GENERALIZATION OF COMMON FIXED POINT THEOREMS FOR WEAKLY COMMUTING MAPS BY ALTERING DISTANCES

*K. P. R. SASTRY, **S. V. R. NAIDU, *G. V. R. BABU AND ***G. A. NAIDU

Abstract. The main purpose of this paper is to obtain conditions for the existence of a unique common fixed point for four selfmaps on a complete metric space by altering distances between the points.

1. Introduction

Obtaining the existence and uniqueness of fixed points for selfmaps on a metric space by altering distances between the points with the use of a certain control function is an interesting aspect. In this direction, Khan, Swaleh and Sessa [1] established the existence and uniqueness of a fixed point for a single selfmap. Recently, Sastry and Babu [4] proved a fixed point theorem by altering distances between the points for a pair of selfmaps.

Pant [2] established a unique common fixed point theorem for four selfmaps by using the minimal type commutativity, contractive and continuity type conditions as follows.

Two selfmaps A and S of a metric space (X, d) are called compatible if $\lim_n d(ASx_n, SAx_n) = 0$ whenever $\{x_n\}$ is a sequence such that $\lim_n Ax_n = \lim_n Sx_n = t$ for some t in X.

Two selfmaps A and S of a metric space (X, d) are called R-weakly commuting at a point x in X if

$$d(ASx, SAx) \leq Rd(Ax, Sx)$$
 for some $R > 0$

The maps A and S are called pointwise R-weakly commuting on X if given x in X there exists R > 0 such that

$$d(ASx, SAx) \le Rd(Ax, Sx)$$

Let A and S be selfmappings of a metric space (X, d). We call A and S to be reciprocally continuous in X if

$$\lim_{n} ASx_n = At \text{ and } \lim_{n} SAx_n = St$$

whenever $\{x_n\}$ is a sequence in X such that

$$\lim_{n} Ax_n = \lim_{n} Sx_n = t \text{ for some } t \text{ in } X.$$

Received October 20, 1999; revised February 18, 2000.

2000 Mathematics Subject Classification. 47H10.

Key words and phrases. Complete metric space, selfmaps, compatible maps, weakly commuting maps and common fixed points.

Pant [2] proved the following theorem.

Theorem 1.1. Let (A, S) and (B, T) be pointwise R-weakly commuting pairs of selfmappings of a complete metric space (X, d) such that

i) $AX \subset TX, BX \subset SX$ ii) $d(Ax, By) \le hM(x, y), 0 \le h < 1, x, y \in X$ where

$$M(x,y) = \max\{d(Sx,Ty), d(Ax,Sx), d(By,Ty), \frac{1}{2}[d(Ax,Ty) + d(By,Sx)]\}.$$

Suppose that (A, S) or (B, T) is a compatible pair of reciprocally continuous mappings. Then A, B, S and T have a unique common fixed point.

We generalize theorem 1.1 by altering distances between the points (Theorem 2.1), using a certain control function,

 $\psi : \mathbb{R}^+ \to \mathbb{R}^+$ which is continuous at zero, monotonically increasing, $\psi(2t) \le 2\psi(t)$ and $\psi(t) = 0$ if and only if t = 0. (1.1.1)

We also give two examples (Examples 2.2) to show that ψ need not be subadditive.

In the rest of this paper, (X, d) is a complete metric space, \mathbb{R}^+ denotes the non-negative real line and \mathbb{Z}^+ non-negative integers.

Definition 1.2. Two selfmaps A and S of a metric space (X, d) are called weakly commuting if $d(ASx, SAx) \leq d(Ax, Sx)$ for every x in X. This condition implies that ASx = SAx whenever Ax = Sx.

Notation 1.3. If A, B, S and T are four selfmaps of (X, d) and ψ is as in (1.1.1), we write

$$M_{\psi}(x,y) = \max\{\psi(d(Sx,Ty)), \psi(d(Ax,Sx)), \psi(d(By,Ty)), \frac{1}{2}[\psi(d(Ax,Ty)] + \psi(d(By,Sx))]\}.$$

Definition 1.4. Two selfmaps A and S of a metric space (X, d) are called ψ -compatible if $\lim_{n} \psi(d(ASx_n, SAx_n)) = 0$ whenever $\{x_n\}$ is a sequence such that $\lim_{n} Ax_n = \lim_{n} Sx_n = t$ for some t in X.

2. Main Theorems

Theorem 2.1. Let (A, S) and (B, T) be weakly commuting pairs of selfmaps of a complete metric space (X, d) and ψ be as in (1.1.1), satisfying

- (i) $AX \subset TX$, $BX \subset SX$ and
- (ii) there exists h in [0,1) such that $\psi(d(Ax, By)) \leq hM_{\psi}(x, y)$ for all $x, y \in X$.

Suppose that (A, S) or (B, T) is a ψ -compatible pair of reciprocally continuous mappings. Then A, B, S and T have a unique common fixed point.

Proof. Let x_0 be any point in X. Let $\{x_n\}$ and $\{y_n\}$ be sequences in X. Then by (i) we can define, for n = 0, 1, 2, ...

$$y_{2n} = Ax_{2n} = Tx_{2n+1}$$

$$y_{2n+1} = Bx_{2n+1} = Sx_{2n+2}$$
 (2.1.1)

We now show that $\{y_n\}$ is a Cauchy sequence. From (ii), we have

$$\begin{split} \psi(d(y_{2n}, y_{2n+1})) &= \psi(d(Ax_{2n}, Bx_{2n+1})) \\ &\leq hM_{\psi}(x_{2n}, x_{2n+1}) \\ &= h \max\{\psi(d(Sx_{2n}, Tx_{2n+1})), \psi(d(Ax_{2n}, Sx_{2n})), \\ \psi(d(Bx_{2n+1}, Tx_{2n+1})), \frac{1}{2}\psi(d(Bx_{2n+1}, Sx_{2n}))\} \\ &= h \max\{\psi(d(y_{2n-1}, y_{2n})), \psi(d(y_{2n}, y_{2n-1})), \psi(d(y_{2n+1}, y_{2n})), \\ &\frac{1}{2}[\psi(d(y_{2n+1}, y_{2n-1}))\} \\ &= h \max\{\psi(d(y_{2n-1}, y_{2n})), \psi(d(y_{2n+1}, y_{2n})), \\ &\frac{1}{2}[\psi(d(y_{2n+1}, y_{2n-1}))\} \\ &\leq h \max\{\psi(d(y_{2n-1}, y_{2n})), \psi(d(y_{2n+1}, y_{2n})), \\ &\frac{1}{2}[\psi(d(y_{2n+1}, y_{2n}) + d(y_{2n}, y_{2n-1})]\} \\ &\leq h \max\{\psi(d(y_{2n-1}, y_{2n})), \psi(d(y_{2n+1}, y_{2n})), \\ &\frac{1}{2}(\psi(2 \max\{d(y_{2n+1}, y_{2n}), d(y_{2n}, y_{2n-1})\}]\}, \\ &\leq h \max\{\psi(d(y_{2n+1}, y_{2n}), \psi(d(y_{2n-1}, y_{2n})), \\ &\psi\max\{d(y_{2n+1}, y_{2n}), d(y_{2n}, y_{2n-1})\}\} \\ &= h\psi(d(y_{2n-1}, y_{2n})) \end{split}$$
(2.1.2)

In a similar way we can show that

$$\psi(d(y_{2n-1}, y_{2n})) \le h\psi(d(y_{2n-2}, y_{2n-1})) \tag{2.1.3}$$

From (2.1.2) and (2.1.3), we get

$$\psi(d(y_n, y_{n+1})) \le h^n \psi(d(y_0, y_1))$$

Also we have, for every positive integer p,

$$\psi(d(y_n, y_{n+p})) \leq \psi[d(y_n, y_{n+1}) + d(y_{n+1}, y_{n+2}) + \dots + d(y_{n+p-1}, y_{n+p})]$$

$$\leq \psi[(1 + h + \dots + h^{p-1})h^n d(y_0, y_1)]$$

$$\leq \psi[(\frac{1}{1 - h})h^n d(y_0, y_1)].$$

Now for a given $\varepsilon > 0$, there exists $N \in \mathbb{Z}^+$ such that

$$\psi[(\frac{1}{1-h})h^n d(y_0, y_1)] < \psi(\varepsilon) \text{ for all } n \ge N$$

This implies $d(y_n, y_{n+p}) < \varepsilon$ for all $n \ge N$. Hence $\{y_n\}$ is a Cauchy sequence in X.

Since X is complete, there is a point z in X such that $y_n \to z$ as $n \to \infty$. Hence from (2.1.1), we have

$$y_{2n} = Ax_{2n} = Tx_{2n+1} \to z$$

$$y_{2n+1} = Bx_{2n+1} = Sx_{2n+2} \to z$$
(2.1.4)

Now suppose that (A, S) is a ψ -compatible pair of reciprocally continuous mappings. Since A and S are reciprocally continuous, by (2.1.4), we get

$$ASx_{2n} \to Az \text{ and } SAx_{2n} \to Sz.$$
 (2.1.5)

 $\psi\text{-}\mathrm{compatibility}$ of A and S imply that

$$\lim_{n} \psi(d(ASx_{2n}, SAx_{2n})) = 0$$

We now show that Az = Sz. Suppose $Az \neq Sz$. Let $\varepsilon = \frac{1}{2}d(Az, Sz)$. Then there exists $N \in \mathbb{Z}^+$ such that

$$\psi(d(ASx_{2n}, SAx_{2n})) < \psi(\varepsilon) \text{ for all } n \ge N.$$

This implies that $d(ASx_{2n}, SAx_{2n}) < \varepsilon$ for all $n \ge N$. Hence by (2.1.5), $d(Az, Sz) < \varepsilon = \frac{1}{2}d(Az, Sz)$. a contradiction. Hence

$$Az = Sz \tag{2.1.6}$$

Since $AX \subset TX$, there is a point w in X such that Tw = Az. By (2.1.6),

$$Tw = Az = Sz. \tag{2.1.7}$$

Now, we show that Az = Bw. Suppose $Az \neq Bw$. Now by (ii) we have

$$\psi(d(Az, Bw)) \le hM_{\psi}(z, w)$$
$$= h\psi(d(Bw, Tw)) = h\psi(d(Bw, Az))$$

a contradiction. Hence Az = Bw. Therefore by (2.1.7),

$$Bw = Az = Sz = Tw \tag{2.1.8}$$

Since A and S are weakly commuting, we have by (2.1.8), ASz = SAz and

$$AAz = ASz = SAz = SSz \tag{2.1.9}$$

246

Since B and T are weakly commuting, we have

$$BBw = BTw = TBw = TTw \tag{2.1.10}$$

We now show that AAz = Az. Suppose $AAz \neq Az$, by (ii), we have

$$\begin{split} \psi(d(Az, AAz)) &= \psi(d(Bw, AAz)) \\ &\leq h M_{\psi}(Az, w) \\ &= h \psi(d(Az, AAz)) \quad (\text{by (2.1.8) and (2.1.9)}) \end{split}$$

a contradiction. Hence AAz = Az.

Also, we have, AAz = SAz. Therefore Az is a common fixed point for A and S. Also suppose $BBw \neq Bw$. By (ii), we have

$$\psi(d(Bw, BBw)) = \psi(d(Az, BBw)) \quad (by (2.1.8))$$

$$\leq hM_{\psi}(z, Bw)$$

$$= h\psi(d(Bw, BBw)) \quad (by (2.1.8) \text{ and } (2.1.10))$$

$$< \psi(d(Bw, BBw))$$

a contradiction. Hence BBw = Bw and since TBw = BBw, we have Bw is a common fixed point for B and T. Since Az = Bw, we have Az is a common fixed point for A, B, S and T. Uniqueness of a common fixed point follows by (ii). The proof is similar when the pair (B,T) is assumed ψ -compatible and reciprocally continuous.

The following two examples show that ψ defined as in (1.1.1) need not be subadditive; consequently $\psi \circ d$ need not be a metric.

2.2. Examples

(i) This is an example of a function $\psi : \mathbb{R}^+ \to \mathbb{R}^+$ which is neither continuous nor subadditive but is continuous at zero, monotonically increasing, vanishing only at '0' and $\psi(2t) \leq 2\psi(t)$.

Define

$$\psi(t) = \begin{cases} 0 \text{ if } t = 0\\ 2^{-n} \text{ if } 2^{-(n+1)} \le t < 2^{-n}, & n = 0, 1, 2, \dots \\ 1 \text{ if } t \ge 1 \end{cases}$$

Clearly $\psi(2t) \leq 2\psi(t)$, but $\psi(s+t) \leq \psi(s) + \psi(t)$ does not hold for s = 0.2 and t = 0.3. Clearly ψ is discontinuous at 2^{-n} , $n = 0, 1, 2, \dots$

(ii) This is an example of a function $\psi : \mathbb{R}^+ \to \mathbb{R}^+$ which is continuous, strictly increasing, vanishing only at '0' and $\psi(2t) = 2\psi(t)$ but not subadditive. Let k be a fixed positive real number.

Define

$$\psi(t) = \begin{cases} 0 & \text{if } t = 0\\ (3t - \frac{1}{2})k & \text{if } \frac{1}{2} \le t \le \frac{3}{4}\\ (t+1)k & \text{if } \frac{3}{4} < t < 1\\ 2^{n+1}\psi(\frac{t}{2^{n+1}}) & \text{if } 2^n \le t < 2^{n+1}, \ n = 0, 1, 2, ...\\ \frac{1}{2^n}\psi(2^nt) & \text{if } \frac{1}{2^{n+1}} \le t < \frac{1}{2^n}, \ n = 1, 2, 3, ... \end{cases}$$

Then $\psi(\frac{1}{2} + \frac{1}{4}) = \psi(\frac{3}{4}) = \frac{7}{4}k > \frac{3}{2}k = k + \frac{1}{2}k = \psi(\frac{1}{2}) + \psi(\frac{1}{4})$ so that ψ is not subadditive, while ψ has all the other properties mentioned above.

We state the following lemma, which is easy to prove. This lemma is used in the next theorem.

Lemma 2.3. Let $f : \mathbb{R}^+ \to \mathbb{R}^+$ be increasing, continuous at the origin and vanishing only at zero. Then $\{t_n\} \subset \mathbb{R}^+$ and $f(t_n) \to 0$ implies $t_n \to 0$.

In the above theorem, we replace reciprocal continuity of A and S by continuity of S and obtain result similar to Theorem 2.1,

Theorem 2.4. Let (A, S) and (B, T) be weakly commuting pairs of selfmaps of a complete metric space (X, d) and ψ be as in (1.1.1) satisfying

(i) $AX \subset TX$, $BX \subset SX$ and

(ii) there exists h in [0,1) such that

.

$$\psi(d(Ax, By)) \le hM_{\psi}(x, y)$$
 for all $x, y \in X$.

Suppose that A and S are ψ -compatible and S is continuous. Then A, B, S and T have a unique common fixed point.

Proof. Let x_0 be any point and let $\{x_n\}$ and $\{y_n\}$ be sequences in X, define, for n = 0, 1, 2, ..., by

$$y_{2n} = Ax_{2n} = Tx_{2n+1}$$

$$y_{2n+1} = Bx_{2n+1} = Sx_{2n+2}$$
(2.4.1)

As in theorem 2.1, the sequence $\{y_n\}$ is a Cauchy sequence in X. Since X is complete, there is a point z in X such that

$$y_{2n} = Ax_{2n} = Tx_{2n+1} \to z$$

and $y_{2n+1} = Bx_{2n+1} = Sx_{2n+2} \to z$ (2.4.2)

Since A and S are ψ -compatible $Ax_{2n} \to z$ and $Sx_{2n} \to z$ implies that

$$\lim \psi(d(SAx_{2n}, ASx_{2n})) = 0 \tag{2.4.3}$$

Since S is continuous $SAx_{2n} \to Sz$, $SSx_{2n} \to Sz$ as $n \to \infty$. Now we show that $\lim_n ASx_{2n} = Sz$. By (2.4.3),

$$\psi(d(ASx_{2n}, Sz)) \leq \psi(d(ASx_{2n}, SAx_{2n}) + d(SAx_{2n}, Sz)) \to 0 \text{ as } n \to \infty.$$

248

Hence by above lemma $d(ASx_{2n}, Sz) \to 0$ as $n \to \infty$.

Therefore $\lim_n ASx_{2n} = Sz$. Since $AX \subset TX$, for each n, there is w_{2n} in X such that $ASx_{2n} = Tw_{2n}$. Thus $SSx_{2n} \to Sz$, $SAx_{2n} \to Sz$ $ASx_{2n} \to Sz$ and $Tw_{2n} \to Sz$ as $n \to \infty$.

We now show that $\lim_{n} Bw_{2n} \to Sz$. If not, there exists $\varepsilon > 0$ and a subsequence $\{n_k\}$ such that $d(ASx_{2n_k}, Bw_{2n_k}) > \varepsilon$ and $\psi(d(ASx_{2n_k}, SAx_{2n_k})) < \varepsilon$ for all n_k . Therefore

$$\begin{split} \psi(\varepsilon) &\leq \psi(d(ASx_{2n_k}, Bw_{2n_k})) \\ &\leq hM_{\psi}(Sx_{2n_k}, w_{2n_k})) \\ &= h\max\{\psi(d(SSx_{2n_k}, Tw_{2n_k})), \psi(d(ASx_{2n_k}, SSx_{2n_k})), \psi(d(Bw_{2n_k}, Tw_{2n_k})), \\ &\frac{1}{2}[\psi(d(ASx_{2n_k}, Tw_{2n_k})) + \psi(d(Bw_{2n_k}, SSx_{2n_k}))]\} \\ &= h\max\{\psi(d(Bw_{2n_k}, Tw_{2n_k})), \frac{1}{2}\psi(d(Bw_{2n_k}, SSx_{2n_k}))\} \\ &= h\max\{\psi(d(Bw_{2n_k}, ASx_{2n_k})), \frac{1}{2}\psi(d(Bw_{2n_k}, SSx_{2n_k}))\} \\ &\leq h\max\{\psi(d(Bw_{2n_k}, ASx_{2n_k})), \frac{1}{2}\psi(d(Bw_{2n_k}, ASx_{2n_k})) + d(ASx_{2n_k}, SSx_{2n_k})]\} \\ &= h\psi(d(Bw_{2n_k}, ASx_{2n_k})) < \psi(d(Bw_{2n_k}, ASx_{2n_k}), \\ \end{split}$$

a contradiction. Hence $\lim_n Bw_{2n} = Sz$. We now show that Az = Sz. By (ii) we have

$$\psi(d(Az, Bw_{2n})) \le hM_{\psi}(z, w_{2n}))$$

= $h \max\{\psi(d(Az, Sz)), \frac{1}{2}\psi(d(Az, Tw_{2n}))]\}$

Letting $n \to \infty$, we get

$$\psi(d(Az, Sz)) \le h \max\{\psi(d(Az, Sz)), \frac{1}{2}\psi(d(Az, Sz))\}$$
$$= h\psi(d(Az, Sz))$$

a contradiction. Hence Az = Sz. Since $AX \subset TX$, there exists w in X such that Az = Tw. Hence Sz = Az = Tw. We now show that Az = Bw. Suppose $Az \neq Bw$, by (ii) we have

$$\begin{split} \psi(d(Az, Bw)) &\leq h M_{\psi}(z, w) \\ &= h \max\{\psi(d(Bw, Tw)), \ \frac{1}{2}\psi(d(Bw, Sz))\} \\ &= h \max\{\psi(d(Bw, Az)), \ \frac{1}{2}\psi(d(Bw, Az))\} \\ &= h\psi(d(Bw, Az)) \end{split}$$

a contradiction. Hence Az = Bw. Thus Sz = Az = Tw = Bw. Since A and S are weakly commuting, we have ASz = SAz and hence AAz = ASz = SAz = SSz and by

the weakly commuting property of B and T, we have BBw = BTw = TBw = TTw. The remaining part of the proof is as in Theorem 2.1.

Note. The above theorem is valid if we assume B and T are ψ -compatible and T is continuous, instead of similar restrictions on A and S.

Note. We observe that the theorem of Pant [2] is a special case of Theorem 2.1 by taking ψ as the identity function.

We conclude the paper with the following open problem:

Open problem.

Is theorem 2.4 valid if we replace continuity of S by continuity of A or continuity of T by continuity of B?

References

- M. S. Khan, M. Swaleh and S. Sessa, Fixed point theorem by altering distances between the points, Bull. Austral. Math. Soc., 30(1984), 1-9.
- [2] R. P. Pant, Common fixed points of four mappings, Bull. Cal. Math. Soc., 90(1998), 281-286.
- [3] R. P. Pant, Common fixed point theorems for contractive mappings, J. Math. Anal. Appl., 226(1998), 251-256.
- [4] K. P. R. Sastry and G. V. R. Babu, Some fixed point theorems by altering distances between the points, Ind. J. Pure and Appl. Math., 30(June 1999), 641-647.

*Department of Mathematics, Andhra University, Visakhapatnam-530 003, India.

**Department of Applied Mathematics, Andhra University, Visakhapatnam 530 003, India (Currently at: Dept. of Mathematics, University of Bostswana, Gaborone, Botswana)

***Department of Mathematics, A. U. Dr. B. R. A. P. G. Gentre, Etcherla, Srikakulam 532 402, India.