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On the Diophantine equation Fn = xa ± xb ± 1

in Mersenne and Fermat Numbers

Carlos A. Gómez

Abstract. In this article we investigate on the representation of Fibonacci numbers
in the form xa ± xb ± 1, for x in the sequence of Mersenne and Fermat numbers.
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1 Introduction

The Fibonacci sequence (Fn)n≥0 is given by F0 = 0, F1 = 1 and

Fn+2 = Fn+1 + Fn for all n ≥ 0.

Luca and Szalay [8] showed that the number of quadruples (n, p, a, b) satisfies the Dio-
phantine equatin Fn = pa ± pb + 1 is finite. Hernndez [5] has studied the particular cases
p = 2, 3, 5, 7, 11, 13 showing that all solutions of the above Diophantine equation, are

p = 2 : 3 = F4 = 22 − 21 + 1, F5 = 23 − 22 + 1,

13 = F7 = 23 + 22 + 1 = 24 − 22 + 1,

21 = F8 = 24 + 22 + 1;

p = 3 : 13 = F7 = 32 + 31 + 1, F10 = 34 − 33 + 1;

p = 5 : 21 = F8 = 52 − 51 + 1;

while for p = 7, 11 and 13 there are not solutions, hinting that for all prime p ≥ 7 doesn’t have any
solution. Laishram and Luca [7] studied a more general Diophantine equation Fn = xa ± xb ± 1
with x composed of two prime divisors, showing that it has only finitely many positive integer
solutions (n, x, a, b) with max{a, b} ≥ 2. Recently, Kafle, Rihane and Togb [6] have investigated
about Pell and Pell–Lucas numbers (instead of Fibonacci numbers) of the form xa ± xb + 1,
completely solving this equation for each x ∈ [2, 20].

In this paper, we study the Diophantine equation

Fn = xa ± xb ± 1, for positive integers a > b ≥ 1 (1.1)

and x a Mesenne or Fermat number.
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2 The main result

Since F0 = 0 and F1 = F2 = 1, we will assume n ≥ 3 to avoid the trivial situations. We put
x := x` = 2` ± 1 with ` ≥ 1, to denote Mersenne and Fermat numbers. Note that the first
Mersenne number is 1, while the second Mersenne number and the first Fermat number are 3, so
we can assume also that ` ≥ 2.

We prove the following theorem.

Theorem 2.1. The solutions of Diophantine equation Fn = xa` +ε1x
b
` +ε2, with ` ≥ 2, a > b ≥ 1,

n ≥ 3 and εi ∈ {±1} (for i = 1, 2), are the quadruples (n, x`, a, b):

(ε1, ε2) = (1,−1) : (10, 7, 2, 1), (11, 3, 4, 2), (11, 9, 2, 1);

(ε1, ε2) = (−1, 1) : (8, 5, 2, 1), (10, 3, 4, 3);

(ε1, ε2) = (−1,−1) : (5, 3, 2, 1), (13, 3, 5, 2);

(ε1, ε2) = (1, 1) : (7, 3, 2, 1).

3 Some Lemmas

To start, we present an analytic argument which is Lemma 7 from [4].

Lemma 3.1. If m ≥ 1 is an integer and y, T are real numbers such that T > (4m2)m and

y

(log y)m
< T, then y < 2mT (log T )m.

3.1 Lower bounds for linear forms in logarithms

In order to find upper bounds for the integer unknowns of exponential Diophantine equation
(1.1), we use a Baker–type lower bounds for nonzero linear forms in logarithms of real algebraic
numbers. We begin by recalling some basic notions from algebraic number theory.

Let η be an algebraic number of degree d over Q with minimal primitive polynomial over
the integers f(z) := a0

∏d
i=1(z − η(i)) ∈ Z[z], where the leading coefficient a0 is positive. The

logarithmic height of η is given by

h(η) :=
1

d

(
log a0 +

d∑
i=1

log max{|η(i)|, 1}

)
.

In particular, if η = p/q ∈ Q with gcd(p, q) = 1 and q > 0, then h(η) = log max{|p|, q}. The
following are some of the properties of the logarithmic height function h(·), which will be used in
this paper: h(η± γ) ≤ h(η) +h(γ) + log 2, h(ηγ±1) ≤ h(η) +h(γ) and h(ηs) = |s|h(η) (s ∈ Z).

Many Diophantine problems can be solved by reducing them to an instance in which one
can apply lower bounds for linear forms in logarithms of algebraic numbers. We will use the
following theorem, which is a variation of a result of Matveev [9], proved by Bugeaud, Mignotte
and Siksek [1, Theorem 9.1].

Lemma 3.2. Let L ⊆ R be a real algebraic number field of degree dL over Q, η1, . . . , ηl
non–zero elements of L, and d1, . . . , dl rational integers. Put Λ := ηd1

1 · · · η
dl

l − 1 and D ≥
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max{|d1|, . . . , |dl|}. Let Ai ≥ max{dLh(ηi), | log ηi|, 0.16} be real numbers, for i = 1, . . . , l. Then,
assuming that Λ 6= 0, we have

|Λ| > exp(−1.4 · 30l+3 · l4.5 · d2
L(1 + log dL)(1 + logD)A1 · · ·Al).

Note that, for η1, . . . , ηl real algebraic numbers,

Λ := ηb11 · · · η
bl
l − 1 and Γ := b1 log η1 + · · ·+ bl log ηl,

we have Λ = eΓ − 1. It is a straight–forward exercise to show that |Γ| < c−1|Λ|, when |Λ| < c,
for all constant c in (0, 1). We use this argument in several occasions without mentioning it.

3.2 Continued fractions

To lower the upper bound of the integer unknowns obtain by the above result, we will use a
result from the theory of continued fractions. The following lemma is essentially a result due
to Dujella and Pethő [3], for more details see Lemma 3 in [2]. For a real number X, we put
||X|| := min{|X − n| : n ∈ Z} for the distance from X to the nearest integer.

Lemma 3.3. Let M and Q be positive integers such that Q > 6M , and A,B, τ, µ be some real
numbers with A > 0 and B > 1. Let further ε := ||µQ|| −M ||τQ||. If ε > 0, then there is no
solution to the inequality

0 < |uτ − v + µ| < AB−w,

in positive integers u, v and w with

u ≤M and w ≥ log(AQ/ε)

logB
.

In practical applications Q is always the denominator of a convergent of the continued
fraction of τ , though this is not formally required for the statement.

4 The Proof of Theorem 2.1

Recall that for nonnegative integer n, Binet’s formula for the nth Fibonacci number say that

Fn =
αn − βn

√
5

, where α =
1 +
√

5

2
and β =

1−
√

5

2
. (4.1)

Further, it’s well–known that inequalities

αn−2 ≤ Fn ≤ αn−1 hold for all n ≥ 1.

Using the notation x := x` = 2` ± 1 and the above inequality, we deduce from (1.1)

2n−1 > αn−1 ≥ Fn = xa` ± xb` ± 1 ≥ xa`
(
1− xb−a

` − x−a
`

)
> 2(`−1)a−1

and

αn−2 ≤ Fn = xa` ± xb` ± 1 < xa`
(
1 + xb−a

` + x−a
`

)
< 2a`+1

(
1 + 2−`

)a
< 2a(`+1)+1.
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Thus,

a(`− 1) < n < 2a(`+ 1). (4.2)

In the above inequality we have used the fact that log 2/ logα < 1.45 and

1.45 (a(`+ 1) + 1) + 2 < 2a(`+ 1)

for all a ≥ 2 and ` ≥ 2.

4.1 An inequality for a in terms of n

We begin bounding the gap between a and b. Since (4.1), equation (1.1) can be rewritten as

αn

√
5
− xa` = ±xb` +

βn

√
5
± 1.

Dividing both sides of the above equality by xa` and taking absolute values, we get∣∣∣(√5)−1αnx−a
` − 1

∣∣∣ ≤ 1

xa−b
`

+
(
√

5)−1|β|n + 1

xa`
≤ 3

2(`−1)(a−b)
(4.3)

where we have used the facts that |β| < 1 and x` > 2`−1.

We use Lemma 3.2 on the left–hand side of (4.3) with the data l := 3, (η1, d1) := (
√

5,−1),
(η2, d2) := (α, n), (η3, d3) := (x`,−a) and Λ1 := (

√
5)−1αnx−a

` − 1. The quadratic field L =

Q(
√

5) contains η1, η2, η3, so dL = 2. We continue with the calculation of the logarithmic heights
of η1, η2, η3:

h(η1) = (log 5)/2, h(η2) = (logα)/2 and h(η3) = log(x`) < `,

so we can take A1 = log 5, A2 = logα and A3 = 2`. Furthermore, from inequalities (4.2) we take
D := n. In order to continue with our application of Lemma 3.2, we need to show that Λ1 6= 0.
This assertion follows from the observation that otherwise, we get the equation α2n = 5x2a

` ∈ Z+,
which is not possible for any n ≥ 3 given that α is a unit in OL.

Now Lemma 3.2 tells us that

log |Λ1| > −1.4 · 306 · 34.5 · 22(1 + log 2)(1 + log n)(log 5)(logα)(2`)

> −2.9 · 1012 · ` log n

where we have used that 1 + log n < 1.92 log n, for all n ≥ 3.

Comparing with (4.3), we get

(`− 1)(a− b) log 2 < 2.9 · 1012 · ` log n+ log 3.

Therefore
a− b < 8.4 · 1012 · log n. (4.4)

Returning to equation (1.1), we can deduce∣∣∣(√5)−1αnx−a
`

(
1± xb−a

`

)−1 − 1
∣∣∣ < (

√
5)−1|β|n + 1

xa`
<

2

2(`−1)a
. (4.5)
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We use again Lemma 3.2 to give a lower bound on the left–hand side of (4.5). We now take
l := 4, (η1, d1) := (

√
5,−1), (η2, d2) := (α, n), (η3, d3) := (x`,−a), (η4, d4) := (1± xb−a

` ,−1) and

Λ2 := (
√

5)−1αnx−a
` (1± xb−a

` )−1 − 1.

As before, we put L = Q(
√

5), dL = 2, A1 = log 5, A2 = logα, A3 = 2` and D := n.
Furthermore,

h(1± xb−a
` ) ≤ (a− b) log(x`) + log 2 < 1.5`(a− b).

So, we can take A4 := 3`(a − b). By the same arguments used before to see that Λ1 6= 0, we
conclude that Λ2 6= 0. Indeed, if Λ2 = 0, then αn =

√
5(xa` ± xb`), so α2n = 5(xa` ± xb`)2 ∈ Z+, an

impossible fact for all n ≥ 3.

By Lemma 3.2, we can conclude that

log |Λ2| > −1015 · `(a− b) log n.

Combining the above inequality with (4.5), we have

a < 2.9 · 1015(a− b) log n. (4.6)

Thus, including the bound to a− b from (4.4), we obtain an upper bound on a in terms of n.

Let us record what we have proved so far.

Lemma 4.1. Let (n, `, a, b) be a solution of Diophantine equation (1.1) with n ≥ 3, ` ≥ 2 and
a > b ≥ 1, then a(`− 1) < n < 2a(`+ 1) and

a < 2.5 · 1028(log n)2.

4.2 Absolute bounds on n, a and `

For technical reasons, we assume that ` > 130. Note that

xa` = 2`a
(

1 +
ε

2`

)a
, with ε := ±1.

We set the elements

za :=
aε

2`
and ra :=

(
1 +

ε

2`

)a
.

By Lemma 4.1 and inequality (4.2), we have that

a < 2.6 · 1028(log a)2(log `)2, or equivalently
a

(log a)2
< 2.6 · 1028(log `)2.

Taking y := a, m := 2 and T := 2.6·1028(log `)2, and applying Lemma 3.1 in the above inequality,
we obtain

a < 2.4 · 1031(log `)4. (4.7)

So, we conclude that

|za| =
a

2`
<

2.4 · 1031(log `)4

2`
<

1

2`/10
,

where the last inequality holds for all ` > 130. In particular, |za| < 10−3.

Hence, if ε = −1, then

1 > ra =
(
1− 2−`

)a
= exp

(
a log

(
1− 2−`

))
≥ exp(−2|za|) > 1− 2|za|,
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while if ε = 1, then

1 < ra =
(
1 + 2−`

)a
=

(
1 +
|za|
a

)a

< exp(|za|) < 1 + 2|za|,

because 2−` and |za| are very small. Thus, in either case we have that∣∣xa` − 2`a
∣∣ < 2|za|2`a = a2`(a−1)+1. (4.8)

We return once more to (1.1), where we use inequality (4.8), to obtain this time∣∣∣(√5)−1αn2−`a − 1
∣∣∣ < 2a

2`
+
xb`
2`a

+
(
√

5)−1|β|n + 1

2`a
<

4a

2`
. (4.9)

We have used in the above inequality that xb` = 2`b(1± 2−`)b < 2`b(1 + 2zb) < 2`b+0.1.

Putting again L := Q(
√

5), (η1, d1) := (
√

5,−1), (η2, d2) := (α, n), (η3, d3) := (2,−`a) and
Λ3 := (

√
5)−1αn2−`a − 1, we can again take A1 = log 5, A2 = logα, A3 = 2 log 2. By (4.2), we

now take D := 2a(` + 1). Furthermore, just as for Λ1, we can ensure that Λ3 6= 0. By Lemma
3.2, we can conclude that

log |Λ3| > −4.2 · 1012 · log(`a).

Comparing the above inequality with (4.9), we conclude that

` log 2 < log(4a) + 4.2 · 1012 · log(`a) < 4.3 · 1012 · log(`a). (4.10)

Furthermore, by (4.7) we deduce that

log(`a) < log(2.4 · 1031`(log `)4) < 17.2 log `, for all ` > 130.

Thus, we have from (4.10) that ` < 1.1 · 1014 log ` which leads to ` < 4 · 1015. Besides, by
inequalities (4.2) and (4.7) we conclude that a < 4 · 1037 and n < 3.2 · 1053. We note that the
above inequalities were obtained under the assumption that ` > 130. However, one can see that if
` ≤ 130, then by (4.2) we obtain that n < 262a, so Lemma 4.1 leads to a < 2.5 · 1028(log(262a))2

which is true only for a < 1.6 · 1032 and again by (4.2), we have n < 2.1 · 1034, which are bounds
on `, a and n smaller than the ones above. Thus, we can state the following result.

Lemma 4.2. Let (n, `, a, b) be a solution of Diophantine equation (1.1) with n ≥ 3, ` ≥ 2 and
a > b ≥ 1, then

` < 4 · 1015, b < a < 4 · 1037 and n < 3.2 · 1053.

4.3 Reductions of the absolut bounds

We note that the upper bounds given in Lemma 4.2 are too large to allow computing. Therefore,
we transform inequalities (4.3), (4.5) and (4.9) in inequalities for linear forms in logarithms and
use continued fractions to reduce the upper bounds on `, a− b, a and then on n.

We take Γ3 := n logα− `a log 2− log(
√

5), so eΓ3 − 1 = Λ3. From estimates (4.7) and (4.9),
we conclude that inequality

∣∣eΓ3 − 1
∣∣ < 4a/2` ≤ 1/2 holds for ` > 130. Hence,

0 <
∣∣∣n logα− `a log 2− log(

√
5)
∣∣∣ < 8a

2`
.
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Our first objective is to obtain a small upper bound to `. Thus, dividing both sides of the above
inequality by log 2, we get

0 <

∣∣∣∣∣n logα

log 2
− `a− log(

√
5)

log 2

∣∣∣∣∣ < 12a

2`
.

We put

τ :=
logα

log 2
, µ := − log(

√
5)

log 2
, A := 12a and B := 2.

Thus, the above inequality can be rewriten as

0 < |nτ − `a+ µ| < AB−`. (4.11)

We take M := 3.2 · 1053 (an upper bound to n according to Lemma 4.2) and apply Lemma 3.3,
with (m, s, k) = (n, `a, `), on inequality (4.11). With the help of Mathematica, we found that
q111 > 1.17 · 1055 > 6M is a denominator of a convergent of the continued fraction of τ such
that ε := ‖µq111‖−M ‖τq111‖ > 0.1547. Then, from the conclusion of Lemma 3.3 and inequality
(4.7), we have that

` <
log(12 · a · q111/ε)

log 2
<

log(12 · 2.4 · 1031(log `)4) · q111/ε)

log 2
,

which leads to ` ≤ 310. Returning to inequalities (4.2) and (4.7), we conclude that a < 2.6 · 1034

and so n < 1.7 · 1037. Running once more the reduction cycle on inequality (4.11), with M :=
1.7 · 1037, we have that q83 > 6M and ε > 0.4884, with which

` ≤ 250, a < 2.3 · 1034 and n < 1.2 · 1037. (4.12)

Now, assume that a − b ≥ 2 and Γ1 := n logα − a log(x`) − log(
√

5). From estimate (4.3),
we get

∣∣eΓ1 − 1
∣∣ < 3/2a−b < 3/4, so

0 <
∣∣∣n logα− a log(x`)− log(

√
5)
∣∣∣ < 12

2a−b
.

We divide both sides by log(x`) ≥ log 3 (since x` ≥ 3 for all ` ≥ 2), to obtain

0 <

∣∣∣∣∣n logα

log(x`)
− a− log(

√
5)

log(x`)

∣∣∣∣∣ < 12

2a−b log(x`)
<

11

2a−b
.

Putting

τ` :=
logα

log(x`)
, µ` := −

log
(√

5
)

log(x`)
, A := 11 and B := 2;

the last inequality leads to
0 < |nτ` − a+ µ`| < AB−(a−b). (4.13)

We now take M := 1.2 · 1037 which is a new upper bound on n according to (4.12), and
apply Lemma 3.3 with (m, s, k) = (n, a, a − b), to inequality (4.13), for all ` ∈ [2, 250] obtained

in (4.12) too. For each τ`, we compute its continued fraction [a
(`)
0 , a

(`)
1 , . . .] and its convergents

p
(`)
1 /q

(`)
1 , p

(`)
2 /q

(`)
2 , . . .. In each case, we find an integer t` such that

q
(`)
t`

> 7.2× 1037 = 6M and ε` := ||µ`q
(`)
t`
|| −M ||τ`q(`)

t`
|| > 0.
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A quick calculationin Mathematica show that

max
{
blog

(
Aq

(`)
t`
/ε`

)
/ logBc : ` ∈ [2, 250]

}
≤ 145.

Thus, by Lemma 3.3 we have that a − b ≤ 145. Then, by inequalities (4.2) and (4.6), we get
a < 4.4 · 1019 and n < 2.3 · 1022. A new cycle of reduction on ` and a − b, in inequalities (4.11)
and (4.13) with M := 2.3 · 1022, yield

` ≤ 205, a− b ≤ 95, a < 3 · 1019 and n < 1.3 · 1022. (4.14)

The above inequalities had been obtained assuming a − b ≥ 2. If a − b = 1 then by inequalities
(4.2) and (4.6), we have a < 2.7 ·1017 and n < 1.4 ·1020, while a new reduction cycle on inequality
(4.11) with M := 1.4 · 1020 leads to ` ≤ 190. Thus, in all case inequalities in (4.14) holds.

Finally, we assume that a ≥ 2 and Γ2 := n logα− a log(x`)− log
(√

5
(
1± xb−a

`

))
. By (4.5),

we have that |eΓ2 − 1| < 2/2a ≤ 1/2, then

0 <
∣∣∣n logα− a log(x`)− log

(√
5
(
1± xb−a

`

))∣∣∣ < 4

2a
.

Dividing both sides by log(x`) ≥ log 3, we get

0 <

∣∣∣∣∣n logα

log(x`)
− a−

log
(√

5
(
1± xb−a

`

))
log(x`)

∣∣∣∣∣ < 4

2a log(x`)
<

3.7

2a
.

We now put

τ` :=
logα

log(x`)
, µ`,a−b := −

log
(√

5
(
1± xb−a

`

))
log(x`)

, A := 3.7 and B := 2,

with which, the above inequality can be rewriten as

0 < |nτ` − a+ µ`,a−b| < AB−a. (4.15)

We take M := 1.3 · 1022 and apply Lemma 3.3, with (m, s, k) = (n, a, a), to inequality (4.15)
for each ` ∈ [2, 205] and a − b ∈ [1, 95], according to inequalities (4.14). With the help of
Mathematica, we show that

max
{
blog(Aq

(`)
t`
/ε`,a−b)/ logBc : ` ∈ [2, 205], a− b ∈ [1, 95]

}
≤ 100.

Thus, by Lemma 3.3 we have that a ≤ 100. Then, from inequality (4.2), we get n ≤ 41200.

We run a last reduction cycle: from inequalities (4.11) we obtain that ` < 50, however, we
begin this section under the assumption that ` > 130, so we conclude that ` ≤ 130. Then, from
inequality (4.13) we have a− b ≤ 40 and finally from inequality (4.15), we get a ≤ 50.

Below we summarize what we have obtained.

Lemma 4.3. Let (n, `, a, b) be a solution of Diophantine equation (1.1) with n ≥ 3, ` ≥ 2 and
a > b ≥ 1, then

` ≤ 130, b < a ≤ 50 and n ≤ 13100.
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5 Listing all the solutions

The final computational search for solutions of the equation (1.1), according to what we obtained
above, requires us to look for the solutions in the set

{Fn} ∩ {xa` + ε1x
b
` + ε2} = {5, 13, 21, 55, 89, 233}

with 2 ≤ ` ≤ 130, 1 ≤ b < a ≤ 50, 3 ≤ n ≤ 13100 and εi ∈ {±1} (for i = 1, 2). They are

(i) for Mersenne numbers x2 = 22 − 1 = 3 and x3 = 23 − 1 = 7,

5 = F5 = 32 − 31 − 1, 13 = F7 = 32 + 31 + 1,

55 = F10 = 34 − 33 + 1 = 72 + 7− 1,

89 = F11 = 34 + 32 − 1, 233 = F13 = 35 − 32 − 1.

(ii) for Fermat numbers x2 = 22 + 1 = 5 and x3 = 23 + 1 = 9,

21 = F8 = 52 − 51 + 1, 89 = F11 = 92 + 91 − 1.

This ends the proof of our Theorem 1.
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