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Existence of periodic traveling wave solutions for

a K-P-Boussinesq type system

Alex M. Montes

Abstract. In this paper, via a variational approach, we show the existence of

periodic traveling waves for a Kadomtsev-Petviashvili-Boussinesq type system that

describes the propagation of long waves in wide channels. We show that those

periodic solutions are characterized as critical points of some functional, for which the

existence of critical points follows as a consequence of the Mountain Pass Theorem

and Arzela-Ascoli Theorem.
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1 Introduction

The aim of this work is to use the direct method of the calculus of variations to prove the existence
of 2D and 1D periodic traveling waves for a Kadomtsev-Petviashvili-Boussinesq type system,

ηt + ∂xΦ+ η∂xη = 0, (x, y) ∈ R2, t > 0,

Φt + ∂x
(
ηΦ+ η − ∂2xη

)
+ ∂−1

x ∂2yη = 0,
(1.1)

that describes the propagation of long waves in wide channels or open seas, where η is the ampli-
tude and Φ is the horizontal velocity. This system was obtained by an appropriate approximation
from the basic equations of hydrodynamics (see [4], [8]).

For models that describe the evolution of nonlinear waves, it is very important to determine
the well-posedness for the associated Cauchy problem, and the existence of special solutions as
the traveling waves. For instance, traveling wave solutions are important in the study of dynamics
of wave propagation in many applied models such as fluid dynamics, acoustic, oceanography, and
weather forecasting. An important application is the use of solitons (traveling waves in the energy
space) as an efficient means of long-distance communication.

In the work [8], F. Soriano showed the local and global well-posedness in the space Y s for
s > 2, where

Y s = Xs ×Hs,
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with Hs = Hs(R2), the standard Sobolev space and

Xs = {w ∈ Hs : wx ∈ Hs and ∂−1
x wy ∈ Hs},

where ∂−1
x wy is defined via the Fourier transformation as

∂̂−1
x wy =

ξ2
ξ1
ŵ(ξ2, ξ1).

In addition, F. Soriano established the existence of 2D-solitons, i.e. the existence of solutions
of the form

η(x, y, t) = u(x− ct, y), Φ(x, y, t) = v(x− ct, y), (1.2)

which propagate with speed of wave c, with 0 < |c| < 1.

Note that if (η,Φ) is a solution of the system (1.1) of type (1.2), then the traveling wave
profile (u, v) should satisfy the system

−cu+ v + 1
2u

2 = 0, (x, y) ∈ R2,

−cv + u− ∂2xu+ ∂−2
x ∂2yu+ uv = 0,

(1.3)

where

∂−1
x w(x, y) =

∫ x

−∞
w(s, y)ds.

F. Soriano showed in [8], using the Concentration-Compactness Theorem, the existence of so-
lutions for the system (1.3) in the space Z = Z(R2) = X(R2) × L2(R2) for the speed of wave
satisfying 0 < |c| < 1, where the space X = X(R2) is equipped with the norm

∥u∥2X = ∥u∥2L2(R2) + ∥ux∥2L2(R2) + ∥∂−1
x uy∥2L2(R2)

and
∥(u, v)∥2Z = ∥u∥2L2(R2) + ∥ux∥2L2(R2) + ∥∂−1

x uy∥2L2(R2) + ∥v∥2L2(R2).

In this paper we consider instead of (1.3) the following system on the infinite strip

Qk = [−k, k]× R ⊂ R2,

with k ∈ R+, 
−cu+ v + 1

2u
2 = 0, in Qk,

−cv + u− ∂2xu+ ∂−2
x,k∂

2
yu+ uv = 0,

(1.4)

where (u, v) is 2k-periodic in x and

∂−1
x,kw(x, y) =

∫ x

−k

w(s, y)ds.

Using the Mountain Pass Theorem we will show the existence of solutions for the system (1.4) in
the space Zk = Zk(R2) equipped with the norm

∥(u, v)∥2Zk
= ∥u∥2L2

k(R2) + ∥ux∥2L2
k(R2) + ∥∂−1

x,kuy∥
2
L2

k(R2) + ∥v∥2L2
k(R2),

where
Lq
k(R

2) =
{
w : R2 → R : w ∈ Lq(Qk) and x-periodic of period 2k

}
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and
∥w∥Lq

k(R2) = ∥w∥Lq(Qk).

Also, in this work, we show the existence of 1D periodic traveling waves for the system (1.1).
This is, the existence of 2k−periodic solutions of the form

η(x, y, t) = ψ(x+ y − ct), Φ(x, y, t) = ϕ(x+ y − ct),

where c denotes the speed of wave. Then, one sees that (ψ, ϕ) must satisfy −cψ + ϕ+ 1
2ψ

2 = 0,

−cϕ+ 2ψ − ψ′′ + ψϕ = 0,
(1.5)

in [−k, k], where (ψ, ϕ) is 2k-periodic. In this case, using the Arzela-Ascoli, we will show the
existence of solutions for the system (1.5) in the space Zk = Zk(R) equipped with the norm

∥(ψ, ϕ)∥2Zk
= ∥ψ∥2L2

k(R)
+ ∥ψ′∥2L2

k(R)
+ ∥ϕ∥2L2

k(R)
,

where
Lq
k(R) = {w : R → R : w ∈ Lq[−k, k] and x-periodic of period 2k}

and
∥w∥Lq

k(R) = ∥w∥Lq [−k,k].

In the 2D case, let us define the profile of the wave at time t to be the graph of the function

(x, y) → (η(x, y, t),Φ(x, y, t)) .

Then the initial profile (at time t = 0) is just the graph of (u, v), and at any later time t, the
profile at time t is obtained by translating each point ((x, y) , (u(x, y), v(x, y))) of the initial profile
ct units to the right to the point ((x+ ct, y) , (u(x, y), v(x, y))). In other words, the wave profile
of a 2D traveling wave just propagates by rigid translation with velocity c. In the 1D case, the
traveling waves propagate with wavefront normal to z = (1, 1) ∈ R2, velocity c, and profile (ψ, ϕ).

We will see that the 2D and 1D periodic traveling waves are characterized as critical points
of some action functional. It is straightforward to write the action functional associated to the
systems (1.4) and (1.5). For the system (1.4) is relatively standard to establish that this functional
has a minimun in a suitable set of periodic functions, we follow a similar approach by A. Pankov
and K. Pflüger in [6] for the Kadomtsev-Petviashvili equation,

ηt − ∂3xη + η∂xη + ∂−1
x ∂2yη = 0.

For the system (1.5) we follow the approach by H. Brezis and J. Mawhin (see [3]) in a recent
work related with the existence of periodic classical solutions for a differential equation

ϕ(u′)− g(x, u) = h(x),

where ϕ : (−a, a) → R is an increasing homeomorphism, g is a Charatéodory function k-periodic
with respect to x, 2π-periodic with respect to u, of mean value zero on [0, k], and h ∈ Lloc(R)
is k-periodic and has mean value zero. A special case of this interesting model is the relativistic
forced pendulum differential equation(

u′√
1− u2

)
+A sin(u) = h(x).
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In a work in preparation (see [5]), we establish some properties of the x-periodic traveling
waves. In particular we study the inter-relation between x-periodic traveling wave solutions of
period k and traveling wave solutions of finite energy (solitons); in the spirit of [7], we want to
show the existence of a sequence of k−periodic 2D traveling waves, k ∈ N, which is uniformly
bounded in norm and converges to a soliton in a suitable topology, indicating that the shape of
x-periodic 2D traveling waves of period k and solitons are almost the same, as the period k is
big enough.

Throughout this paper, if not specified, we denote by C a generic constant varying line by
line.

2 Two-Dimensional Periodic Traveling Waves

In this section we will establish the existence of x-periodic solutions with period 2k for the system
(1.4). To do this we use a variational approach based on the Mountain Pass Theorem without
the Palais-Smale condition together with the existence of a compact embedding result.

First, formally we define the space in order to look at x-periodic solutions. Denote by
C∞

k (R2) the space of smooth functions which are x-periodic with period 2k and have compact
support in y and define

Yk = Yk(R2) =
{
Dxφ|Qk

: φ ∈ C∞
k (R2)

}
, Qk = [−k, k]× R.

Then any function u from Yk satisfies ∫ k

−k

u(x, y) dx = 0.

We define Xk = Xk(R2) as the completion of Yk with respect to the norm given by

∥u∥2Xk
=

∫
Qk

[
u2 + (ux)

2
+

(
∂−1
x,kuy

)2
]
dxdy

and the inner product

(u, U)Xk
=

∫
Qk

[
uU + uxUx +

(
∂−1
x,kuy

)(
∂−1
x,kUy

)]
dxdy.

From the local version of the embedding theorem for anisotropic Sobolev spaces (see [2], p.
187), for any compact Ω ⊂ R2 and 2 ≤ q ≤ 6, we have that

∥u∥2Lq(Ω) ≤ C

∫
Ω

[
u2 + (ux)

2
+

(
∂−1
x,kuy

)2
]
dxdy. (2.1)

Moreover, A. Pankov and K. Pflüger in the work [6] showed the following embedding result, in
the case of x−periodic traveling waves for the generalized Kadomtsev-Petviashvili equation.

Lemma 2.1. The embedding Xk ↪→ Lq(Qk) is continuous for 2 ≤ q ≤ 6, where the embedding
constants are uniformly bounded with respect to k, and Xk ↪→ Lq

loc(Qk) is compact for 2 ≤ q < 6.
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The existence of solutions for the system (1.4) in the space Zk = Xk×L2
k(R2) is a consequence

of a variational approach which apply a minimax type result, since solutions (u, v) of (1.4) are
critical points of the functional Jk given by

Jk = Ik +Gk,

where the functionals Ik and Gk are defined on the space Zk by

Ik(u, v) =
1

2

∫
Qk

[
u2 + (ux)

2
+

(
∂−1
x,kuy

)2

+ v2 − 2cuv

]
dxdy,

Gk(u, v) =
1

2

∫
Qk

vu2dxdy.

First we have that Ik, Gk, Jk ∈ C1(Zk,R) and its derivatives in (u, v) in the direction of (U, V )
are given by

⟨I ′k(u, v), (U, V )⟩ =
∫
Qk

[
uU + uxUx +

(
∂−1
x,kuy

)(
∂−1
x,kUy

)
+ vV − c (uV + vU)

]
dxdy,

⟨G′
k(u, v), (U, V )⟩ =

∫
Qk

(
uvU +

1

2
u2V

)
dxdy.

As a consequence of this, after integration by parts, we conclude that

J ′
k(u, v) =

(
u− ∂2xu+ ∂−2

x,k∂
2
yu− cv + uv

v − cu+ 1
2u

2

)
, (2.2)

meaning that critical points of the functional Jk satisfy the traveling wave system (1.4). Hereafter,
we will say that solutions for (1.4) are critical points of the functional Jk. In particular, we have
that

⟨J ′
k(u, v), v⟩ = 2Ik(u, v) + 3Gk(u, v) (2.3)

= 2Jk(u, v) +Gk(u, v).

Thus, on any critical point (u, v) we have that

Ik(u, v) = −3

2
Gk(u, v), Jk(u, v) = −1

2
Gk(u, v), Jk(u, v) =

1

3
Ik(u, v). (2.4)

On the other hand, using that the embedding Xk ↪→ L4(Qk) is continuous, one can see easily
that the functional Gk is well-defined on Zk. In particular we have that

|Gk(u, v)| ≤
1

2
∥v∥L2

k(R2)∥(u, v)∥2L4
k(R2) ≤ C∥v∥3Zk

. (2.5)

Moreover, if 0 < |c| < 1 then there are some positive constants C1(c) < C2(c) such that

C1∥(u, v)∥2Zk
≤ Ik(u, v) ≤ C2∥(u, v)∥2Zk

. (2.6)

Our approach to show the existence of a non trivial critical point for Jk is to use the Mountain
Pass Theorem without the Palais-Smale condition (see M. Willem [10], A. Ambrosetti et al. [1])
to build a Palais-Smale sequence for Jk for a minimax value and use the local embedding result
to obtain a critical point for Jk as a weak limit of such Palais-Smale sequence.
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Theorem 2.1. Let X be a Hilbert space, J ∈ C1(X,R), e ∈ X and r > 0 such that ∥e∥X > r
and

b = inf
∥u∥X=r

J(u) > J(0) ≥ J(e).

Then, given n ∈ N, there is un ∈ X such that

J(un) → d, and J ′(un) → 0 in X ′,

where
d = inf

π∈Γ
max
t∈[0,1]

φ(π(t)), and Γ = {π ∈ C([0, 1], X) : π(0) = 0, π(1) = e} .

Before we go further, we establish an important result for our analysis, which is related with
the characterization of “vanishing” sequences in Zk. Define for ζ ∈ R2 and r > 0 the rectangle

Rr,k(ζ) = [−k, k]× [ζ − r, ζ + r].

Lemma 2.2. If {(un, vn)}n is a bounded sequence in Zk and there is a positive constant r > 0
such that

lim
n→∞

sup
ζ∈R

∫
Rr,k(ζ)

v2n dxdy = 0, (2.7)

then we have that
lim

n→∞
Gk(un, vn) = 0.

Proof. From Hölder inequality and the local embedding (2.1) we see that

|Gk(un, vn)| ≤ C∥vn∥L2(Rr,k(ζ))∥un∥
2
L4(Rr,k(ζ))

≤ C∥vn∥L2(Rr,k(ζ))

∫
Rr,k(ζ)

[
u2n + (∂xun)

2
+

(
∂−1
x,k∂yun

)2
]
dxdy.

Covering Qk by a countable number of rectangles such that every point in Qk is contained in at
most 3 rectangles Rr,k(ζ), we obtain that

|Gk(un, vn)| ≤ 3C sup
ζ∈R

∥vn∥L2(Rr,k(ζ))∥un∥
2
Xk
.

We conclude using the condition (2.7) and that {un}n is a bounded sequence in Xk that

lim
n→∞

|Gk(un, vn)| = 0.

Now, we want to verify the Mountain Pass Theorem hypotheses given in Theorem 2.1 and
to build a Palais-Smale sequence for Jk.

Lemma 2.3. Let 0 < |c| < 1. Then

1. There exists ρ > 0 small enough such that

b := inf
∥z∥Zk

=ρ
Jk(z) > 0.

2. There is e ∈ Zk with ∥e∥Zk
≥ ρ such that Jk(e) ≤ 0.
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3. If d is defined as

d = inf
π∈Γ

max
t∈[0,1]

Jk(π(t)), Γ = {π ∈ C([0, 1], Zk) : π(0) = 0, π(1) = e},

then d ≥ b and there is a sequence (un, vn)n ⊂ Zk such that

Jk(un, vn) → d, J ′
k(un, vn) → 0 in (Zk)

′
.

Proof. From inequalities (2.5)-(2.6), we have for any (u, v) ∈ Zk that

Jk(u, v) ≥ C1∥(u, v)∥2Zk
− C∥(u, v)∥3Zk

≥ (C1 − C∥(u, v)∥Zk
) ∥(u, v)∥2Zk

.

Then for ρ > 0 small enough such that

C1 − ρC > 0, (2.8)

we conclude for ρ = ∥(u, v)∥Zk
that

Jk(u, v) ≥ (C1 − ρC) ρ2 := δ > 0.

In particular, we also have that

b = inf
∥(u,v)∥Zk

=ρ
Jk(u, v) ≥ δ > 0. (2.9)

Now, it is not hard to prove that there exist (u0, v0) ∈ C∞
0 (Qk)×C∞

0 (Qk) such that Gk(u0, v0) <
0. Then for any t ∈ R we have that

Jk(t(u0, v0)) = t2Ik(u0, v0) + t3Gk(u0, v0)

= t2 (Ik(u0, v0) + tGk(u0, v0)) .

As a consequence of this, we have that

lim
t→∞

Jk(t(u0, v0)) = −∞,

and so, there is t0 > 0 such that e = t0(u0, v0) ∈ Zk satisfies that t0∥(u0, v0)∥Zk
= ∥e∥Zk

> ρ and
that Jk(e) ≤ Jk(0) = 0. The third part follows by applying Theorem 2.1.

Theorem 2.2. For 0 < |c| < 1, the system (1.4) has a nontrivial solution in Zk.

Proof. We will see that d is in fact a critical value of Jk. Let {(un, vn)}n ⊂ Zk be the sequence
given by previous lemma. First note from (2.9) that d(c) ≥ b(c) ≥ δ. Using the definition of Jk
and (2.3) we have that

Ik(un, vn) = 3Jk(un, vn)− ⟨J ′
k(un, vn), (un, vn)⟩ .

But from (2.6) we conclude for n large enough that

C1∥(un, vn)∥2Zk
≤ Ik(un, vn) ≤ 3(d(c) + 1) + ∥(un, vn)∥Zk

.

Then we have shown that {(un, vn)}n is a bounded sequence in Zk. We claim that

δ∗ = lim
n→∞

sup
ζ∈R

∫
R1,k(ζ)

v2n dxdy > 0.
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If we suppose that

lim
n→∞

sup
ζ∈R

∫
R1,k(ζ)

v2n dxdy = 0.

Hence from Lemma 2.2 we conclude that

lim
n→∞

G(un, vn) = 0.

Now, using (2.3), (2.5) and (2.9) we have that

0 < δ ≤ d = Jk(un, vn)−
1

2
⟨J ′

k(un, vn), (un, vn)⟩+ o(1)

= −1

2
Gk(un, vn) + o(1)

≤ |Gk(un, vn)|+ o(1)

≤ o(1).

But this is a contradiction. Thus, there is a subsequence of {vn}n, denoted by the same symbol,
and a sequence ζn ∈ Qk such that ∫

R1,k(ζn)

v2n dxdy ≥ δ∗

2
. (2.10)

We define the sequence (ũn(x, y), ṽn(x, y)) = (un(x, y + ζn), vn(x, y + ζn)). For this sequence we
have that

∥(ũn, ṽn)∥Zk
= ∥(un, vn)∥Zk

, Jk(ũn, ṽn) → d, J ′
k(ũn, ṽn) → 0 in Zk

′.

Then {(ũn, ṽn)}n is a bounded sequence in Zk. Thus, for some subsequence of {(ũn, ṽn)}n,
denoted by the same symbol, and for some (u, v) ∈ Zk we have that

(ũn, ṽn)⇀ (u, v), as n→ ∞ (weakly in Zk).

Since the embedding Xk ↪→ Lq
loc(Qk) is compact for 2 ≤ q < 6 we see that

ṽn → v in Lq
loc(Qk).

Then v ̸= 0 because using (2.10) we have that∫
R1,k(0)

v2 dxdy = lim
n→∞

∫
R1,k(0)

(ṽn)
2 dxdy ≥ δ∗

2
.

Moreover, if (U, V ) ∈ C∞
0 (Qk)× C∞

0 (Qk), then for K = supp (U, V ) we have that

⟨I ′k(u, v), (U, V )⟩

=

∫
K

[
uU + uxUx +

(
∂−1
x,kuy

)(
∂−1
x,kUy

)
+ vV − cuV − cvU

]
dxdy

= lim
n→∞

∫
K

[
ũnU + (ũn)xUx +

(
∂−1
x,k(ũn)y

)(
∂−1
x,kUy

)
+ ṽnV − cũV − cṽU

]
dxdy

= lim
n→∞

⟨I ′k(ũn, ṽn), (U, V )⟩ .
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Now, noting that (ũn)
2 ⇀ v2 and ũnṽn ⇀ uv in L2(Qk) then (taking a subsequence, if necessary)

we see that ∫
K

ũnṽnU dxdy →
∫
K

uvV dxdy,

∫
K

(ũn)
2V dxdy →

∫
K

u2V dxdy.

In other words, we have shown that

⟨G′
k(u, v), (U, V )⟩ = lim

n→∞
⟨G′

k(ũn, ṽn), (U, V )⟩ ,

and also that
⟨J ′

k(u, v), (U, V )⟩ = lim
n→∞

⟨J ′
k(ũn, ṽn), (U, V )⟩ = 0.

Now, let (U, V ) ∈ Zk. By density, there is (Un, Vn) ∈ C∞
0 (R2)× C∞

0 (R2) such that

(Um, Vm) → (U, V ) in Zk.

Then

|⟨J ′
k(u, v), (U, V )⟩| ≤ |⟨J ′

k(u, v), (U, V )− (Un, Vn)⟩|+ |⟨J ′
k(u, v), (Un, Vn)⟩|

≤ ∥J ′
k(u, v)∥Zk′ ∥(U, V )− (Un, Vn)∥Zk

+ |⟨J ′
k(u, v), (Un, Vn)⟩| → 0.

Thus we have already established that J ′
k(u, v) = 0. In other words, (u, v) is a nontrivial solution

for equation (1.4).

3 One-Dimensional Periodic Traveling Waves

In this section we show the existence of 1D periodic traveling waves of period 2k for the system
(1.1). The result will be a direct consequence of the coerciveness of the associated functional to
the system (1.5) and that such functional is (sequentially) weakly lower semi-continuous.

We can see that solutions (ψ, ϕ) of the system (1.5) are critical points of the functional Jk,
in this case, given by

Jk = Ik +Gk,

where the functionals Ik and Gk are defined by

Ik(ψ, ϕ) =
1

2

∫ k

−k

[
2ψ2 + (ψ′)2 + ϕ2 − 2cψϕ

]
dx,

Gk(ψ, ϕ) =
1

2

∫ k

−k

ϕψ2 dx.

A direct computation shows that

⟨I ′k(ψ, ϕ), (Ψ,Θ)⟩ =
∫ k

−k

[
2ψΨ+ ψ′Ψ′ + ϕΘ− cψΘ− cϕΨ

]
dx,

⟨G′
k(ψ, ϕ), (Ψ,Θ)⟩ =

∫ k

−k

[
1
2ψ

2Θ+ ψϕΨ
]
dx.

As a consequence of this we conclude that

J ′
k(ψ, ϕ) =

(
−cϕ+ 2ψ − ψ′′ + ψϕ

−cψ + ϕ+ 1
2ψ

2

)
,
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meaning that a critical point ϕ of the functional Jk satisfies the traveling wave equation (1.5).
Hereafter, we will say that weak solutions for (1.5) are critical points of the functional Jk. In
particular, we have that

⟨J ′
k(ψ, ϕ), (ψ, ϕ)⟩ = 2Ik(ψ, ϕ) + 3Gk(ψ, ϕ) = 2Jk(ψ, ϕ) +Gk(ψ, ϕ). (3.1)

Now, we define the space Zk = Zk(R) as

Zk = Hs
k(R)× L2

k(R),

where Hs
k (R) = Hs

k ([−k, k]) denotes the usual Sobolev space of 2k-periodic functions. Then,
following the same way as in (2.5)-(2.6) we have some properties of Ik and Gk,

Lemma 3.1. For 0 < |c| < 1, we have that Ik(ψ, ϕ) ≥ 0. Moreover, there is a positive constant
C1 = C1(c) such that

C−1
1 ∥(ψ, ϕ)∥2Zk

≤ Ik(ψ, ϕ) ≤ C1∥(ψ, ϕ)∥2Zk
. (3.2)

Lemma 3.2. There is C2 > 0 such that

|Gk(ψ, ϕ)| ≤ C2∥(ψ, ϕ)∥3Zk
. (3.3)

Next, we show the following result on Jk.

Lemma 3.3. Assume that the sequence (ψn, ϕn)n ⊂ Zk converges weakly to (ψ0, ϕ0) ∈ Zk. If
{ψn}n converges uniformly to ψ0 on [−k, k], then we have that

lim inf
n→∞

Jk(ψn, ϕn) ≥ Jk(ψ0, ϕ0). (3.4)

Proof. Recall that Jk = Ik + Gk. Now, from (3.2) we have that Ik is like a norm in Zk, so is
convex. More exactly, for λ ∈ (0, 1) we have that

Ik(ψn, ϕn) ≥ Ik(λ(ψ0, ϕ0)) +
〈
I ′k(λ(ψ0, ϕ0)), (ψn, ϕn)− λ(ψ0, ϕ0)

〉
. (3.5)

Using the formula of I ′k we have that〈
I ′k(λ(ψ0, ϕ0)), (ψn − λψ0, ϕn − λϕ0)

〉
=λ

∫ k

−k

[
2ψ0(ψn − λψ0) + ψ′

0(ψ
′
n − λψ′

0) + ϕ0(ϕn − λϕ0)
]
dx

− λc

∫ k

−k

[
ψ0(ϕn − λϕ0) + ϕ0(ψn − λψ0)

]
dx.

Since the sequence {(ψn, ϕn)}n converges weakly to (ψ0, ϕ0) in Zk we conclude that

lim
n→∞

〈
I ′k(λ(ψ0, ϕ0)), (ψn − λψ0, ϕn − λϕ0)

〉
= 2λ(1− λ)Ik(ψ0, ϕ0).

In other words, we have that

lim inf
n→∞

Ik(ψn, ϕn) ≥ Ik(λ(ψ0, ϕ0)) + 2λ(1− λ)Ik(ψ0, ϕ0) = λ(2− λ)Ik(ψ0, ϕ0),

which implies after taking λ→ 1− that

lim inf
n→∞

Ik(ψn, ϕn) ≥ Ik(ψ0, ϕ0). (3.6)
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Now, we need to observe that∫ k

k

ϕnψ
2
n dx =

∫ k

k

ϕn

(
(ψn)

2 − (ψ0)
2
)
dx+

∫ k

k

ϕn(ψ0)
2dx.

Since we know that (ψn)
2
, (ψ0)

2 ∈ L2 [−k, k], we conclude that

lim
n→∞

∫ k

k

ϕn (ψ0)
2
dx =

∫ k

k

ϕ0 (ψ0)
2
dx.

Moreover, using the uniform convergence of (ψn)n to ψ0 we also have that∣∣∣∣∣
∫ k

k

ϕn

(
(ψn)

2 − (ψ0)
2
)
dx

∣∣∣∣∣ ≤
∫ k

k

|ϕn||ψn − ψ0| (|ψn|+ |ψ0|) dx

≤ sup
[−k,k]

|ψn − ψ0|∥ϕn∥L2 (∥ψn∥L2 + ∥ψ0∥L2)

≤ sup
[−k,k]

|ψn − ψ0|∥ϕn∥Zk
(∥ψn∥Zk

+ ∥ψ0∥Zk
) .

which means, after recalling that the sequence (ψn, ϕn)n is bounded, that

lim
n→∞

∫ k

k

ϕn (ψn)
2
dx =

∫ k

k

ϕ0 (ψ0)
2
dx.

Therefore
lim

n→∞
Gk(ψn, ϕn) = Gk(ψ0, ϕ0).

As a consequence of previous remarks, we conclude that

lim inf
n→∞

Jk(ψn, ϕn) = lim inf
n→∞

(Ik(ψn, ϕn) +Gk(ψn, ϕn)) ≥ Jk(ψ0, ϕ0).

We consider the weakly closed subset of Zk

Zα,k = {(ψ, ϕ) ∈ Zk : |ψ(x)| ≤ α, a. e. x ∈ R}.

Lemma 3.4. 1. There are positive constants C1 and C2 such that for any (ψ, ϕ) ∈ Zk, we have
that

Jk(ψ, ϕ) ≥ C1∥(ψ, ϕ)∥2Zk
− C2∥(ψ, ϕ)∥3Zk

. (3.7)

2. There exits α0 > 0 such that for 0 < α < α0 the functional Jk is coercive on Zα,k. More
exactly, there is C3 > 0 such that for (ψ, ϕ) ∈ Zα,k,

Jk(ψ, ϕ) ≥ C3∥(ψ, ϕ)∥2Zα,k
. (3.8)

Proof. 1. From inequalities (3.2)-(3.3), there are positive constants C1 and C2 such that

Jk(ψ, ϕ) = Ik(ψ, ϕ) +Gk(ψ, ϕ) ≥ C−1
1 ∥(ψ, ϕ)∥2Zk

− C2∥(ψ, ϕ)∥3Zk
.

2. Let (ψ, ϕ) ∈ Zα,k. Then |ψ(x)| ≤ α for a. e. x ∈ R. Thus,

|Gk(ψ, ϕ)| ≤
α

2

∫ k

k

|ϕψ| dx ≤ α

2
∥(ψ, ϕ)∥2Zk

.
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Hence, there is C > 0 such that

|Gk(ψ, ϕ)| ≤ αC∥(ψ, ϕ)∥2Zk
.

So, using inequality (3.2) and previous one, we have that

Jk(ψ, ϕ) ≥ C−1
1 ∥(ψ, ϕ)∥2Zk

− αC∥(ψ, ϕ)∥2Zk
=

(
C−1

1 − αC
)
∥(ψ, ϕ)∥2Zk

,

as desired.

Our goal now is to show the existence of a non trivial critical point for Jk. The result will
be a direct consequence of the coerciveness of Jk and that Jk is (sequentially) weakly lower semi-
continuous on Zk,α for 0 < α < α0. We will use the Arzela-Ascoli Theorem and the following
result (see Theorem 1.2 in [9]).

Theorem 3.1. Let X be a Hilbert space and let M ⊂ X be a weakly closed subset of X. Suppose
that E : M → R ∪ {+∞} is coercive and that is (sequentially) weakly lower semi-continuous on
M with respect to X, that is, suppose the following conditions are fulfilled:

1. E(u) → ∞ as ∥u∥ → ∞, with u ∈M .

2. For any u ∈M , any sequence (un)n in M such that un ⇀ u (weakly) in X there holds:

E(u) ≤ lim inf
n→∞

E(un).

Then E is bounded below on M and attains its minimum in M .

Theorem 3.2. If 0 < |c| < 1 then for 0 < α < α0, Jk has a minimum over Zα,k. Therefore, the
system (1.5) has a nontrivial solution in Zk.

Proof. We will verify that Jk satisfies the hypotheses in Theorem 3.1. It is straightforward to
check that Zα,k is weakly closed subset of Zk. In fact, let {(ψn, ϕn)}n ⊂ Zα,k be a sequence that
converges weakly to (ψ0, ϕ0). Then we have that the sequence {(ψn, ϕn)}n is bounded in Zα,k.
Now, we see that

|ψn(x)− ψn(y)| ≤
∫ x

y

|ψ′
n(r)|dr ≤ |x− y| 12 ∥ψn∥Zk

≤M |x− y| 12 .

In other words {ψn}n is equicontinuous, then by using the Arzela-Ascoli Theorem we have for
some subsequence (which we denote by the same symbol) that (ψn)n converges uniformly to
ψ0 on [−k, k], since we have that |ψn(x)| ≤ α for a. e. x ∈ R and for all n ∈ N. From this
fact and the uniform convergence of {ψn}n we conclude that |ψ0(x)| ≤ α for a. e. x ∈ R.
Then (ψ0, ϕ0) ∈ Zα,k, meaning that Zα,k is weakly closed subset of Zk. Now note that the
coerciveness property of Jk and condition (1) in Theorem 3.1 are obtained using the inequality
(3.8) in previous lemma. We need now to verify condition (2). Let (ψ0, ϕ0) ∈ Zα,k and let
{(ψn, ϕn)}n ⊂ Zk such that (ψn, ϕn) ⇀ (ψ0, ϕ0) (weakly) in Zα,k. This sequence {(ψn, ϕn)}n is
bounded in Zk and the same type of arguments show that{ψn}n converges uniformly to ψ0 on
[−k, k] (up to a subsequence), so by Lemma 3.3 we conclude that

lim inf
n→∞

Jk(ψn, ϕn) ≥ Jk(ψ0, ϕ0).

Then, from Theorem 3.1 we conclude that Jk attains a minimum over Zα,k.
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