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GENERALIZATIONS OF ALZER’S AND KUANG’S INEQUALITY

FENG QI

Abstract. Let f be a strictly increasing convex (or concave) functions on (0, 1], then, for

k being a nonnegative integer and n a natural number, the sequence 1
n

∑

n+k

i=k+1
f( i

n+k
) is

decreasing in n and k and has a lower bound
∫

1

0
f(t)dt. Form this, some new inequalities

involving n

√

(n + k)!/k! are deduced. By the Hermie-Hadamard inequality, several inequalities

are obtained.

1. Introduction

In [1], H. Alzer, using the mathematical induction and other techniques, proved that
for r > 0 and n ∈ N,

n

n + 1
≤
(

1

n

n
∑

i=1

ir
/ 1

n + 1

n+1
∑

i=1

ir

)1/r

<
n
√

n!
n+1
√

(n + 1)!
. (1)

By the Cauchy’s mean-value theorem and the mathematical induction, the author in [7]

presented that, if n and m are natural numbers, k is a nonnegative integer, r > 0, then

n + k

n + m + k
<

(

1

n

n+k
∑

i=k+1

ir
/ 1

n + m

n+m+k
∑

i=k+1

ir

)1/r

. (2)

The lower bound is best possible.

From the Stirling’s formula, for all nonnegative integers k and natural numbers n and

m, the author in [8] obtained

(

n+k
∏

i=k+1

i

)1/n
/

(

n+m+k
∏

i=k+1

)1/(n+m)

≤
√

n + k

n + m + k
. (3)
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Let f be a strictly increasing convex (or concave) function in (0, 1], J.-C. Kuang in [2]
verified that

1

n

n
∑

k=1

f
(k

n

)

>
1

n + 1

n+1
∑

k=1

f
( k

n + 1

)

>

∫ 1

0

f(x)dx. (4)

The study of Alzer’s and Minc-Sathre’s inequality has many literature, for examples,
[1]-[9].

In this article, motivated by [2, 7], i.e. the inequalities in (2), (3) and (4), considering
the convexity of a function, we get

Theorem 1. Let f be strictly increasing convex (or concave) function in (0, 1], then

the sequence 1
n

∑n+k
i=k+1 f( i

n+k ) is decreasing in n and k and has a lower bound
∫ 1

0 f(t)dt,
that is,

1

n

n+k
∑

i=k+1

f
( i

n + k

)

>
1

n + 1

n+k+1
∑

i=k+1

f
( i

n + k + 1

)

>

∫ 1

0

f(t)dt, (5)

where k is a nonnegative integer, n a natural number.

If let f(x) = xr , r > 0, or let k = 0 in (5), then the inequalities in (1), (2) and (4)
could be deduced. Therefore, inequality (5) generalizes Alzer’s and Kuang’s inequality
in [1, 2] and inequality (2) above.

Corollary 1. For a nonnegative integer k and a natural number n > 1, we have

n + k

n + k + 1
<

[

(2n + 2k)!

(n + 2k)!

]1/n
/

[

(2n + 2k + 2)!

(n + 2k + 1)!

]1/(n+1)

<

[

(n + k)!

k!

]1/n
/

[

(n + k + 1)!

k!

]1/(n+1)

<

[

k!(k + 2)!

(k + 3)2

]1/n(n+1)

. (6)

For a larger n, the upper bound in the third inequality of (6) is not better than (3)
for m = 1. From the Hermite-Hadamard inequality in [3] and [4, pp. 10-12], we get the
following

Theorem 2. Let f be a nonlinear convex function in (0, 1], then

1

n + k

n+k
∑

i=k+1

[

f
( i

n + k

)

− f
( 2i − 1

2(n + k)

)

]

>
1

n + k

n+k
∑

i=k+1

f
( i

n + k

)

−
∫ 1

k/(n+k)

f(t)dt

>
1

2(n + k)

[

f(1) − f
( k

n + k

)

]

. (7)

Further, if f satisfies the Lipschitz condition

|f(x) − f(y)| ≤ M |x − y|α, 0 < α ≤ 1, (8)
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then

n

n + k
· M

[2(n + k)]α
>

1

n + k

n+k
∑

i=k+1

f
( i

n + k

)

−
∫ 1

k/(n+k)

f(t)dt. (9)

If let k = 0 in Theorem 2, the related result in [2] follows.

2. Proof of Theorems

Proof of Theorem 1. Let us first assume that f be a strictly increasing convex func-
tion. Taking x1 = i−1

n+k , x2 = i
n+k , α = i−k−1

n and using the convexity and monotonicity
of f yields

i − k − 1

n
f
( i − 1

n + k

)

+
(

1 − i − k − 1

n

)

f
( i

n + k

)

≥ f
( i − k − 1

n
· i − 1

n + k
+

n − i + k + 1

n
· i

n + k

)

= f
(ni − i + k + 1

n(n + k)

)

> f
( i

n + k + 1

)

for i = k + 1, k + 2, . . . , n + k. Summing up leads to

n+k
∑

i=k+1

[

i − k − 1

n
f

(

i − 1

n + k

)

+

(

1 − i − k − 1

n

)

f

(

i

n + k

)]

>

n+k
∑

i=k+1

f

(

i

n + k + 1

)

,

n+k
∑

i=k+1

[

(i − k − 1)f
( i − 1

n + k

)

+ (n + k − i + 1)f
( i

n + k

)

]

> n

n+k
∑

i=k+1

f
( i

n + k + 1

)

,

n
n+k
∑

i=k+1

f
( i

n + k + 1

)

+ nf(1) < (n + 1)
n+k
∑

i=k+1

f
( i

n + k

)

,

n

n+k+1
∑

i=k+1

f
( i

n + k + 1

)

< (n + 1)

n+k
∑

i=k+1

f
( i

n + k

)

.

The inequality (5) is proved.
By similar procedure, if f is a strictly increasing concave function in (0, 1], then for

k < i ≤ n + k, we have

i − k

n + 1
f
( i + 1

n + k + 1

)

+
n + k − i + 1

n + 1
f
( i

n + k + 1

)

≤ f
( i − k

n + 1
· i + 1

n + k + 1
+

n + k − i + 1

n + 1
· i

n + k + 1

)

= f
( ni + 2i − k

(n + 1)(n + k + 1)

)

< f
( i

n + k

)

,
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n+k
∑

i=k+1

[

i − k

n + 1
f
( i + 1

n + k + 1

)

+
n + k − i + 1

n + 1
f
( i

n + k + 1

)

]

=
n

n + 1

n+k
∑

i=k+1

f
( i

n + k + 1

)

+
n

n + 1
f(1) <

n+k
∑

i=k+1

f
( i

n + k

)

,

n

n+k+1
∑

i=k+1

f
( i

n + k + 1

)

< (n + 1)

n+k
∑

i=k+1

f
( i

n + k

)

.

The proof is complete.

Proof of Corollary 1. Substituting f be ln(1 + x) or by ln(x/(1 + x)) in (5) and
simplifying yields the first or the second inequality in (6), respectively.

Since

[(n + k)!/k!]n+1

[(n + k + 1)!/k!]n
=

n
∑

j=3

{

[(j + k)!/k!]j+1

[(j + k + 1)!/k!]j
− [(j + k − 1)!/k!]j

[(j + k)!/k!]j−1

}

+
[(k + 2)!/k!]3

[(k + 3)!/k!]2

<
k!(k + 2)!

(k + 3)2
,

the third inequality in (6) is obtained.

Proof of Theorem 2. Using the Hermite-Hadamard inequality in [3] and [4, pp.
10-12], we have

n+k
∑

i=k+1

f
( 2i − 1

2(n + k)

)

< (n + k)

n+k
∑

i=k+1

∫ i/(n+k)

(i−1)/(n+k)

f(x)dx

<
1

2

n+k
∑

i=k+1

[

f
( i

n + k

)

+ f
( i − 1

n + k

)

]

=

n+k
∑

i=k+1

f
( i

n + k

)

− 1

2

[

f(1) − f
( k

n + k

)

]

,

that is

1

n + k

n+k
∑

i=k+1

f
( 2i − 1

2(n + k)

)

<

∫ 1

k/(n+k)

f(x)dx

<
1

n + k

n+k
∑

i=k+1

f
( i

n + k

)

− 1

2(n + k)

[

f(1) − f
( k

n + k

)

]

.
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The inequality (7) is proved. Combining (8) with (7) yields inequality (9). The proof of

theorem 2 is complete.
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