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A NOTE ON SIMPSON’S INEQUALITY FOR FUNCTIONS OF

BOUNDED VARIATION

J. PEČARIĆ AND S. VAROŠANEC

Abstract. Inequalities of Simpson’s type for functions whose n-th derivative, n ∈ {0, 1, 2, 3} is

of bounded variation are given.

1. Introduction

One of fundamental results in numerical integration is Simpson’s inequality which

states if f (4) exists and is bounded on (a, b) then
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The disadvantage that this estimation can not be applied if the fourth derivate of f

either does not exist on (a, b) or is not bounded there, was removed in result of Dragomir,

[1]. Namely, in [1] the following result was proven.

Theorem A. Let f : [a, b] → R be a mapping of bounded variation on [a, b]. Then
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where V b
a (f) denotes the total variation of f on the interval [a, b].

In the proof of the previous result the following identity is used:

−

∫ b

a
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where

s(x) =

{

x − 5a+b
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x − a+5b
6 x ∈ [a+b

2 , b].
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The right-hand side of (3) is denoted by R(f). Similar identity can be found in the
book [2, p.174] but for absolute continuous function f so that on the left-hand side of

(3) we have −
∫ b

a
s(x)f ′(x)dx. In the same book some other identities in connection

with Simpson’s inequality are given. Here we give versions of those identities which are
suitable for our purpose:
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where f is a function such that f ′, f ′′, f ′′′ is of bounded variation, respectively. These
identities are proven using integration by parts.

In [2], result related to (2) is given. Namely, using identity (6) it is proven that if f ′′′

is an absolutely continuous with total variation V3, then

|R(f)| ≤
1

1152
(b − a)4V3. (7)

Here, we state results related to inequalities (2) and (7) which give an error estimate
of R(f) expressed by total variation of either function f or its derivatives.

2. Main Results

Theorem 1. Let n ∈ {0, 1, 2, 3}. Let f be a real function on [a, b] such that f (n) is

function of bounded varation. Then
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1

3
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24
, C2 =
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324
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1152

and V b
a (f (n)) is the total variation of function f (n).

Proof. For n = 0 the proof is given in [1]. For n = 3 the proof is similar to that one
from [2].

If n = 1, using identity (4) under notation

s1(x) =

{

1
2 (x − a)(x − 2a+b

3 ), x ∈ [a, a+b
2 )

1
2 (x − b)(x − 2b+a

3 ), x ∈ [a+b
2 , b].
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we have
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If n = 2 using identity (5) we have
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Global maximum investigation gives that max
x∈[a,
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2
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So, the following holds

|R(f)| ≤
1

324
(b − a)3V b

a (f ′′).

As a simple consequence of the previous theorem we have the following corollary.

Corollary 1. If f is a function on [a, b] such that f ′′′ is of bounded variation then

|R(f)| ≤ min
n∈{0,1,2,3}

{Cn(b − a)n+1V b
a (f (n))}.

Corollary 2. Let n ∈ {0, 1, 2, 3}. If f is a function such that f (n) is an absolute

continuous function, then

|R(f)| ≤ Cn(b − a)n+1‖f (n+1)‖1,

where ‖g‖1 =
∫ b

a
|g(x)|dx. Cn, n = 0, 1, 2, 3, are constants defined in Theorem 1.

Using inequalities of Simpson’s type from Theorem 1 we can obtain the following

estimation of remainder term R(f, σn) in Simpson’s quadrature formula

∫ b

a

f(x)dx = A(f, σn) + R(f, σn), (8)
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where σn is a partition of the interval [a, b], i.e.

σn = {a = x0, x1, x2, . . . , xm = b; a < x1 < · · · < xm−1 < b}

and A(f, σn) is equal to

1

6

m−1
∑

i=0

[f(xi) + f(xi+1)]hi +
2

3

m−1
∑

i=0

f

(

xi + xi+1

2

)

hi.

We have the following estimations for R(f, σn).

Corollary 3. Let n ∈ {0, 1, 2, 3}. Let f be a function on [a, b] such that f (n) is a

function of bounded variation and σn be a partition of [a, b]. Then the remainder term

R(f, σn) in Simpson’s quadrature formula (8) satisfies:

|R(f, σn)| ≤ CnV b
a (f (n)) · max{hn+1

i : i = 0, . . . , n − 1}

where hi = xi+1 − xi, i = 0, 1, . . . , m − 1, and Cn are defined as in Theorem 1.

Remark 1. Similary we can improve results related to special means given in [1].
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