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Inequalities for Lerch transcendent function
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Abstract. Some fundamental inequalities for Lerch transcendent function with

positive terms by utilising certain classical results due to Hölder, Čebyšev, Grüss

and others, are established. Some particular cases of interest for Polylogarithm

function, Hurwitz zeta function and Legendre chi function are also given.
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1 Introduction

The Lerch transcendent function is given by the series

Φ (z, s, α) :=

∞∑
n=0

zn

(n+ α)
s , |z| < 1, α 6= 0,−1,−2, ... (1.1)

see for instance [6, Section 1.11, p. 27] or [1, Section 25.14]. This function, defined by Mathias
Lerch in 1887 in his paper [8], includes as special cases of the parameters; the Hurwitz, Riemann
zeta functions and the polylogarithms, among others. Therefore the transcendent has applications
ranging from number theory to physics.

The Hurwitz zeta function, formally defined for complex arguments s with Re(s) > 1 and α
with Re(α) > 0 by

ζ (s, α) :=

∞∑
n=0

1

(n+ α)
s (1.2)

is a special case, given by

ζ (s, α) = Φ (1, s, α) . (1.3)

For α = 1 we have the Riemann zeta function

ζ (s) =

∞∑
n=1

1

ns
. (1.4)
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The polylogarithm function Li (s, z) is defined by a power series in z, which is also a Dirichlet
series in s:

Li (s, z) :=

∞∑
n=1

zn

ns
= zΦ (z, s, 1) . (1.5)

This definition is valid for arbitrary complex order s and for all complex arguments z with |z| < 1;
it can be extended to |z| ≥ 1 by the process of analytic continuation. The special case s = 1
involves the ordinary natural logarithm, Li (1, z) = − ln(1 − z), while the special cases s = 2
and s = 3 are called the dilogarithm (also referred to as Spence’s function) and trilogarithm
respectively.

The Legendre chi function is a special case, given by

χs (z) = 2−szΦ
(
z2, s, 1/2

)
. (1.6)

The Legendre chi function is a special function whose Taylor series is also a Dirichlet series, given
by

χs (z) :=

∞∑
n=0

z2n+1

(2n+ 1)
s . (1.7)

Various identities include in [6, p. 27] the following:

Φ (z, s, α) = zm+1Φ (z, s, α+m+ 1) +

m∑
n=0

zn

(n+ α)
s , (1.8)

where m is a natural number and α 6= 0,−1,−2, ....

In this paper we obtain some fundamental inequalities for Lerch transcendent function with
positive terms by utilising certain classical results due to Hölder, Čebyšev, Grüss and others.
Some particular cases of interest for Polylogarithm function, Hurwitz zeta function and Legendre
chi function are also given.

2 Some Convexity Results

In the following theorem we develop the convexity results of the first variable.

Theorem 2.1. Assume that s, α > 0.

(i) The function Φ (|·| , s, α) is convex on the open disk D (0, 1) := {z ∈ C| |z| < 1} ,

(ii) The function Φ (·, s, α) is GG-convex on the interval [0, 1) , namely it satisfies the condition

Φ
(
x1−tyt, s, α

)
≤ [Φ (x, s, α)]

1−t
[Φ (y, s, α)]

t
(2.1)

for all x, y ∈ [0, 1) and t ∈ [0, 1] ,

(iii) For all x, y ∈ [0, 1) with x+ y ∈ [0, 1) ,

Φ (x+ y, s, α) +
1

α
≥ Φ (x, s, α) + Φ (y, s, α) . (2.2)
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Proof. (i). Let z, w ∈ D (0, 1) and t ∈ [0, 1] . By the convexity of |·|n for n ≥ 0 we have

|(1− t) z + tw|n ≤ (1− t) |z|n + t |w|n

for z, w ∈ D (0, 1) and t ∈ [0, 1] .

Therefore

m∑
n=0

|(1− t) z + tw|n

(n+ α)
s ≤

m∑
n=0

(1− t) |z|n + t |w|n

(n+ α)
s (2.3)

= (1− t)
m∑
n=0

|z|n

(n+ α)
s + t

m∑
n=0

|w|n

(n+ α)
s

for z, w ∈ D (0, 1) , for all m ≥ 1 and t ∈ [0, 1].

Since the series

∞∑
n=0

|(1− t) z + tw|n

(n+ α)
s ,

∞∑
n=0

|z|n

(n+ α)
s and

∞∑
n=0

|w|n

(n+ α)
s

are convergent, then by taking the limit over m→∞ in (2.3), we deduce

Φ (|(1− t) z + tw| , s, α) ≤ (1− t) Φ ((1− t) |z| , s, α) + tΦ ((1− t) |w| , s, α) ,

which proves the statement.

(ii). Let x, y ∈ [0, 1) and t ∈ (0, 1) . For m ≥ 1 we have

m∑
n=0

(
x1−tyt

)n
(n+ α)

s =

m∑
n=0

(xn)
1−t

(yn)
t

(n+ α)
s (2.4)

≤

 m∑
n=0

[
(xn)

1−t
]1/(1−t)

(n+ α)
s


1−t m∑

n=0

[
(yn)

t
]1/t

(n+ α)
s


t

=

(
m∑
n=0

xn

(n+ α)
s

)1−t( m∑
n=0

yn

(n+ α)
s

)t
,

where for the first inequality we used Hölder’s inequality

m∑
n=0

pnanbn ≤

(
m∑
n=0

pna
p
n

)1/p( m∑
n=0

pnb
q
n

)1/q

with pn, an, bn ≥ 0 for n ∈ {0, ...,m}, p, q > 1 and 1
p + 1

q = 1, for the choices

pn =
1

(n+ α)
s , an = (xn)

1−t
, bn = (yn)

t

while p = 1/ (1− t) > 1, q = 1/t > 1.

Since the series

∞∑
n=0

(
x1−tyt

)n
(n+ α)

s ,

∞∑
n=0

xn

(n+ α)
s and

∞∑
n=0

yn

(n+ α)
s
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are convergent, then by taking the limit over m→∞ in (2.4) we get

Φ
(
x1−tyt, s, α

)
≤ [Φ (x, s, α)]

1−t
[Φ (y, s, α)]

t

for all x, y ∈ [0, 1) and t ∈ (0, 1) . The cases t = 0 and t = 1 are obvious.

(iii). We consider the function fs : [0,∞) → R, fs (t) = (t+ 1)
s − ts we have f ′s (t) =

s
[
(t+ 1)

s−1 − ts−1
]
. Observe that for s > 1 and t > 0 we have that f ′s (t) > 0 showing that fs

is strictly increasing on the interval [0,∞). Now for t0 = a
b (b > 0, a ≥ 0) we have fs (t0) > fs (0)

giving that
(
a
b + 1

)s − (αb )s > 1, i.e., the inequality

(a+ b)
s
> as + bs.

Therefore
(x+ y)

n ≥ xn + yn

for all x, y ≥ 0 and n ≥ 1.

If x, y ∈ [0, 1) with x+ y ∈ [0, 1) , then

m∑
n=1

(x+ y)
n

(n+ α)
s ≥

m∑
n=1

xn

(n+ α)
s +

m∑
n=1

yn

(n+ α)
s .

Since the series
∞∑
n=1

(x+ y)
n

(n+ α)
s ,

∞∑
n=1

xn

(n+ α)
s and

∞∑
n=1

yn

(n+ α)
s (2.5)

are convergent, then by taking the limit over m→∞ in (2.5) we get

Φ (x+ y, s, α)− 1

α
≥ Φ (x, s, α)− 1

α
+ Φ (y, s, α)− 1

α

for x, y ∈ [0, 1) with x+ y ∈ [0, 1) , and the inequality (2.2) is obtained.

Further, we have the following convexity results for the second and third variables.

Theorem 2.2. Assume that x ∈ (0, 1) .

(i) The function Φ (x, ·, α) is logarithmic convex on (0,∞) for all α > 0;

(ii) The function Φ (x, s, ·) is convex on (0,∞) for all s > 0.

Proof. (i). Let s1, s2 > 0 and t ∈ (0, 1) . We have

1

(n+ α)
(1−t)s1+ts2

=

(
1

(n+ α)
s1

)1−t(
1

(n+ α)
s2

)t
.

Therefore

m∑
n=0

xn

(n+ α)
(1−t)s1+ts2

=

m∑
n=0

xn
(

1

(n+ α)
s1

)1−t(
1

(n+ α)
s2

)t
(2.6)

≤

 m∑
n=0

xn

[(
1

(n+ α)
s1

)1−t
]1/(1−t)

1−t
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×

 m∑
n=0

xn

[(
1

(n+ α)
s2

)t]1/t
t

=

(
m∑
n=0

xn

(n+ α)
s1

)1−t( m∑
n=0

xn

(n+ α)
s2

)t
,

where for the first inequality we used Hölder’s inequality

m∑
n=0

pnanbn ≤

(
m∑
n=0

pna
p
n

)1/p( m∑
n=0

pnb
q
n

)1/q

(2.7)

with pn, an, bn ≥ 0 for n ∈ {0, ...,m}, p, q > 1 and 1
p + 1

q = 1, for the choices

pn = xn, an =

(
1

(n+ α)
s1

)1−t

, bn =

(
1

(n+ α)
s2

)t
while p = 1/ (1− t) > 1, q = 1/t > 1.

Since the series

∞∑
n=0

xn

(n+ α)
(1−t)s1+ts2

,

∞∑
n=0

xn

(n+ α)
s1 and

∞∑
n=0

xn

(n+ α)
s2

are convergent, then by taking the limit over m→∞ in (2.6) we get

Φ (x, (1− t) s1 + ts2, α) ≤ [Φ (x, s1, α)]
(1−t)

[Φ (x, s2, α)]
t

s1, s2 > 0 and t ∈ [0, 1], namely the logarithmic convexity in the second variable.

(ii). Let α1, α2 > 0 and t ∈ [0, 1]. By the convexity of negative power function f (u) = u−s,
u > 0, s > 0 we have

1

(n+ (1− t)α1 + tα2)
s =

1

((1− t) (n+ α1) + t (n+ α2))
s

≤ (1− t) 1

(n+ α1)
s + t

1

(n+ α2)
s

for n ≥ 0.

Therefore

m∑
n=0

xn

(n+ (1− t)α1 + tα2)
s ≤ (1− t)

m∑
n=0

xn

(n+ α1)
s + t

m∑
n=0

xn

(n+ α2)
s (2.8)

for α1, α2 > 0, x ∈ (0, 1) and t ∈ [0, 1].

Since the series

∞∑
n=0

xn

(n+ (1− t)α1 + tα2)
s ,

m∑
n=0

xn

(n+ α1)
s and

m∑
n=0

xn

(n+ α2)
s

are convergent, then by taking the limit over m→∞ in (2.6) we get

Φ (x, s, (1− t)α1 + tα2) ≤ (1− t) Φ (x, s, α1) + tΦ (x, s, α2)

and the desired convexity is proved.
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We can define the m-truncated Lerch function by

Φm (z, s, α) :=

m∑
n=0

zn

(n+ α)
s , m ≥ 0.

By the identity (1.8) we have

Φm (z, s, α) = Φ (z, s, α)− zm+1Φ (z, s, α+m+ 1) , m ≥ 0. (2.9)

We observe that in the proofs of Theorems 2.1 and 2.2 we proved the required inequalities
for the finite case and therefore the above results remain valid if we replace Φ by Φm. As a
consequence, we can state the following results as well:

Theorem 2.3. a) Assume that s, α > 0 and m ≥ 1.

(i) The function Φ (|·| , s, α)−|·|m+1
Φ (|·| , s, α+m+ 1) is convex on the open disk D (0, 1) :=

{z ∈ C| |z| < 1} ,

(ii) The function Φ (·, s, α) − (·)m+1
Φ (·, s, α+m+ 1) is GG-convex on the interval [0, 1) ,

namely

0 ≤ Φ
(
x1−tyt, s, α

)
− zm+1Φ

(
x1−tyt, s, α+m+ 1

)
(2.10)

≤
[
Φ (x, s, α)− xm+1Φ (x, s, α+m+ 1)

]1−t
×
[
Φ (y, s, α)− ym+1Φ (y, s, α+m+ 1)

]t
for all x, y ∈ [0, 1) and t ∈ [0, 1] ,

(iii) For all x, y ∈ [0, 1) with x+ y ∈ [0, 1) ,

Φ (x+ y, s, α)− Φ (x, s, α)− Φ (y, s, α) +
1

α
(2.11)

≥ (x+ y)
m+1

Φ (x+ y, s, α+m+ 1)− xm+1Φ (x, s, α+m+ 1)

− ym+1Φ (y, s, α+m+ 1) .

b) Assume that x ∈ (0, 1) and m ≥ 1.

(iv) The function Φ (x, ·, α)−xm+1Φ (x, ·, α+m+ 1) Φ (x, ·, α) is logarithmic convex on (0,∞)
for all α > 0;

(v) The function Φ (x, s, ·)−xm+1Φ (x, s, ·+m+ 1) Φ (x, ·, α) is convex on (0,∞) for all s > 0.

Remark 1. If we consider the polylogarithm function

Li (s, z) :=

∞∑
n=1

zn

ns
, |z| < 1, α 6= 0,−1,−2, ...

then, by utilising a similar argument as above, we conclude that the function Li (s, |·|) is convex on
the open disk D (0, 1) , Li (s, ·)is GG-convex on the interval [0, 1) and satisfies the superadditivity
property

Li (s, x+ y) ≥ Li (s, x) + Li (s, y) (2.12)
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for all x, y ∈ [0, 1) with x+ y ∈ [0, 1) . Also, the function Li (·, x) is logarithmic convex on (0,∞)
for all x ∈ (0, 1) .

The Legendre chi is given by

χs (z) :=

∞∑
n=0

z2n+1

(2n+ 1)
s .

By making use of a similar argument to the one from the proofs of Theorems 2.1 and 2.2 we
conclude that χs (|·|) is convex on the open disk D (0, 1) , χs is GG-convex on the interval [0, 1)
and satisfies the superadditivity property

χs (x+ y) ≥ χs (x) + χs (y) (2.13)

for all x, y ∈ [0, 1) with x + y ∈ [0, 1) . Also, the function χ· (x) is logarithmic convex on (0,∞)
for all x ∈ (0, 1) .

3 Further Inequalities

The following result may be stated:

Proposition 3.1. Let α, β > 1 with α−1 + β−1 = 1 and x ∈ (0, 1) , γ > 0. If s, p, q ∈ R are
such that s+ p+ q > 0, s+ pα > 0 and s+ qβ > 0, then

Φ (x, s+ p+ q, γ) ≤ [Φ (x, s+ pα, γ)]
1
α [Φ (x, s+ qβ, γ)]

1
β . (3.1)

For x = 1, we get

ζ (s+ p+ q, γ) ≤ [ζ (s+ pα, γ)]
1/α

[ζ (s+ qβ, γ)]
1/β

(3.2)

provided s, p, q ∈ R are such that s+ p+ q > 1, s+ pα > 1 and s+ qβ > 1.

Proof. We use Hölder’s inequality to state that:

Φ (x, s+ p+ q, γ) =

∞∑
n=0

xn

(n+ γ)
s+p+q

=

∞∑
n=0

xn

(n+ γ)
s ·

1

(n+ γ)
p ·

1

(n+ γ)
q

≤

[ ∞∑
n=0

xn

(n+ γ)
s ·
(

1

(n+ γ)
p

)α] 1
α

×

[ ∞∑
n=0

xn

(n+ γ)
s ·
(

1

(n+ γ)
q

)β] 1
β

=

( ∞∑
n=0

xn

(n+ γ)
s+pα

) 1
α
( ∞∑
n=1

xn

(n+ γ)
s+qβ

) 1
β

= [Φ (x, s+ pα, γ)]
1
α [Φ (x, s+ qβ, γ)]

1
β ,

which proves the desired inequality (3.1).

The inequality (3.2) follows in a similar way.
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Remark 2. We observe that for α = β = 2, we obtain from (3.1) the following inequality

Φ2 (x, s+ p+ q, γ) ≤ [Φ (x, s+ 2p, γ)] [Φ (x, s+ 2q, γ)] (3.3)

provided the real numbers s, p, q satisfy the conditions s+ p+ q, s+ 2p, s+ 2q > 0. In its turn,
the inequality (3.3) for p = 0, q = 1 and in fact (3.1), is a generalization of the following result

Φ2 (x, s+ 1, γ) ≤ [Φ (x, s, γ)] [Φ (x, s+ 2, γ)] (3.4)

provided s > 0.

We remark that when the Hurwitz zeta function reduces to ζ, one obtains from (3.2) for
α = β = 2 that

ζ (s+ 1)

ζ (s)
≤ ζ (s+ 2)

ζ (s+ 1)
for s > 1. (3.5)

This inequality that was obtained in [2] by Cerone and Dragomir is an improvement of a result
due to Laforgia and Natalini [7] who proved that

ζ (s+ 1)

ζ (s)
≤ s+ 1

s
· ζ (s+ 2)

ζ (s+ 1)
for s > 1.

Their arguments make use of an integral representation of the Zeta function and Turán-type
inequalities.

It should be further noted that, if s = 2n, n ∈ N, then

Φ (x, 2n+ 1, γ) ≤
√

Φ (x, 2n, γ) Φ (x, 2n+ 2, γ), (3.6)

which in the case of the Zeta function gives by (3.5) the inequality [2]

ζ (2n+ 1) ≤
√
ζ (2n) ζ (2n+ 2),

demonstrating that Zeta at the odd integers is bounded above by the geometric mean of its
immediate even Zeta values.

The following result also holds:

Proposition 3.2. If a, b, c > 0, x ∈ (0, 1) and α > 0, then:

Φ (x, a, α) Φ (x, a+ b+ c, α) ≥ Φ (x, a+ b, α) Φ (x, a+ c, α) . (3.7)

Proof. Consider the sequence an := (n+ α)
b
, n ≥ 0, α > 0, b ∈ R. It is clear that an is increasing

if b > 0. Therefore, the sequences αn := 1
(n+α)b

, βn := 1
(n+α)c are both decreasing if b, c > 0.

Utilising Čebyšev’s inequality for synchronous sequences αn, βn with the nonnegative weights
pn,

m∑
n=0

pn

m∑
n=0

pnαnβn ≥
m∑
n=0

pnαn

m∑
n=0

pnβn (3.8)

we have:

Φ (x, a, α) Φ (x, a+ b+ c, α)

=

∞∑
n=0

xn

(n+ α)
a ·

∞∑
n=1

xn

(n+ α)
a ·

1

(n+ α)
b
· 1

(n+ α)
c
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= lim
m→∞

(
m∑
n=0

xn

(n+ α)
a ·

m∑
n=1

xn

(n+ α)
a ·

1

(n+ α)
b
· 1

(n+ α)
c

)

≥ lim
m→∞

(
m∑
n=1

xn

(n+ α)
a ·

1

(n+ α)
b
·
m∑
n=1

xn

(n+ α)
a ·

1

(n+ α)
c

)

=

∞∑
n=1

xn

(n+ α)
a ·

1

(n+ α)
b
·
∞∑
n=1

xn

(n+ α)
a ·

1

(n+ α)
c

= Φ (x, a+ b, α) Φ (x, a+ c, α) ,

and the inequality (3.7) is proved.

Remark 3. Utilising the inequality (3.7) (for c = b) we can state the following result

Φ (x, a, α) Φ (x, a+ 2b, α) ≥ Φ2 (x, a+ b, α) , (3.9)

provided the numbers a, b are positive. We also remark that the choice b = 1 will produce the
same inequality (3.4).

We have:

Theorem 3.1. Assume that p, q > 1 with 1
p + 1

q = 1.

(i) For z, w ∈ D (0, 1) ,

Φ (|zw| , s, α) ≤ [Φ (|z|p , s, α)]
1/p

[Φ (|w|q , s, α)]
1/q

(3.10)

where s, α > 0;

(ii) For s, t > 0,

Φ (x, st, α) ≥ (1− x) Φ

(
x,
sp

p
, α

)
Φ

(
x,
tp

q
, α

)
(3.11)

where x ∈ (0, 1) , α > 0;

(iii) For α, β > 0,

Φ (x, s, αβ) ≥ (1− x) Φ

(
x,
s

p
, αp
)

Φ

(
x,
s

q
, βq
)

(3.12)

where x ∈ (0, 1) , s > 0.

Proof. (i). By utilising Hölder’s discrete inequality (2.7), we have successively that

Φ (|zw| , s, α) =

∞∑
n=0

|zw|n

(n+ α)
s = lim

m→∞

m∑
n=0

|zw|n

(n+ α)
s

≤ lim
m→∞

( m∑
n=0

|z|pn

(n+ α)
s

)1/p( m∑
n=0

|w|qn

(n+ α)
s

)1/q


=

( ∞∑
n=0

|z|pn

(n+ α)
s

)1/p( ∞∑
n=0

|w|qn

(n+ α)
s

)1/q
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= [Φ (|z|p , s, α)]
1/p

[Φ (|w|q , s, α)]
1/q

and the inequality (3.10) is obtained.

(ii). We use Young’s inequality

st ≤ 1

p
sp +

1

q
tq, t, s > 0.

This implies that

(n+ α)
st ≤ (n+ α)

1
p s
p+ 1

q t
q

= (n+ α)
1
p s
p

(n+ α)
1
q t
q

,

namely
xn

(n+ α)
st ≥ x

n 1

(n+ α)
1
p s
p

1

(n+ α)
1
q t
q
,

which by summation gives

∞∑
n=0

xn

(n+ α)
st ≥

∞∑
n=0

xn
1

(n+ α)
1
p s
p

1

(n+ α)
1
q t
q
.

The sequences

an :=
1

(n+ α)
1
p s
p

and bn :=
1

(n+ α)
1
q t
q

are decreasing, pn := xn ≥ 0 and by Čebyšev’s inequality (3.8) we get

∞∑
n=0

xn
1

(n+ α)
1
p s
p

1

(n+ α)
1
q t
q

(3.13)

≥ 1∑∞
n=0 x

n

∞∑
n=0

xn
1

(n+ α)
1
p s
p

∞∑
n=0

xn
1

(n+ α)
1
q t
q
.

Since
∞∑
n=0

xn =
1

1− x
, x ∈ (0, 1) ,

hence by (3.13) we derive (3.11).

(iii). We use the elementary Hölder’s inequality

ab+ cd ≤ (ap + cp)
1/p

(bq + dq)
1/q

, a, b, c, d ≥ 0

to write that

n+ αβ ≤
((
n1/p

)p
+ αp

)1/p ((
n1/q

)q
+ βq

)1/q

= (n+ αp)
1/p

(n+ βq)
1/q

for α, β > 0 and n ≥ 0.

This gives
1

(n+ αβ)
s ≥

1

(n+ αp)
s/p

(n+ βq)
s/q
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and by Čebyšev’s inequality (3.8) we get

∞∑
n=0

xn
1

(n+ αβ)
s ≥

∞∑
n=0

xn
1

(n+ αp)
s/p

(n+ βq)
s/q

≥ 1∑∞
n=0 x

n

∞∑
n=0

xn
1

(n+ αp)
s/p

∞∑
n=0

xn
1

(n+ βq)
s/q

,

which proves the desired result (3.12).

Proposition 3.3. With the assumptions of Proposition 3.2 we have the reverse inequality

0 ≤ Φ (x, a, α) Φ (x, a+ b+ c, α)− Φ (x, a+ b, α) Φ (x, a+ c, α) (3.14)

≤ 1

4

1

αb+c
Φ2 (x, a, α) .

Proof. We use the following Grüss type inequality∣∣∣∣∣
m∑
n=0

pn

m∑
n=0

pnαnβn −
m∑
n=0

pnαn

m∑
n=0

pnβn

∣∣∣∣∣ ≤ 1

4
(A− a)(B − b)

(
m∑
n=0

pn

)2

, (3.15)

where a ≤ αn ≤ A, b ≤ βn ≤ B for for n ≥ 0 and the nonnegative weights pn.

Since

0 ≤ αn =
1

(n+ α)
b
≤ 1

αb
, 0 ≤ βn =

1

(n+ α)
c ≤

1

αc
,

hence by (3.15)

0 ≤
m∑
n=0

xn

(n+ α)
a ·

m∑
n=1

xn

(n+ α)
a ·

1

(n+ α)
b
· 1

(n+ α)
c (3.16)

−
m∑
n=1

xn

(n+ α)
a ·

1

(n+ α)
b
·
m∑
n=1

xn

(n+ α)
a ·

1

(n+ α)
c

≤ 1

4

1

αb
1

αc

(
m∑
n=0

xn

(n+ α)
a

)2

=
1

4

1

αb+c

(
m∑
n=0

xn

(n+ α)
a

)2

.

By taking the limit over m→∞ in (3.16) we get (3.14).

We also have:

Theorem 3.2. Assume that N ≥ 2 and 0 < γ ≤ k1, . . . , kN ≤ Γ <∞. Then

0 ≤ N − 1

2

N∑
j=1

Φ (x, 2kj , α)−
∑

1≤i<j≤N

Φ (x, ki + kj , α) (3.17)

≤ N2

4

[
Φ (x, 2Γ, α) + Φ (x, 2γ, α)

2
− Φ (x, γ + Γ, α)

]
for x ∈ (0, 1) and α > 0.
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Proof. We use the following Grüss type inequality:

1

N

N∑
j=1

z2
j −

 1

N

N∑
j=1

zj

2

≤ 1

4
(Γ− γ)

2
,

provided γ ≤ zj ≤ Γ for each j ∈ {1, . . . , N} .
Since γ ≤ kj ≤ Γ for j ∈ {1, . . . , N} , then

1

N

N∑
j=1

1

(n+ α)
2kj
− 1

N2

 N∑
j=1

1

(n+ α)
kj

2

≤ 1

4

(
1

(n+ α)
γ −

1

(n+ α)
Γ

)2

=
1

4

(
1

(n+ α)
2γ +

1

(n+ α)
2Γ
− 2

(n+ α)
γ+Γ

)

for n ≥ 1, which gives

1

N

N∑
j=1

1

(n+ α)
2kj
− 1

N2

 N∑
j=1

1

(n+ α)
2kj

+ 2
∑

1≤i<j≤N

1

(n+ α)
ki+kj


≤ 1

4

(
1

(n+ α)
2γ +

1

(n+ α)
2Γ
− 2

(n+ α)
γ+Γ

)

for n ≥ 1.

Multiplying with N2 and re-arranging, we get

N − 1

2

N∑
j=1

1

(n+ α)
2kj
−

∑
1≤i<j≤N

1

(n+ α)
ki+kj

(3.18)

≤ N2

4

(
1

2

[
1

(n+ α)
2γ +

1

(n+ α)
2Γ

]
− 1

(n+ α)
γ+Γ

)

for any n ≥ 1.

Finally, if we multiply (3.18) by xn ≥ 0 and sum over n ≥ 0, we get

N − 1

2

N∑
j=1

(
m∑
n=0

xn

(n+ α)
2kj

)
−

∑
1≤i<j≤N

(
m∑
n=0

xn

(n+ α)
ki+kj

)

≤ N2

4

(
1

2

[
m∑
n=0

xn

(n+ α)
2γ +

m∑
n=0

xn

(n+ α)
2Γ

]
−

m∑
n=0

xn

(n+ α)
γ+Γ

)
.

By taking the limit over m→∞ we get the desired inequality (3.17).

Theorem 3.3. The following statements hold:
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(i) For s > 0, α > 0 and β ∈ [0, 1] we have

Φ2 (zw, s, α) ≤ Φ
(
z1+βw1−β , s, α

)
Φ
(
z1−βw1+β , s, α

)
(3.19)

≤ Φ
(
z2, s, α

)
Φ
(
w2, s, α

)
,

where z, w ∈ [0, 1) .

(ii) For z ∈ [0, 1) , α > 0 and β ∈ [0, 1] we have

Φ2 (z, s+ t, α) ≤ Φ (z, (1 + β) s+ (1− β) t, α) Φ (z, (1− β) s+ (1 + β) t, α) (3.20)

≤ Φ (z, 2s, α) Φ (z, 2t, α)

for all s, t > 0.

Proof. We utilize the Callebaut inequality (see for instance [4, Remark 3. 31]) m∑
j=1

pjajbj

2

≤
m∑
j=1

pja
1+β
j b1−βj

m∑
j=1

pja
1−β
j b1+β

j ≤
m∑
j=1

pja
2
j

m∑
j=1

pjb
2
j , (3.21)

where pj , aj , bj ≥ 0, j ∈ {1, ..., n} and β ∈ [0, 1] .

(i). By (3.21) we have(
m∑
n=0

(zw)
n

(n+ α)
s

)2

=

(
m∑
n=0

znwn

(n+ α)
s

)2

(3.22)

≤

(
m∑
n=0

zn(1+β)wn(1−β)

(n+ α)
s

)(
m∑
n=0

zn(1−β)wn(1+β)

(n+ α)
s

)

=

(
m∑
n=0

(
z1+βw1−β)n

(n+ α)
s

)(
m∑
n=0

(
z1−βw1+β

)n
(n+ α)

s

)

≤
m∑
n=0

(
z2
)n

(n+ α)
s

m∑
n=0

(
w2
)n

(n+ α)
s

for z, w ∈ [0, 1) .

By taking the limit over m→∞ in (3.22) we get (3.19).

(ii). By (3.21) we have(
m∑
n=0

zn

(n+ α)
s+t

)2

=

(
m∑
n=0

zn
1

(n+ α)
s

1

(n+ α)
t

)2

(3.23)

≤

(
m∑
n=0

zn
1

(n+ α)
s(1+β)

1

(n+ α)
t(1−β)

)

×

(
m∑
n=0

zn
1

(n+ α)
s(1−β)

1

(n+ α)
t(1+β)

)

≤

(
m∑
n=0

zn
1

(n+ α)
2s

)(
m∑
n=0

zn
1

(n+ α)
2t

)
for z ∈ [0, 1) , α > 0, β ∈ [0, 1] and s, t > 0.

By taking the limit over m→∞ in (3.23) we get (3.20).
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Remark 4. For s, t > 1/2 the inequality (3.20) also holds if z = 1 giving the following result
for Hurwitz zeta function,

ζ2 (s+ t, α) ≤ ζ ((1 + β) s+ (1− β) t, α) ζ ((1− β) s+ (1 + β) t, α) (3.24)

≤ ζ (2s, α) ζ (2t, α)

for α > 0. In particular, we have the inequality for zeta function

ζ2 (s+ t) ≤ ζ ((1 + β) s+ (1− β) t) ζ ((1− β) s+ (1 + β) t) (3.25)

≤ ζ (2s) ζ (2t)

for s, t > 1/2.

By taking a = 2s, b = 2t > 1, we get from (3.24) and (3.25) that

ζ2

(
a+ b

2
, α

)
(3.26)

≤ ζ
(

(1 + β) a+ (1− β) b

2
, α

)
ζ

(
(1− β) a+ (1 + β) b

2
, α

)
≤ ζ (a, α) ζ (b, α)

for α > 0 and

ζ2

(
a+ b

2

)
(3.27)

≤ ζ
(

(1 + β) a+ (1− β) b

2

)
ζ

(
(1− β) a+ (1 + β) b

2

)
≤ ζ (a) ζ (b)

for a, b > 1, which is a refinement of logarithmic convexity property.

Further, by utilizing the following Hölder’s type inequality obtained by Dragomir and Sándor
in 1990 [5] (see also [4, Corollary 2.34]) for p, q > 1, 1

p + 1
q = 1,

m∑
k=0

mk |xk|p
m∑
k=0

mk |yk|q ≥
m∑
k=0

mk |xkyk|
m∑
k=0

mk |xk|p−1 |yk|q−1
(3.28)

that holds for nonnegative numbers mk and complex numbers xk, yk where k ∈ {0, ..., n}, we
observe that the convergence of the series

∑∞
k=0mk |xk|p ,

∑∞
k=0mk |yk|q imply the convergence

of the series
∑∞
k=0mk |xkyk| and

∑∞
k=0mk |xk|p−1 |yk|q−1

.

Theorem 3.4. Assume that p, q > 1, 1
p + 1

q = 1.

(i) For s, α > 0 we have

Φ (zw, s, α) Φ
(
zp−1wq−1, s, α

)
≤ Φ (zp, s, α) Φ (wq, s, α) (3.29)

for z, w ∈ [0, 1).

(ii) For z ∈ [0, 1) we have

Φ (z, s+ t, α) Φ (z, s (p− 1) + t (q − 1) , α) ≤ Φ (z, sp, α) Φ (z, tq, α) (3.30)

for s, t, α > 0.
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Proof. (i). From (3.28) we get

m∑
n=0

(zw)
n

(n+ α)
s

m∑
n=0

(
zp−1wq−1

)n
(n+ α)

s =

m∑
n=0

znwn

(n+ α)
s

m∑
n=0

zn(p−1)wn(q−1)

(n+ α)
s (3.31)

≤
m∑
n=0

znp

(n+ α)
s

m∑
n=0

wnq

(n+ α)
s

=

m∑
n=0

(zp)
n

(n+ α)
s

m∑
n=0

(wq)
n

(n+ α)
s

for z, w ∈ [0, 1) and s, α > 0.

By taking the limit over m→∞ in (3.31) we get (3.29).

(ii). From (3.28) we also have

m∑
n=0

zn

(n+ α)
s+t

m∑
n=0

zn

(n+ α)
s(p−1)+t(q−1)

(3.32)

=

m∑
n=0

zn

(n+ α)
s

(n+ α)
t

m∑
n=0

zn

(n+ α)
s(p−1)

(n+ α)
t(q−1)

≤
m∑
n=0

zn

(n+ α)
sp

m∑
n=0

zn

(n+ α)
tq

for z ∈ [0, 1) and s, t, α > 0.

By taking the limit over m→∞ in (3.32) we get (3.30).

Remark 5. For s > 1/p, t ≥ 1/q with p, q > 1, 1
p + 1

q = 1 the inequality (3.30) also holds if
z = 1 giving the following result for Hurwitz zeta function,

ζ (s+ t, α) ζ (s (p− 1) + t (q − 1) , α) ≤ ζ (sp, α) ζ (tq, α) (3.33)

for α > 0. In particular, we have the inequality for zeta function

ζ (s+ t) ζ (s (p− 1) + t (q − 1)) ≤ ζ (sp) ζ (tq) . (3.34)

Finally, we use the following inequality obtained by S. S. Dragomir in 1984, [3] (see also [4,
Theorem 2.20]): ∑m

j=0 pjajbj
∑m
j=0 pjaj

∑m
j=0 pjbj∑m

j=0 pj
≤

m∑
j=0

pja
2
j

m∑
j=0

pjb
2
j , (3.35)

that holds for the nonnegative numbers aj , bj , pj with j ∈ {0, ..., n} and
∑m
j=0 pj > 0.

Theorem 3.5. The following statements hold.

(i) For s, α > 0 we have

Φ (zw, s, α) ≤ ζ (s, α)
Φ
(
z2, s, α

)
Φ
(
w2, s, α

)
Φ (z, s, α) Φ (w, s, α)

(3.36)

for z, w ∈ [0, 1).
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(ii) For z ∈ [0, 1) we have

(1− z) Φ (z, s+ t, α) ≤ Φ (z, 2s, α) Φ (w, 2t, α)

Φ (z, s, α) Φ (w, t, α)
(3.37)

for s, t, α > 0.

Proof. (i). We have by (3.35) that

m∑
n=0

(zw)
n

(n+ α)
s

m∑
n=0

zn

(n+ α)
s

m∑
n=0

wn

(n+ α)
s (3.38)

≤
m∑
n=0

1

(n+ α)
s

m∑
n=0

z2n

(n+ α)
s

m∑
n=0

w2n

(n+ α)
s ,

for s, α > 0 and z, w ∈ [0, 1).

By taking the limit over m→∞ in (3.38) we get (3.36).

(ii). We also have by (3.35) that

m∑
n=0

zn

(n+ α)
s+t

m∑
n=0

zn

(n+ α)
s

m∑
n=0

zn

(n+ α)
t (3.39)

≤
m∑
n=0

zn
m∑
n=0

zn

(n+ α)
2s

m∑
n=0

zn

(n+ α)
2t ,

for s, t, α > 0 and z ∈ [0, 1).

By taking the limit over m→∞ in (3.39) we get (3.37).
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