel
in formal generating relations to obtain the necessary and sufficient condition for an entire
function to have a unique expansion in a series of various polynomials such as Appell
polynomials, Boas and Buck polynomials, generalized Appell polynomials, generalized
Sheffer polynomials etc. His approach not only produces known results in stronger form
and gives precise conditions on the growth of the coefficients but also provides new insight
into the problem of finding causes of multiple expansions of entire functions.
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In [6], Chang proves a theorem which shows that the uniqueness problem for entire
functions of exponential type is equivalent to the approximation problem for analytic
functions. Thus to each function which has the Pélya property there corresponds an
approximation theorem for analytic functions and conversely. It has thus been shown
that holomorphic functions which have the Pélya property are closely related to (1)
uniqueness problem for entire functions of exponential type, (2) unique expansion of
entire functions and (3) the approximations to analytic functions. Clearly, there is a
need to find new functions which have the Pélya property.

It would be nice if one could give a simple test in terms of analytic properties to
apply to a holomorphic function of two variables to determine whether or not it has the
Pélya property on a given domain. Since there is not such a test and we are able to show
that few functions have the Pélya property is to find operators which map functions
known to have the Pdlya property to new functions with the Pdlya property.

K&the [11] shows that every continuous linear operator T': H () — H (Q,) has an
integral representation T'(f)(z) = 5 [ f(M)M(n, z)dn. In this paper, we first imitate
Kothe’s proof to extend his result to continuous linear operators T : H(Qy x Q) =
H(, x Q). We then show that every continuous linear operator from H({, x ;) to
H(, x Q¢) has an integral representation with a kernel function M (z,w,(). We give
two sufficient conditions on M (z,w, () so that its corresponding operator maps functions
with the Pélya property on {1, to functions with the Pdlya property on {l¢. We call these
operators Pélya property preserving and prove that T': H (2, x2;) = H (€ X Q) either
preserves the Pélya property for all functions with that property or does not preserve
the Pélya property for any function. Finally, we illustrate the application of the result

by an example.

The space H({, x Q).

Let €, and €, be simply connected domains in the complex plane. Let H (0 x £2)
denote the space of all functions holomorphic on €, x .. Then H(, x ;) is a
complex linear space. Let Q1 C Q2 C --+ C Quwn C --- be a sequence of simply
connected subdomains of ly, and Q,1 C Q.2 C -+ C £, C - be another sequence
of simply connected subdomains of €}, such that these two sequences have the following
properties: (1) Qun C Qy(nt1) and Qn CQyng) forn =1,2,...(2) each Qun and each
., is bounded by a simple closed contour I'yp and I'zp respectively (3) U;’ozl Qun =
Qu,Ure; Qzn = Q. and Ui (Qwn X Qzn) = Qo x . Let Dy = Qun X Q,p for n =
1,2.... Define a sequence of norms || || for H(Qy, % 02) by || flln = sup, )b, |f(w, 2)].
Then H (£, x 2.) becomes a locally convex space if we define the topology 7 on H (X
Q.) with ||fll. <&, n=1,2,... and € > 0 arbitrary, as the base of neighborhoods of 0.
Since H(Q,, x 2.) has a countable base of neighborhoods of 0, H(Qly x §2;) is metrizable

[12, p.163]. Let f(w,z) be holomorphic on Ny % Q.. Then we have, by the Cauchy
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integral formula for one variable, that

flw.2) = mw/m/ e w(C—z) dndt

where I',, and T'¢ are the boundaries of Qun and €., respectively for some n. It follows
immediately from this Cauchy integral formula for product domains that Weierstrass’
theorem holds for holomorphic functions of two variables on product domains. We con-
clude that H (), x Q) is complete and hence a Fréchet space.

The space B(D, x D.) and LH(D, x D)

Let D, and D, be Jordan domains in the complex plane. Let B (D, x D) denote
the space of all functions which are holomorphic on Dy X D and continuous on Dy, x D .
Then B(D.,, x D) is a Banach space with norm || || defined by || f|| = sup(y,.)er [f(w, 2)]|
where E = Dy, x D.. If f(w,z) is a function holomorphic on an open set containing
Dy x D, then f is said to be locally holomorphic on Dw x D,. Two such functions
f,g are said to be equivalent if there is an open set D containing D, x D, such that
f =g on D. We call a class of functions equivalent to f a locally holomorphic function
on D, x D, and denote by [f] the equivalence class to which f belongs. For convenience
we may sometimes simply write f instead of [f]. We let LH (Dy % D) denote the space
of all equivalence classes of functions locally holomorphic on D, xD,.

Theorem 1. Let D, and D, be Jordan domains. Then LH(D, x D.) is
dense in B(Dy x D).

Proof. We first suppose that D,, and D, are the unit disks. Let f(w,z) be in
B(D,, x D) Let {t,} be a sequence in (0,1) with t, — 1 as n — oo. Define a sequence
{fa} of functions in LH (D, x D) as follows: fn(w,z) = f(taw,tnz). Then frn converges
to f in the norm of B(ﬁw X EZ). Now suppose that Dy, and D, are Jordan domains.
Let U, = {n € C | |n| < 1} and U¢ = {¢ € C | [¢| < 1}. Let ¢, be a conformal
mapping from D,, onto U, and ¢, another conformal mapping from D, onto UC Since
D,, and D, are Jordan domains, we can extend ¢, to a homeomorphism form D, onto
U and ¢, to a homeomorphism from D, onto U ¢ Let ¥, be the inverse of ¢ and ¥,
the inverse of ¢o. Let f(w,z) € B(Dy x D). Then f(¥1(n), ¥2(()) € B(U, x Uy).
Let {t,} be as in the above. Define a sequence {f,} of functions in LH (U, xU¢)
as follows: fn(¥1(1), ¥2(C)) = f(¥1(tn,n), T2(tnC)). Then fn(¥1(n), ¥2(C)) converges
to f(¥1(n), ¥2(¢)) in the norm of B(U, x U¢). Since n = o1(w), ¢ = ¢2(z) and
Fa(®1(7),92(0)) € LH(T, x U¢), fa(w,2) = f(Li(tadr (w)), ¥a(tnd2(2)) € LH(Dw x
D.) and fn(w,z) converges to f(w,z) in the norm of B(D., x D).
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The dual space of H(Q, x 2.)

Let L be a continuous linear functional on H (), x .). We shall show that there
exist n and M such that |L(f)| < M||f||» for all f € H(Q, x §2,). Since L is continuous
on H(f, x (1), it is continuous at 0. Hence for every € > 0 there exist || ||, and
6 > 0 such that |L(f)| < e for all f in H(Qy, x Q) with ||fll. < 5. Let A > 0 be such
that Al[f|ln < 6. Then we have ||Af|l, < d and so ||[L(Af)| < e. Thus |L(f)| < s If
f e H(Qy, x2;) is such that || ||, = 0, we can take X arbitrarily large and so |L(f)| = 0.
If || fl|n # 0, we can take A = Wfﬁ: and so, in any case, we have |L(f)| < M||f||, with
M=%

Fi)r this 72, B(€wy X (., is a Banach space and H(, xQ.) C B(Qy, x(0,,). Since
L is a linear functional on H(Qy, x Q.) and |L(f)| < M||f|], for all f € H(Qy, x Q,), L

can be extended to all of B(Qyn x Q,,,) with the same bound by Hahn-Banach theorem.

Consequently L is defined for all functions ;1= 1+, 7 € ﬁin and ( € ﬁzcn, which,

considered as functions of (w, z), are elements of B(Q,, x ﬁzn). Define a function ¢ of
two variables as follows:

1 1
£n,¢) = L(mz — §)
£(00, ) =0
£(n,00) =0
£(c0,00) =0 (2)

Theorem 3. The function ¢ is holomorphic on (L, x ﬁfn

Proof. If (ny,{) € ﬁin X ﬁfn is such that 9 # oo and {; # oo, then for
. =C  —C _
(1,), (70, o) in Dy, x U, we have KBeI=tmd) = L (Ll _ 1 Ly _

(0 N N s N o | SR _1_]":'_0) A:Jn“_f uf._l_"f[z_f
177—170 1w~n z—¢ ) w—;?o Z-§ n—nolw—n w—1no "o n lno w 1n

w_m];—:z = e T with respect to the norm of B(an x ). Since o T b

in B(Qun x Q.,,) and L is continuous on B({ly, x 2,,), we have limy— e ﬂ"—%—"—g(&g =

7o

L(tm=sy 7=¢) and £ is differentiable with respect to 7 at 9. Similarly

limgﬁgow L( = C ey m=eoz) and £ is differentiable with respect to ¢ at (. It
then follows from Hartogs’ theorem that ¢ is holomorphic at (1o, (o).

If 7o = oo and (o # oo, then £(n, z) is holomorphic on a neighborhood of (oo, (o).
Since 5—1:5-2%—5 converges to 0 with respect to the norm of B(Qyn % Q.n) as (n,() —
(00,¢0),£(n,¢) = 0 as (1,{) = (00,{p). Hence ¢ is also holomorphc at (00, ¢p) and
vanishes there. Similarly if no # co and (o = o0, then (oo, ¢) is holomorphic at (7, 0)
and 0 there. If o = oo and (o = oo, then £(oc0,() is holomorphic for all ¢ such that
¢ # co. Since ¢ — oo implies £(00,() — 0, £ is holomorphlc at (00,00). Hence for each
N € an, ¢ is analytic on chn Sumlarly for each ¢ € an, £ is analytic on ﬁin and we

conclude that £ is holomorphic on an X an
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Theorem 4. Let f(w,z) be in LH(Qun x Q.n). Let L be a continuous linear
functional on B(Qyn x (n) and £ be defined as in (2). Then

1 r
L(f) = (5;;55_/;C14M £, O(n.Q)dndC

where T¢ is the boundary of some domain G, D Q.. and T, is the boundary of
another domain Gy O Qun.

Proof. Since f(w,z) € LH(Qyn x Qzp), there exist domains G and G, with Gy D
Qun and G, D Q., such that for all (w,z) € Guw XG5, flw,2) (2,”)2 frc fr o fi';'é)“z)
dnd¢ where T and I, are the boundaries of G and G, respectively. Let {fx} be a
sequence of Riemann sums defined by

(k) By A . AP
n® —w)((® - 2)

f(n
fr(w, 2) 27”)2 Zm ((

Then limg_yo0 fx(w,2z) = f(w,z) for all (w,2) € Gy x G Let (w,z) € Quwn X Qun. Let
IT¢| and |['p| be the lengths of I'c and I’y respectively. Let §, be the distance between Qun
and I';, and d¢ the distance between an and I'¢c. Let [|f H (w, )]

Then |fi(w,2)| < ghzMISEIEd = M for all k = 1,2,... and for all ( w, ) € Tun ¥

T{

Q... Replacing Qyn ¥ Qm by any compact subset of Gw x G, and repeating the above
reasoning, we have { f} is uniformly bounded on every compact subset of G, x G,. Since
fx converges to f on Gy, X G, fi, converges to f uniformly on every compact subset of
G, % G, by-Vitali’s theorem. In particular, fx converges to f uniformly on Qun X Q.
and || fr— flln — Oas k = oco. Since Lisa contmuous linear functional on B(an X an),

L(f) = limi oo L{fi) = limeosoo gz T SO (%Mw>¢d) n" A
(77%)—2- f]ﬂ( frn f('r}a ()L( (n-iw) ((iz) )dﬂdC = Té}lﬁf f[‘( an 77 C)e(na )dndg
Theorem 5. Let £ be holomorphic on ﬁin X ﬁfn Let T, and T'¢ be the

boundaries of Gy, and G, respectively and Qwn X an C Gy X G, C Qy xQ;. Then
L defined on B(Gy x G,) by L(f) = Wfl“c fF f(n,O)€(n,)dnd( 1s a continuous

linear functional on B(G, x G.).

Proof. Since the double integral exists and satisfies linearity condition, L is a linear
functional on B(Gy x G:). Let [|fllc = sup(, . 7, @, [f (W z)|. Let |T¢| and |T;| be
the lengths of I'c and T';; respectively. Let ||€]| = sup(, ¢jer, xr, [€(n,¢)|. Then |L(f)| <
el fllllell D¢l ITy] = Mlifllg for all f € B(Gw x Gz) where M = el 1Te] [Tyl
Hence -L-is continuous.

We are now in the position to use Theorem 4 and 5 to describe the dual space of
H(, x Q). Let L be a continuous linear functional on H(Qy x Q). We have shown
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that L can be extended to a Banach space B(Qun x Q.,). By Theorem 4, there exist
Gy and G, properly contained in 2, and §, respectively with Q. X O, C Gy x G,
and ¢ holomorphic on "ﬁin X ﬁfn such that

1

L) = Gz fF ( ]F RLTIENERS (6)

for all f € H(2y x Q) where I'; and T, are the boundaries of G, and G,, respectively.

By Theorem 5, if £ is holomorphic on ﬁgn x5 GS x GY 2 QY x S, then
(6) defines a continuous linear functional on B(G,, x G,). This means that given £ > 0
there exists 6 > 0 such that |L(f)| < ¢ for all f with ||f||l¢ < § where || ||¢ is the norm
of B(Gy x G.). Since Gy x G, C Oy X sy for some m, ||flle < [| fllm and thus given
€ > 0 there exist § and || ||, such that ||f|,, < & implies |L(f)| < €. But this means
that (6) also defines a continuous linear functional on H (€, x €.).

We observe that Q—Sn X ﬁfn is a domain containing Q2§ x QY. A domain such as
this will be called an open neighborhood of Q0 x Q¢. Let G be an open neighborhood of
Qg xQF. Then the value of (6) is independent of I'c and I, provided that T'c and T, lie in
G; this follows from Cauchy’s theorem. For the same reason, two holomorphic functions
¢, and {3, defined on neighborhoods G and G of Q¢ x QF respectively, define the same
linear functional if ¢; = £ on a neighborhood contained G; N G. We say that two such
functions are equivalent and call a class of equivalent functions a locally holomorphic
function on QF x QF. For convenience we use ¢ to denote the equivalence class to which
¢ belongs. We note here that we have defined locally holomorphic for functions of two
variables analogously to the way it was defined for functions of one variable. Using
H(QF x QF) to denote all the locally holomorphic functions on QF x QS we can state
our result in the following theorem.

Theorem 7. Let Q, and Q. be simply connected domains in the complex
plane. Then the dual space of H(Q, x Q) is H(QC xQ9), i.e. if L is a continuous
linear functional on H(Q, x(1,), then there exists £ locally holomorphic on Q€ xQF
such that L has representation (6) and conversely, if £ is a locally holomorphic
function on QF x QF, then (6) defines a continuous linear functional on H(f, x
Q,).

Theorem 8. The extension of a continuous linear functional on H (S, x Q)
t0 B(Qun x Q.n) is unique, i.e., H(Qy x Q) is dense in B(Qlyn X Qun).

Proof. Let L be a continuous linear functional on H (), x2,) and £ its correspond-
ing locally holomorphic function on QS x Q¢ with representation (6). Assume L has two
extensions Ly and Ly. If f € LH(Qyn x Q,y,) and f ¢ H(§, x ), then it follows from
representation (6) that Li(f) = Ly(f). If f € B(Qun x Q) and f & LH(Qyn x 0.,),
then it follows from Theorem 1 that Ly (f) = limg—co L1(ft) = limg 00 La(fi) = Ly(f)
where {fi} is a sequence in LH(Qyn X Q.n) converging to f. Hence L; = Ls.
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Assume H (€, x),) were not dense in B(Qyn X Q.,) and let g be in the complemnet
of the closure of H(§l, x §,). Then it follows from Hahn-Banach theorem that there
exists a continuous linear functional L* on B(Qyn x Q,,) such that L*(f) = 0 for all f
in the closure of H(Qy, x Q) but L*(g) # 0. Since the null functional on B(Qyn x Q.,)
is an extension of the null functional on H({, x (,), we have obtained two extensions
from H({2, x ;) to B (Qwn x Q.,), contrary to the first part of the theorem.

Continuous linear operators on H(Q, x Q,)

Let Qy,8;,8,, and Q¢ be simply connected domains in the complex plane. We
are mainly interested in finding a way to represent continuous linear operators from
H(Qy x ) to H(Qy x Q¢). In view of Kéthe'’s integral representations of continuous
linear operators from H(9,,) to H(Q,), we shall first consider continuous linear operators
from H(Q, x ;) to H(Q,, x ;) and obtain a result analogous to Kothe’s.

Theorem 9. Let Q,,Q,,Q, and Q¢ be simply connected domains in the
complex plane. To each continuous linear operator T from H(, x ;) to H(Q, x
Q¢) there corresponds a function M(w,z,n,() locally holomorphic on QF x QF x
Q0 x Q¢ such that T has the integral representation

T(f)(n,C)=(—2;1;)—g /F /F f(w, 2)M (w, 2,1, )dwdz

where T'y, C Qy and T, C Q, are simple closed contours such that there is a
bounded open subset A of (0, x Q¢ with the property that for (n,¢) in A, M is
holomorphic in (w,z) for w outside and on Ty, and z outside and on T,.

Proof. We note that we have constructed the space H (2, x Q;)H(, x ;)
respectively) at the beginning of this paper and we only recall that the topology of
H({, x 9,) is defined by a sequence of norms || ||, = SUD(y, )eD, |f(w, z)| where D,, =
Quwn X Qen([[flln = sup(, o5, 1/ (m,¢)] where Dy, = QX Q¢ respectively).

- Since 7' is continuous, given a neighborhood Nyp¢ = {g € H(Q2; x Q¢) | ||glln < 1} of
0, for each n, there exist a positive integer N(n) and a positive number §(n) such that
Ny, ={f € HQuw x Q) | [|[flInm) < 6(n)} and T(Ny.) C Ny¢ Hence T is a continuous
linear operator defined on H(Qy x Q.) C B(Qyunn) X Qonm)) to B((lyn x Q¢y). Since
B(Qun(ny X Q2n(n)) is complete and H (0, x ;) is dense in B(Qyn(n) X QLonn)) by

Theorem 8, T can be uniquely extended to 77,:

B(ﬁwN(n) XQ.zN(n)) - B(ﬁnnXﬁCﬂ) and “Tn(f)”n < KanHN(n) for all f € B(ﬁwN(n) X
= =C =C

QzN(n))- For (S:t) € Qu/N(n) X QzN(n) ’

1 . . .
—— - -, considered as a function of (w, z), is
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in B((, N(n) X Q, N(n))- Hence we can define a function M, as follows:

1 1
My(s,t,1,¢) = Tn(w—_—gm) for finite (s, t)
Muy(s,00,17,() =0
My (c0,t,1,() =0
My (00,00,7m,¢() =0

It follows from the definition that for fixed (s,t), M,, considered as a function of
(n,¢), is holomorphic on Q,, x Q¢, and continuous on Qp X {¢n.  Conversely for
fixed (n,{) we can show as in the proof of Theorem 3 that M., as a function of
(s,1), is holomorphic on ﬁij(n) X ﬁfN(n). Therefore M, (s,t,1,¢) is holomorphic on
—=C =C . | =

Qv (n) X VN () X Qyn X Q- Since [T (f)lln < Knllflin(n) forall f € B(QwN(n)x?i,Mn))ﬂ
we have HMn(.s_,t,n,C)H,7 < K"m where dn(n)(s,t) is the distance between (s,1)
and ﬁwN(n) X ;N (ny- Thus if s = co or t — oo or both, we obtain M, — 0. The func-
tions M, defined as in the above have the following property: If n < m, then M,, and M,,

. . =C =C —C —C

are identical on {(QwN(n) X QzN(n))n(QwN(m) X QzN(m))} X [(Qgn X Qen) N Qym X Q)] =
ﬁgmm) X ﬁfN(m) X Qyn X Q¢n. Because of this property, we can define a function
M(s,t,n,() as the collection of {M,,(s,¢,n,¢)}%, and thus obtain a well-defined locally

oo

holomorphic function on Q€ x 0 x 2, x Q¢ = U, @y X Teariny X Dan X Qen)-

Let f € H(hy x .). For any Q,nn) X Q:n(n) with boundary Isnny X Dinny, we
_ f(s,t

have f(w,z) = TzErLi)Tfrm(n)H stN(nH—l Ts’Zﬁ)’(ﬁdwt for all (w,2) € Qunin) X Qan(n)

by Cauchy integral formula for product domain. Using Riemann sums and the continuity

of T as in the proof of Theorem 4, we have

1 1
T(f)(n;() :‘(‘2‘7(‘:&-‘)“2‘ /I:UV(“)H J/l_‘w](ﬂ)".l f(S,t)T(mdet

1 / /
- f(s,t)M(s,t,m,()dsdt
(27”')2 Tyvmy+1 YTsn(ny+1

for all (n,¢) € Qyn x Qcn. We note that (n,¢) can be arbitrary in Q, x Q¢ since then
there exists n such that (n,{) € Q,, % ¢, and to this n there corresponds N(n) with
which we started to use Cauchy theorem to derive the integral representation for 7'

Theorem 10. Let Q,,Q. and Q be simply connected domains in the com-
plez plane. To each continuous linear operator T from H (b X Q) to H(Qy, x )
there corresponds a function M(z,w,¢) locally holomorphic on QS x Q,, x Q¢ such
that T hes the integral representation

T(f)(w,¢) = 5%/F f(w,z2)M(z,w,¢)dz
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where T, C Q, is a simple closed contour such that there is a bounded open subset
A of Qu x Q¢ with the property that for (w,() in A, M is holomorphic outside
and on T;.

Proof. For fixed wy € 0, T maps functions f(wo,z) in H(S);) to functions T(f)
(wo,¢) in H(Q¢). By Kothe’s representation theorem, there exists a function My, (2, ()
locally holomorphic on Q¢ x ¢ such that

T(f)(wo, () / F (w0, 2) Mg (2, () dz (11)

where ', C 2, is a simple closed contour such that for all ¢ in the closure of a bounded
open subset of {)¢, M,,, is holomorphic outside and on I'..

By Theorem 9, there exists a function M, (s, ¢, w,() locally holomorphic on QF x
Q¢ x Q, x Q¢ such that T has the integral representation

T(f)(w,¢) = (2—;? /C Z /F Flo )M (s, 2, Odsd: (12)

where 'y C Q, and I, C Q, are simple closed contours such that for (w, ¢) in the closure
of a bounded open subset of ,, x ¢, M7 is holomorphic in (s, z) for s ouside and on I';
and z outside and on T',.

For fixed wy, (12) becomes

T(f)(wo, () = / / F(5,2)Mi (s, 2 w0, ()dsdz (13)

(27m
Compare (11) with (13). If we can show that f(wo,2)Mu,(2,¢) = 55 [1 f(s,2)
M (s, z,wq, {)ds, then for those functions f(s,z) € H(Q, x §1;) whlch are the product
of g(s) € H(,) and h(z) € H((.), we have g(wo)h(2)Mu,(2,() = 5 Jr, 9(s)h
(s, z,wp, {)ds. In particular; if g = 1, then we have M,,,(z,() = 2—% fr, Mi(s, z wo,C)ds
Rewrite My, (2,() as M(z,wp,() and let wp vary throughout §,,. Then the right
hand side of the last equation represents a function locally holomorphic on Q¢ x Q,, x
Q. Hence M(z,w,() is locally holomorphic on QY x Q, x Q. Therefore it remais
to show that f(wo,2)Muy,(2,() = 5= fr f(s,2)M;(s, z,wp,()ds for those functions
f(s,2) which are product of g(s) € H(Qw) and h(z) € H(,;). From (11) and (13),
we have st [1 [55 [i f(s,2)Mi(s, 2 wo,C)ds - f(U)g, ) wc(z C)dz =0 for all f €
H(Quy x Q). If f(s,2) = g(s)h(2), then 5 [i [55 [ 9 2) My (s, z,wo,()ds —
9(wo)h(2)Mu, (2, Qldz = 55 [p (55 Jr, 9(5) M (s, 2 wo’()ds'*g(wO) My (2, Q)| h(z)dz =
0. Let G(2,() = 5 fl‘s g{8)M1(s, z,wo, €)ds — g(wg) My, (2, (). Then for each ¢ € ¢, G,
as a function of z, is in BK[Q,]. Hence for each fixed (o € Q¢, 5 fr G(z,()h(z)dz =0
for all h in H(Q,). By Kothe’s duality theorem, G(z, (o) is a null linear functional on
H(§,). We conclude that G(z,{p) = 0 for all {, € Q¢ and the proof is complete.
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Poélya property preserving operators
We start with the following definition:

Definition 14. Let Q, 1, and Q¢ be simply connected domains in the complex
plane. Let T be a continuous linear operator from H(§, x §.) to H(f, x ;) and
flw,z) € H(y x Q). Then T is said to be a Pdlya property preserving operator
if T(f)(w,¢) has the Pélya property on Q¢ whenever f(w, z) has the Pélya property on
Q..

Theorem 15. Let Q,,Q, and Q¢ be simply connected domains in the com-
plez plane. Let T be a continuous linear operator from H (S, x Q) to H(Q, x )
and M(z,w,() its corresponding kernel function. If M(z,w,{) is of the form
[9(2) + h(w)]K (w, () where g #0 and K(w,() has the Pdlya property on Q¢, then
T is a Pdlya property preserving operator.

Proof. Let f(w,z) € H{(Q, x Q,) have the Pélya property on Q.. We must show
that 7'(f)(w, ¢) has the Pélya property on €. let I'c C )¢ be a simple closed contour and
F a function analytic outside and on I'¢ with F'(o0) = 0 such that fr< T(f(w,O)F()d¢ =
0 for all w in §2,,. Since T(f)(w, () = 5= frz fw, 2)M(z,w,{)dz by Theorem 10, we have
frc(z—:r—i Jp, flw,2)M(z,w, ()dz) F(¢)d( = 0 for all w in §2,,. Since Flw,2)M{(z,w,)F(C)
is continuous on the compact set I'c x I';, we can interchange the order of integration
and obtain . f(w, Z)[fr< M(z,w,()F(¢)d(]dz = 0 for all w in Q,,. Substituting [¢(z) +
h(w)]K (w, ) for M(z,w,(), we have fr, f(w,z)[fFC (9(2) + h(w))K (w, ) F(()d()dz =
Jo S, [, 9() K (w, ) F(QdC]dz+ [ f(w,2)[fp, Bw)K (w, YF(QdC]ldz = [i. f(w,z2)
g(z)[frcK(w,C)F(C)d(]dz+h(w) jrf(w,z)dz fFCK(w,C)F(C)dC =0 for all w in Q.
Since .. f(w,z)dz=0, we obtain frzf(w, z)g(z)dz [ K(w,¢) F(¢)d¢= 0 for all w in .
This implies that either [. f(w,2)g(z)dz= 0 for all w in Q,, or fFC K(w,)F()d¢ =0
for all w in Q,,. If fr, flw,2)g(z)dz = 0 for all win Q,,, then since g is analytic out-
side and on T', with g(oco) = 0 and f(w,z) has the Pélya property on {1, we would
have g = 0 which contradicts our assumption on M (z,w, (). Hence fr, flw,2)g(z) 20
and fl"c K(w,)F(¢)d¢ = 0 for all w in . Since F' is analytic outside and on I'¢ and
K (w, () has the Pélya property on ¢, we conclude that F' = 0 and thus T'(f)(w, ¢) has
the Pélya property on 1.

Theorem 16. Let Q,,Q, and Q¢ be simply connected domains in the com-
plex plane. Let T be a continuous linear operator from H(Qh, X Q) to H(Qy, x Q)
and M(z,w,() its corresponding kernel function. If M(z,w,{) is of the form
h(w)K (z,¢) where h # 0 and K(z,() has the Pdélya property on (¢, then T s a
Pdlya property preserving operator.

Proof. Let f(w,z) € H(Qy, x {1,) have the Pélya property on §1,. We must show



ON A CLASS OF POLYA PROPERTY PRESERVING OPERATORS 311

that T'(f)(w, ¢) has the Pélya property on ¢. Let I'¢ C ¢ be a simple closed contour and
F afunction analytic outside and on FC with F(c0) = 0 such that fr; T()(w, OF()d¢ =
0 for all win . Since T(f)(w, () = 55 fr. f(w,2)M(z,w,()dz by Theorem 10, we have
fF( 557 frz flw,2)M(z,w,()dz)F(¢)d¢ = 0 for all w in §,. Since f(w, z)M (z,w, ) F({)
is continuous on I'¢ X I, we can interchange the order of integration an obtain fr, flw,z)
fr M(z,w, C)F(C)d(]dz = 0for allwin Q,,. Substituting h(w) K (z, C) for M(z, w, (), we
have Jr, flw,z [fr w)K (z,)F()d¢)dz = h(w) fr (w, 2)[ [, K(2,Q)F(¢)d(]dz = 0
for all w in Smce hw) # 0, Jp flw,z fr YE(¢)d()dz = 0 for all w in €y,
Since f(w,z) has the Polya property on 1, and fi‘c K(z OYF(Q)dC is in K[Q,], the last
equation implies that fl’c K(z,()F(¢)d¢ = 0. but this in turn implies F' = 0 since K (z, ()
is assumed to have the Pélya property on {1..

Before we can show that the sufficient conditions in Theorems 15 and 16 are not
necessary conditions, we must prove the following interesting result.

Theorem 17. Let Q,, Q,, and Q, be simply connected domains in the
complex plane. Let T be a continuous linear operator from H(Q, x Q) to H (8, ¥
Q). Then T either preserves the Pdlya property for all functions having that
property or does not preserve the Pélya property for any function.

Proof. Let f(w,z) € H(Qy x Q.) have the Pélya property on 2,. Then given
any simple closed contour I'; C €, and any function F' analytic outside and on I,
with F(c0) = 0 such that [i. f(w,2)F(2)dz = 0 for all w in Qy we have F' = 0. In
fact, the condition that frz flw,2)F(z)dz = 0 for all w in (2, may well be replaced by
fr, flw, 2)F(z)dz = 0 for a sequence {wy} in €, with a limit point in £,,. This follows
from the uniqueness theorem for analytic functions. Let {w,} be such a sequence and
denote f(wn,2) by fa(z) for all n = 0,1,2,.... Then given any simple closed contour
I', € Q, and any function F analytic outside and on I', with F(c0) = 0 such that
Jr, fa(2)F(2)dz = 0 for alln = 0,1,2,..., we have F = 0. Each fu(2) is in H(Q.) and
each function in H({,) can also be considered as a function in H(Q, x ;). With T
restricted to H(Q,), T maps H(Q,) to H(¢) and its conjugate operator T' maps BK [{)¢]
to BK[Q},]. We first show that if 7" is one-to-one, then T is Pélya property preserving.
Let f(w,2), {wn}, {fn},T: and F be as in the above with fr fn(2)F(2)dz = 0 for all
n=0,1,2,... implying F = 0. We now let I'y C )¢ be any simple closed contour and G
a function analytic outside and on I'¢ with G(oo) = 0 such that fr T(f)(OG()d¢ =0
for all n = 0,1,2,.... Since fr (F)OG()d¢ = fr fn(z)T'(G)(z)dz = 0 for all
n=20,1,2,.... and T(G) € BK[Q ], we have T'(G) = 0. Since T" is one-to-one, G =0
and this shows that T is Pélya property preserving. We now show that if T’ is not one-to-
one, then T does not preserve the Pélya property for any function. Again we let f(w, 2),
{wn}, {fn}, Tz and F be as above satisfying the condition that if f;. fn(2)F(z)dz = 0 for
alln =0,1,2,... then F = 0. Since T is not one-to-one, there exists Go € BK[{Q¢] with
G # 0 such that T'(Go) = 0. Hence 0 = fI‘, In(2)T'(Go)(z)dz = ffc T(fn)(O)Go(C)dC
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for all n = 0,1,2,... where I'; C Q¢ is a simple closed contour such that Gy is analytic
outside and on I'c. But Gy # 0. Hence T'(f) does not have the Pélya property. Since
T’ is either one-to-one or not one-to-one, T' either preserves the Pdlya property for all
functions having that property or does not preserve the Pélya property for any function.

Remark. By Theorem 10, to each continuous linear operator T from H (£, x Q)
to H(Q, x ) there corresponds a kernel function M (z,w, (). If M(z,w, () is either of
the form [g(z) + h(w)]K (w, ) or of the form h(w)K(z,(), then its corresponding T is a
Pélya property preserving operator by Theorems 15 and 16. If M(z,w, () is neither of
the form [g(z) + h(w)]K (w, () nor of the form h(w)K (z,(), then we appeal to Theorem
17. To test whether its corresponding operator T preserves the Pélya property. it suffices
to check just one function which is known to have the Pdlya property. Both e¥? and
—w—l_; are good choices to consider as we demonstrate in the following example which also
shows the sufficient conditions in Theorem 15 and 16 are not necessary conditions.

Example 18. Let Q,, Q. and Q¢ be simply connected domains in the complex
plane such that they are mutually disjoint. Let Q, contain the origin and M (z,w,() =

(e_%w. Then M(z,w, ¢) is locally holomorphic on QS x €, x (1. Moreover, M (z,w, {) has
the Pélya property on Q¢ and M (z,w, ¢) is neither of the form [g(z)+h(w)]K (w, ) nor of
the form h(w)K (z, (). To show that the operator T' with kernel M (z,w, () preserves the
Pélya property, we let f(w, z) = —— which is in H(Q x §2,) and note that f(w, z) has
the Pélya property on §0,. Then T(f)(w () = 5= [p f(w,2)M(2,w,()dz where I" C €,

is a simple closed contour such that for (w, () in the closure of a bounded open subset of

Qu x ¢, M is holomorphic outside and on I'. Thus T'(f)(w,{) = 5= /i — e z —dz =
@sz‘vlﬁ r ’wdz = g_Lw = [ = ’wdz = =% which has the Pélya property on Q.

Since T either preserves the Pdélya property for all functions having that property or
does not preserve the Pc’)lya property for any function by Theorem 17, we conclude that

this T" with kerne

Application. It is now clear how to use functions which have the Pélya property
to generate new functions which also have the Pélya property. All we have to do is to
pick a function which is known to have the Pdlya property and let the function be the
kernel of an operator. Then with domains suitably chosen, the operator maps functions
which have the Pdlya property to new functions which have the Pélya property. We shall
give a simple example where the kernel is of the form h(w)K (z, () as in Theorem 16 with
h(w) =1 and K (z,() has the Pdlya property on {l;.

Example 19. Let Q be the unit disk and m(w, () = A({)e*¢ + B({)e™ ¢ where
A and B are analytic on €¢. Let A(Q)A(—() — B({)B(—() # 0 for all { in Q¢. Then
m(w, ¢) has the Pélya property on ¢ [5]. The Borel transform of m(w, () with respect
towis M(z,() = éi_%) -+ %(;%)— which has the Pdlya property on {1;. Let Q,, be a simply
connected domain and Q, = Q¢. Since M(z,() has the Pdlya property on ¢, the
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operator T' defined on H(Q, x ;) to H(Qy, x Q) with M(z,() as kernel preserves
the Pélya property. Let f(w,z) = e%9*) where g is analytic and univalent on €2,.
Then f(w, z) has the Pélya property on ©; and so T (f)(w, () 5= [ f(w, 2) M (2,{)dz =
3 Jr e“’g(z)(i}é% + —f%)dz = A(¢)e®9(© + B(¢)ew9(~¢) has Pélya property on Q.
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