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GENERALIZATION OF COMMON FIXED POINT THEOREMS

FOR WEAKLY COMMUTING MAPS BY ALTERING DISTANCES

∗K. P. R. SASTRY, ∗∗S. V. R. NAIDU, ∗G. V. R. BABU AND ∗∗∗G. A. NAIDU

Abstract. The main purpose of this paper is to obtain conditions for the existence of a unique

common fixed point for four selfmaps on a complete metric space by altering distances between

the points.

1. Introduction

Obtaining the existence and uniqueness of fixed points for selfmaps on a metric space
by altering distances between the points with the use of a certain control function is an
interesting aspect. In this direction, Khan, Swaleh and Sessa [1] established the existence
and uniqueness of a fixed point for a single selfmap. Recently, Sastry and Babu [4] proved
a fixed point theorem by altering distances between the points for a pair of selfmaps.

Pant [2] established a unique common fixed point theorem for four selfmaps by using
the minimal type commutativity, contractive and continuity type conditions as follows.

Two selfmaps A and S of a metric space (X, d) are called compatible if limn d(ASxn,
SAxn) = 0 whenever {xn} is a sequence such that limnAxn = limn Sxn = t for some t
in X .

Two selfmaps A and S of a metric space (X, d) are called R-weakly commuting at a
point x in X if

d(ASx, SAx) ≤ Rd(Ax, Sx) for some R > 0

The maps A and S are called pointwise R-weakly commuting on X if given x in X there
exists R > 0 such that

d(ASx, SAx) ≤ Rd(Ax, Sx)

Let A and S be selfmappings of a metric space (X, d). We call A and S to be reciprocally
continuous in X if

lim
n
ASxn = At and lim

n
SAxn = St

whenever {xn} is a sequence in X such that

lim
n
Axn = lim

n
Sxn = t for some t in X.
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Pant [2] proved the following theorem.

Theorem 1.1. Let (A,S) and (B, T ) be pointwise R-weakly commuting pairs of

selfmappings of a complete metric space (X, d) such that

i) AX ⊂ TX , BX ⊂ SX

ii) d(Ax,By) ≤ hM(x, y), 0 ≤ h < 1, x, y ∈ X where

M(x, y) = max{d(Sx, T y), d(Ax, Sx), d(By, Ty),
1

2
[d(Ax, Ty) + d(By, Sx)]}.

Suppose that (A,S) or (B, T ) is a compatible pair of reciprocally continuous mappings.
Then A, B, S and T have a unique common fixed point.

We generalize theorem 1.1 by altering distances between the points (Theorem 2.1),
using a certain control function,

ψ : R
+ → R

+ which is continuous at zero, monotonically increasing, ψ(2t) ≤ 2ψ(t)
and ψ(t) = 0 if and only if t = 0. (1.1.1)
We also give two examples (Examples 2.2) to show that ψ need not be subadditive.

In the rest of this paper, (X, d) is a complete metric space, R
+ denotes the non-

negative real line and Z
+ non-negative integers.

Definition 1.2. Two selfmaps A and S of a metric space (X, d) are called weakly
commuting if d(ASx, SAx) ≤ d(Ax, Sx) for every x in X . This condition implies that
ASx = SAx whenever Ax = Sx.

Notation 1.3. If A, B, S and T are four selfmaps of (X, d) and ψ is as in (1.1.1),
we write

Mψ(x, y) = max{ψ(d(Sx, T y)), ψ(d(Ax, Sx)), ψ(d(By, Ty)),

1

2
[ψ(d(Ax, Ty)] + ψ(d(By, Sx))]}.

Definition 1.4. Two selfmaps A and S of a metric space (X, d) are called
ψ-compatible if limn ψ(d(ASxn, SAxn)) = 0 whenever {xn} is a sequence such that
limnAxn = limn Sxn = t for some t in X .

2. Main Theorems

Theorem 2.1. Let (A,S) and (B, T ) be weakly commuting pairs of selfmaps of a

complete metric space (X, d) and ψ be as in (1.1.1), satisfying

(i) AX ⊂ TX , BX ⊂ SX and

(ii) there exists h in [0, 1) such that ψ(d(Ax,By)) ≤ hMψ(x, y) for all x, y ∈ X.

Suppose that (A,S) or (B, T ) is a ψ-compatible pair of reciprocally continuous map-
pings. Then A,B, S and T have a unique common fixed point.
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Proof. Let x0 be any point in X . Let {xn} and {yn} be sequences in X . Then by
(i) we can define, for n = 0, 1, 2, . . .

y2n = Ax2n = Tx2n+1

y2n+1 = Bx2n+1 = Sx2n+2 (2.1.1)

We now show that {yn} is a Cauchy sequence.
From (ii), we have

ψ(d(y2n, y2n+1)) = ψ(d(Ax2n, Bx2n+1))

≤ hMψ(x2n, x2n+1)

= hmax{ψ(d(Sx2n, Tx2n+1)), ψ(d(Ax2n, Sx2n)),

ψ(d(Bx2n+1, Tx2n+1)),
1

2
ψ(d(Bx2n+1, Sx2n))}

= hmax{ψ(d(y2n−1, y2n)), ψ(d(y2n, y2n−1)), ψ(d(y2n+1, y2n)),

1

2
[ψ(d(y2n+1, y2n−1))}

= hmax{ψ(d(y2n−1, y2n)), ψ(d(y2n+1, y2n)),

1

2
[ψ(d(y2n+1, y2n−1))}

≤ hmax{ψ(d(y2n−1, y2n)), ψ(d(y2n+1, y2n)),

1

2
[ψ(d(y2n+1, y2n) + d(y2n, y2n−1)]}

≤ hmax{ψ(d(y2n−1, y2n)), ψ(d(y2n+1, y2n)),

1

2
(ψ(2 max{d(y2n+1, y2n), d(y2n, y2n−1)}]},

≤ hmax{ψ(d(y2n+1, y2n)), ψ(d(y2n−1, y2n)),

ψmax{d(y2n+1, y2n), d(y2n, y2n−1)}}

= hψ(d(y2n−1, y2n)) (2.1.2)

In a similar way we can show that

ψ(d(y2n−1, y2n)) ≤ hψ(d(y2n−2, y2n−1)) (2.1.3)

From (2.1.2) and (2.1.3), we get

ψ(d(yn, yn+1)) ≤ hnψ(d(y0, y1))

Also we have, for every positive integer p,

ψ(d(yn, yn+p)) ≤ ψ[d(yn, yn+1) + d(yn+1, yn+2) + · · · + d(yn+p−1, yn+p)]

≤ ψ[(1 + h+ · · · + hp−1)hnd(y0, y1)]

≤ ψ[(
1

1 − h
)hnd(y0, y1)].
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Now for a given ε > 0, there exists N ∈ Z
+ such that

ψ[(
1

1 − h
)hnd(y0, y1)] < ψ(ε) for all n ≥ N

This implies d(yn, yn+p) < ε for all n ≥ N .
Hence {yn} is a Cauchy sequence in X .
Since X is complete, there is a point z in X such that yn → z as n → ∞. Hence from
(2.1.1), we have

y2n = Ax2n = Tx2n+1 → z

y2n+1 = Bx2n+1 = Sx2n+2 → z (2.1.4)

Now suppose that (A,S) is a ψ-compatible pair of reciprocally continuous mappings.
Since A and S are reciprocally continuous, by (2.1.4), we get

ASx2n → Az and SAx2n → Sz. (2.1.5)

ψ-compatibility of A and S imply that

lim
n
ψ(d(ASx2n, SAx2n) = 0

We now show that Az = Sz. Suppose Az 6= Sz. Let ε = 1
2d(Az, Sz). Then there exists

N ∈ Z
+ such that

ψ(d(ASx2n, SAx2n)) < ψ(ε) for all n ≥ N.

This implies that d(ASx2n, SAx2n) < ε for all n ≥ N . Hence by (2.1.5), d(Az, Sz) <
ε = 1

2d(Az, Sz). a contradiction. Hence

Az = Sz (2.1.6)

Since AX ⊂ TX , there is a point w in X such that Tw = Az. By (2.1.6),

Tw = Az = Sz. (2.1.7)

Now, we show that Az = Bw. Suppose Az 6= Bw. Now by (ii) we have

ψ(d(Az,Bw)) ≤ hMψ(z, w)

= hψ(d(Bw, Tw)) = hψ(d(Bw,Az))

a contradiction. Hence Az = Bw. Therefore by (2.1.7),

Bw = Az = Sz = Tw (2.1.8)

Since A and S are weakly commuting, we have by (2.1.8), ASz = SAz and

AAz = ASz = SAz = SSz (2.1.9)
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Since B and T are weakly commuting, we have

BBw = BTw = TBw = TTw (2.1.10)

We now show that AAz = Az. Suppose AAz 6= Az, by (ii), we have

ψ(d(Az,AAz)) = ψ(d(Bw,AAz))

≤ hMψ(Az,w)

= hψ(d(Az,AAz)) (by (2.1.8) and (2.1.9))

a contradiction. Hence AAz = Az.

Also, we have, AAz = SAz. Therefore Az is a common fixed point for A and S. Also

suppose BBw 6= Bw. By (ii), we have

ψ(d(Bw,BBw)) = ψ(d(Az,BBw)) (by (2.1.8))

≤ hMψ(z,Bw)

= hψ(d(Bw,BBw)) (by (2.1.8) and (2.1.10))

< ψ(d(Bw,BBw))

a contradiction. Hence BBw = Bw and since TBw = BBw, we have Bw is a common

fixed point for B and T . Since Az = Bw, we have Az is a common fixed point for A, B,

S and T . Uniqueness of a common fixed point follows by (ii). The proof is similar when

the pair (B, T ) is assumed ψ-compatible and reciprocally continuous.

The following two examples show that ψ defined as in (1.1.1) need not be subadditive;

consequently ψ ◦ d need not be a metric.

2.2. Examples

(i) This is an example of a function ψ : R
+ → R

+ which is neither continuous nor

subadditive but is continuous at zero, monotonically increasing, vanishing only at ‘0’

and ψ(2t) ≤ 2ψ(t).

Define

ψ(t) =







0 if t = 0

2−n if 2−(n+1) ≤ t < 2−n, n = 0, 1, 2, . . .

1 if t ≥ 1

Clearly ψ(2t) ≤ 2ψ(t), but ψ(s+ t) ≤ ψ(s) + ψ(t) does not hold for s = 0.2 and t = 0.3.

Clearly ψ is discontinuous at 2−n, n = 0, 1, 2, . . ..

(ii) This is an example of a function ψ : R
+ → R

+ which is continuous, strictly increasing,

vanishing only at ‘0’ and ψ(2t) = 2ψ(t) but not subadditive. Let k be a fixed positive

real number.
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Define

ψ(t) =























0 if t = 0

(3t− 1
2 )k if 1

2 ≤ t ≤ 3
4

(t+ 1)k if 3
4 < t < 1

2n+1ψ( t
2n+1 ) if 2n ≤ t < 2n+1, n = 0, 1, 2, . . .

1
2nψ(2nt) if 1

2n+1 ≤ t < 1
2n , n = 1, 2, 3, . . .

Then ψ(1
2 + 1

4 ) = ψ(3
4 ) = 7

4k >
3
2k = k+ 1

2k = ψ(1
2 )+ψ(1

4 ) so that ψ is not subadditive,
while ψ has all the other properties mentioned above.

We state the following lemma, which is easy to prove. This lemma is used in the next
theorem.

Lemma 2.3. Let f : R
+ → R

+ be increasing, continuous at the origin and vanishing

only at zero. Then {tn} ⊂ R
+ and f(tn) → 0 implies tn → 0.

In the above theorem, we replace reciprocal continuity of A and S by continuity of S
and obtain result similar to Theorem 2.1,

Theorem 2.4. Let (A,S) and (B, T ) be weakly commuting pairs of selfmaps of a

complete metric space (X, d) and ψ be as in (1.1.1) satisfying

(i) AX ⊂ TX, BX ⊂ SX and

(ii) there exists h in [0, 1) such that

ψ(d(Ax,By)) ≤ hMψ(x, y) for all x, y ∈ X.

Suppose that A and S are ψ-compatible and S is continuous. Then A, B, S and T have
a unique common fixed point.

Proof. Let x0 be any point and let {xn} and {yn} be sequences in X , define, for
n = 0, 1, 2, . . ., by

y2n = Ax2n = Tx2n+1

y2n+1 = Bx2n+1 = Sx2n+2 (2.4.1)

As in theorem 2.1, the sequence {yn} is a Cauchy sequence in X . Since X is complete,
there is a point z in X such that

y2n = Ax2n = Tx2n+1 → z

and y2n+1 = Bx2n+1 = Sx2n+2 → z (2.4.2)

Since A and S are ψ-compatible Ax2n → z and Sx2n → z implies that

lim
n
ψ(d(SAx2n, ASx2n)) = 0 (2.4.3)

Since S is continuous SAx2n → Sz, SSx2n → Sz as n → ∞. Now we show that
limnASx2n = Sz. By (2.4.3),

ψ(d(ASx2n, Sz)) ≤ ψ(d(ASx2n, SAx2n) + d(SAx2n, Sz)) → 0 as n→ ∞.
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Hence by above lemma d(ASx2n, Sz) → 0 as n→ ∞.

Therefore limnASx2n = Sz. Since AX ⊂ TX , for each n, there is w2n in X such
that ASx2n = Tw2n. Thus SSx2n → Sz, SAx2n → Sz ASx2n → Sz and Tw2n → Sz as
n→ ∞.

We now show that limn Bw2n → Sz. If not, there exists ε > 0 and a subsequence {nk}
such that d(ASx2nk

, Bw2nk
) > ε and ψ(d(ASx2nk

, SAx2nk
)) < ε for all nk. Therefore

ψ(ε) ≤ ψ(d(ASx2nk
, Bw2nk

))

≤ hMψ(Sx2nk
, w2nk

))

= hmax{ψ(d(SSx2nk
, Tw2nk

)), ψ(d(ASx2nk
, SSx2nk

)), ψ(d(Bw2nk
, Tw2nk

)),

1

2
[ψ(d(ASx2nk

, Tw2nk
)) + ψ(d(Bw2nk

, SSx2nK
))]}

= hmax{ψ(d(Bw2nk
, Tw2nk

)),
1

2
ψ(d(Bw2nk

, SSx2nk
))}

= hmax{ψ(d(Bw2nk
, ASx2nk

)),
1

2
ψ(d(Bw2nk

, SSx2nk
))}

≤ hmax{ψ(d(Bw2nk
, ASx2nk

)),
1

2
ψ(d(Bw2nk

, ASx2nk
) + d(ASx2nk

, SSx2nk
)]}

= hψ(d(Bw2nk
, ASx2nk

)) < ψ(d(Bw2nk
, ASx2nk

),

a contradiction. Hence limnBw2n = Sz. We now show that Az = Sz. By (ii) we have

ψ(d(Az,Bw2n)) ≤ hMψ(z, w2n))

= hmax{ψ(d(Az, Sz)),
1

2
ψ(d(Az, Tw2n))]}

Letting n→ ∞, we get

ψ(d(Az, Sz)) ≤ hmax{ψ(d(Az, Sz)),
1

2
ψ(d(Az, Sz))}

= hψ(d(Az, Sz))

a contradiction. Hence Az = Sz. Since AX ⊂ TX , there exists w in X such that
Az = Tw. Hence Sz = Az = Tw. We now show that Az = Bw. Suppose Az 6= Bw, by

(ii) we have

ψ(d(Az,Bw)) ≤ hMψ(z, w)

= hmax{ψ(d(Bw, Tw)),
1

2
ψ(d(Bw,Sz))}

= hmax{ψ(d(Bw,Az)),
1

2
ψ(d(Bw,Az))}

= hψ(d(Bw,Az))

a contradiction. Hence Az = Bw. Thus Sz = Az = Tw = Bw. Since A and S are

weakly commuting, we have ASz = SAz and hence AAz = ASz = SAz = SSz and by
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the weakly commuting property of B and T , we have BBw = BTw = TBw = TTw.

The remaining part of the proof is as in Theorem 2.1.

Note. The above theorem is valid if we assume B and T are ψ-compatible and T is

continuous, instead of similar restrictions on A and S.

Note. We observe that the theorem of Pant [2] is a special case of Theorem 2.1 by

taking ψ as the identity function.

We conclude the paper with the following open problem:

Open problem.

Is theorem 2.4 valid if we replace continuity of S by continuity of A or continuity of

T by continuity of B?
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