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MATRIX TRANSFORMATIONS INVOLVING CERTAIN BANACH

SPACE VALUED SEQUENCE SPACES

J. K. SRIVASTAVA AND B. K. SRIVASTAVA

Abstract. In this paper for Banach spaces X and Y we characterize matrix classes (Γ(X, λ),

l∞(Y, µ)), (Γ(X, λ), C(Y, µ)), (Γ(X, λ), c0(Y, µ)), (Γ(X, λ), Γ∗(Y, µ)), (l1(X, λ), Γ(Y, µ)) and

(c0(X, λ), c0(Y, µ)) of bounded linear operators involving X- and Y -valued sequence spaces.

Further as an application of the matrix class (c0(X, λ), c0(Y, µ)) we investigate the Banach

space B(c0(X, λ), c0(Y, µ)) of all bounded linear mappings of c0(x, λ) to c0(Y, µ).

1. Introduction

Let λ = (λk) and µ = (µk) be any sequences of non-zero complex numbers, X and Y
be Banach spaces over the field C of complex numbers and B(X, Y ) denote the Banach
space of all bounded linear operators from X into Y with the usual operator norm.

Let A = (Ank), (n, k = 1, 2, 3 . . .) be an infinite matrix of bounded linear operators
Ank on the Banach space X into the Banach space Y . Then for the classes of X-valued
sequences E(X) and Y -valued sequences F (Y ), we define the matrix class (E(X), F (Y ))
by saying that

A = (Ank) ∈ ((E(X), F (Y ))

if

for every x = (xk) ∈ E(X),

yn = An(x) =

∞
∑

k=1

Ankxk

converges in the norm of Y , for each n, and the sequence y = (yn) = (An(x)) belongs to
F (Y ). In such a case y = Ax is called the A transform of x.

We define

Γ(X, λ) = {x = (xk) : xk ∈ X, ‖λkxk‖
1/k → 0 as k → ∞}, and

Γ∗(X, λ) = {x = (xk) : xk ∈ X, sup
k

‖λkxk‖
1/k < ∞}.
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Similarly Γ(Y, µ) and Γ∗(Y, µ) are defined.

The above defined spaces are the generalizations of Γ and Γ∗ respectively, introduced

by Iyer [2, 3]. Moreover Γ(X, λ) and Γ∗(X, λ) can be viewed as special cases of c0(X, λ, p)

and l∞(X, λ, p) respectively introduced and studied in [8, 9]. In fact c0(X, λ, (1/k)) =

Γ(X, λ) and l∞(X, λ, (1/k)) = Γ∗(X, λ). However we prefer the notations Γ(X, λ) and

Γ∗(X, λ) in place of c0(X, λ, (1/k)) and l∞(X, λ, (1/k)) for obvious reasons as we observe

that they are more close to Γ and Γ∗. Analogous to Pλ,p for c0(X, λ, p) of [8] we define

Pλ(x) = sup
k

‖λkxk‖
1/k, x = (xk) ∈ Γ(X, λ) or Γ∗(X, λ),

and we see that (Γ(X, λ), Pλ) is a complete total paranomed space [cf. Theorem 2.22

of [9]] and hence Γ(X, λ) is a complete linear metric space with respect to the metric

induced by the paranorm. θ = (θ, θ, θ, . . .) will denote the zero of Γ(X, λ). Some other

properties such as generalized Köthe-Toeplitz duals, continuous duals etc. for the space

(Γ(X, λ), Pλ) can easily be derived from the concerning results already investigated in

[8] about c0(X, λ, p). Since infk 1/k = 0, therefore Γ∗(X, λ) is simply a complete metric

space with respect to the metric induced by Pλ. This assertion follows from Theorem

2.18 of [9]. We further define

c0(X, λ) = {x = (xk) : xk ∈ X, ‖λkxk‖ → 0 as k → ∞},

c(X, λ)={x=(xk) : xk ∈X, there exists l∈X such that ‖λkxk−l‖→0 as k→∞},

l∞(X, λ) = {x = (xk) : xk ∈ X, sup
k

‖λkxk‖ < ∞},

and l1(X, λ) = {x = (xk) : xk ∈ X,
∞
∑

k=1

‖λkxk‖ < ∞}.

As mentioned in [8] and [9] we note these spaces are particular cases of c0(X, λ, p),

c(X, λ, p), l∞(X, λ, p) and l(X, λ, p), when pk = 1 for all k ≥ 1. Of course c0(X, λ),

c(X, λ), l∞(X, λ) are Banach spaces with the norm

‖x‖λ = sup
k

‖λkxk‖

and l1(X, λ) is a Banach space with the norm

‖x‖λ =

∞
∑

k=1

‖λkxk‖.

We recall the definition of generalized β-dual for the class E(X) of X-valued se-

quences.

Definition 1.1. [7, p.8] Let X and Y be Banach spaces and A = (Ak) a sequence

of linear, but not necessarily bounded, operators Ak on X into Y . Suppose E(X) is a
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non-empty set of X-valued sequences. Then the β-dual of E(X) is defined by Eβ(X) =

{A = (Ak) :
∑∞

k=1 Akxk converges in Y for all x ∈ E(X)}.

Definition 1.2. [7, p.5] Let A = (Ak) be a sequence in B(X, Y ). Then the group

norm of (Ak) is defined by ‖(Ak)‖ = sup ‖
∑n

k=1 Akxk‖, where supremum is taken over

all n ≥ 1 and xk ∈ S, (S is the closed unit sphere in X).

We refer [7] for some of the properties of group norm and while dealing with group

norm in section 4, we shall use notation Rk(A) = (Ak, Ak+1, . . .).

A number of results regarding the characterization of matrix classes of linear opera-

tors between some of the Banach space valued sequence spaces corresponding to scalar

sequence spaces c0, c, l∞, lp etc. have been obtained, for instance see [7]. Our aim in

this note is to investigate some of the matrix classes of linear operators involving certain

Banach space valued sequence spaces which will lead to generalizations of some of the

results determined by Rao [5, 6] for scalar sequence spaces c0, c, l1, Γ, Γ∗ etc.

2. Matrix Transformations between Some Banach Space Valued Sequence

Spaces

In this section we characterize matrix transformations (of bounded linear operators)

between certain Banach space valued sequence spaces, viz. (Γ(X, λ), l∞(Y, µ)), (Γ(X, λ),

c(Y, µ)), (Γ(X, λ), c0(Y, µ)) and (Γ(X, λ), Γ∗(Y, µ)).

In order to establish conditions characterizing (Γ(X, λ), c0(Y, µ)) we first prove:

Lemma 2.1. A = (Ak) ∈ Γβ(X, λ), the generalized β-dual of Γ(X, λ), if and only if

sup
k

‖λ−1
k Ak‖

1/k < ∞.

Proof. The sufficiency of the condition is straight forward. For the necessity, we

suppose A = (Ak) ∈ Γβ(X, λ) but supk ‖λ
−1
k Ak‖

1/k = ∞. Then there exists a subse-

quence (k(n)) of (k) such that ‖λ−1
k(n)Ak(n)‖ > nk(n); n ≥ 1 and for each n ≥ 1 there

exists zn ∈ S (the closed unit sphere in X) such that 2‖λ−1
k(n)Ak(n)zn‖ > nk(n). Now we

define

xk = n−k(n)λ−1
k(n)zn; if k = k(n), n ≥ 1 and

= θ, otherwise.

Then we see that x = (xk) ∈ Γ(X, λ) but A = (Ak) 6∈ Γβ(X, λ), which leads to a

contradiction. This completes the proof.

Theorem 2.2. A = (Ank) ∈ (Γ(X, λ), l∞(Y, µ)) if and only if there exists M > 0

such that

‖µnλ−1
k Ank‖

1/k ≤ M
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independently of n ≥ 1 and k ≥ 1.

Proof. For the sufficiency, we consider x = (xk) ∈ Γ(X, λ) and for ε > 0 we choose
0 < η < 1 so that ηM < ε

3+ε . Then there exists a K such that ‖λkxk‖
1/k < η for all

k ≥ K.

Now for yn =
∑∞

k=1 Ankxk,

‖µnyn‖ = ‖

∞
∑

k=1

µnAnkxk‖

≤
K−1
∑

k=1

Mk‖λkxk‖ +
Mη

1 − Mη

<
K−1
∑

k=1

Mk‖λkxk‖ + ε,

which implies that yn exists for each n ≥ 1. Moreover

sup
n

‖µnyn‖ < ∞

and so y = (yn) ∈ l∞(Y, µ).
For the necessity, suppose A = (Ank) ∈ (Γ(X, λ), l∞(X, λ)). Then for every x =

(xk) ∈ Γ(X, λ), yn =
∑∞

k=1 Ankxk exists for each n ≥ 1, and supn ‖µnyn‖ < ∞. Thus
by Lemma 2.1 we have that

sup
k

‖µnλ−1
k Ank‖

1/k < ∞, for each n ≥ 1.

Now we denote

fn(x) = ‖

∞
∑

k=1

µnAnkxk‖

and
sup

k
‖µnλ−1

k Ank‖
1/k = L(n), n ≥ 1.

Then we see that fn(x) is pointwise bounded functional as y = (yn) ∈ l∞(Y, µ). Further
for sufficiently small η > 0 if Pλ(x) = supk ‖λkxk‖

1/k < η, for x = (xk) ∈ Γ(X, λ) then
we have

fn(x) = ‖

∞
∑

k=1

µnAnkxk‖

≤

∞
∑

k=1

‖µnλ−1
k Ank‖‖λkxk‖

<
L(n)η

1 − L(n)η
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which implies that for each n ≥ 1 fn is continuous on (Γ(X, λ), Pλ). Since (Γ(X, λ), Pλ)

is a complete linear metric space therefore by Osgood theorem (a verson of uniform

boundedness principle) there exists L > 0 and a closed sphere which can without loss of

generality be taken as S[θ, δ] in Γ(X, λ) with centre θ and radius δ such that

|fn(x)| ≤ L (2.1)

for all x = (xk) ∈ S[θ, δ] and for all n ≥ 1. Now for arbitrary z ∈ S and k ≥ 1 we take

x = (θ, θ, . . . θ, δkλ−1
k z, θ, θ . . .) ∈ S[θ, δ] where δkλ−1

k z is at the kth place. Thus by (2.1)

we have

‖µnλ−1
k δkAnkz‖ ≤ L

for all z ∈ S and for all n ≥ 1 and k ≥ 1, and hence

‖µnλ−1
k Ank‖

1/k ≤
L1/k

δ
≤ M,

for all n ≥ 1 and k ≥ 1, where M = δ−1 max(1, L). This completes the proof.

Theorem 2.3. A = (Ank) ∈ (Γ(X, λ), c(Y, µ)) if and only if

(i) there exists M > 0 such that

‖µnλ−1
k Ank‖

1/k ≤ M,

independently of n ≥ 1 and k ≥ 1; and

(ii) limn µnAnk exists for each k ≥ 1.

Proof. Let (i) and (ii) hold and x = (xk) ∈ Γ(X, λ). Now for 0 < ǫ < 1 choose η so

that 0 < ηM < ε
3+ε . Then there exists K such that

‖λkxk‖
1/k < η, for all k ≥ K.

Now

‖µnyn‖ ≤

K−1
∑

k=1

Mk‖λkxk‖ +
Mη

1 − Mη
< ∞.

Thus yn exists for each n ≥ 1. Further limn µnAnkx exists for each k and each x ∈ X ,

so we take

lim
n

µnAnkx = Akx

for each k ≥ 1 and x ∈ X . By Banach-Steinhaus theorem, Ak ∈ B(X, Y ) for each k ≥ 1.

Thus form (i) and (ii) we easily get that

‖λ−1
k Ak‖

1/k ≤ M, for all k ≥ 1. (2.2)
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Now using (2.2) we easily see that l =
∑∞

k=1 Akxk exists in Y . Thus

‖µnyn − l‖ ≤

K−1
∑

k=1

‖(µnAnk − Ak)xk‖ +

∞
∑

k=K

‖µnλ−1
k Ank‖‖λkxk‖ +

∞
∑

k=K

‖λ−1
k Ak‖‖λkxk‖

≤

K−1
∑

k=1

‖(µnAnk − Ak)xk‖ + 2
Mη

1 − Mη

<
ε

3
+

2ε

3
= ε

for all sufficiently large values of n and so y = (yn) ∈ c(Y, µ).
Necessity of (ii) can easily be proved by considering the sequence x = (θ, θ, θ, . . . , θ, x,

θ, θ) taking x ∈ X at kth place, k ≥ 1. Moreover since (Γ(X, λ), c(Y, µ)) ⊂ (Γ(X, λ),
l∞(Y, µ)) therefore the necessity of (i) follows from Theorem 2.2, this completes the proof.

Theorem 2.4. A = (Ank) ∈ (Γ(X, λ), c0(Y, µ)) if and only if

(i) there exists M > 0 such that

‖µnλ−1
k Ank‖

1/k ≤ M.

independently of n ≥ 1 and k ≥ 1; and

(ii) limn µnAnk = θ, for each k

Proof. It can easily be proved along the lines of Theorem 2.3.

Theorem 2.5. A = (Ank) ∈ (Γ(X, λ), Γ∗(Y, µ)) if and only if there exists M > 0
such that

‖µnλ−1
k Ank‖

1/(n+k) ≤ M

independently of n ≥ 1 and k ≥ 1.

Proof. For the sufficiency of the condition, consider x = (xk) ∈ Γ(X, λ) and ε > 0
and choose η so that 0 < ηM < ε

1+ε . Then there exists K such that ‖λkxk‖
1/k < η, for

all k ≥ K. Now

‖µnyn‖ ≤

K−1
∑

k=1

Mn+k‖λkxk‖ +

∞
∑

k=K

Mn+kηk

< Mn

{

K−1
∑

k=1

Mk‖λkxk‖ + ε

}

< ∞.

Thus yn exists for each n ≥ 1. Further

‖µnyn‖
1/n ≤ M

{

K−1
∑

k=1

Mk‖λkxk‖ + ε

}1/n

≤ M max

{

1,

K−1
∑

k=1

Mk‖λkxk‖ + ε

}

,
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and hence supn ‖µnyn‖
1/n < ∞. Thus y = (yn) ∈ Γ∗(Y, µ).

Conversely let A = (Ank) ∈ (Γ(X, λ), Γ∗(Y, µ)). Then yn =
∑∞

k=1 Ankxk exists for
each n ≥ 1 and for each x = (xk) ∈ Γ(X, λ), and supn ‖µnyn‖

1/n < ∞. Thus by Lemma
2.1 we have that

sup
k

‖µnλ−1
k Ank‖

1/k = L(n) < ∞

for each n ≥ 1. Now we denote

fn(x) = ‖

∞
∑

k=1

µnAnkxk‖
1/n,

and we see that (fn(x)) is pointwise bounded. Further if Pλ(x) = supk ‖λkxk‖
1/k < η

then fn is continuous functional on Γ(X, λ), for each n ≥ 1. Moreover Γ(X, λ) is complete
linear metric space therefore by uniform boundedness principle (Osgood theorem) we can
find L > 0 and a closed sphere S[θ, δ] in Γ(X, λ) such that

|fn(x)| ≤ L

for all n ≥ 1 and for all x ∈ S[θ, δ], or

‖

∞
∑

k=1

µnAnkxk‖ ≤ Ln (2.3)

for all n ≥ 1 and for all x ∈ S[θ, δ]. Now take z ∈ S arbitrary and consider the sequence

x = (θ, θ, . . . , θ, δkλ−1
k z, θ, θ, . . .)

where δkλ−1
k z has the entry at kth place. Thus x ∈ S[θ, δ] and so from (2.3) if follows

that
‖µnδkλ−1

k Ankz‖ ≤ Ln

for all n ≥ 1, k ≥ 1 and z ∈ S, which implies that

‖µnλ−1
k Ank‖ ≤

Ln

δk
= Mn+k

for all n ≥ 1 and k ≥ 1, where M = max(L, δ−1). This completes the proof.

3. Characterization of (l1(X, λ), Γ(Y, µ))

In this section we determine the necessary and sufficient conditions for a matrix to
map l1(X, λ) into Γ(Y, µ).

Definition 3.1. If γ and ρ are any two classes of scalar sequences then we define

γ(X) = {x = (xk) : xk ∈ X, such that (‖xk‖) ∈ γ},

γ(X, λ) = {x = (xk) : xk ∈ X, such that (λkxk) ∈ γ(X)}.
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Similarly ρ(X) and ρ(X, λ) are defined.

Lemma 3.2. A = (Ank) ∈ (γ(X), ρ(Y )) iff B = (µ−1
n λkAnk) ∈ (γ(X, λ), ρ(Y, µ)).

Proof. Let (Ank) ∈ (γ(X), ρ(Y )) then for every x = (xk) ∈ γ(X), yn =
∑∞

k=1 Ankxk

exists for each n and y = (yn) ∈ ρ(Y ). Now consider u = (un) ∈ γ(X, λ) and its
transform v = Bu, vn =

∑∞

k=1 µ−1
n λkAnkuk. Thus (λkuk) ∈ γ(X) and so (yn) =

(
∑∞

k=1 Ankλkuk)∞n=1 ∈ ρ(Y ) which implies that (µ−1
n yn) ∈ ρ(Y, µ) and hence v = (vn) ∈

ρ(Y, µ). Similarly the converse may be proved. The proof is now complete.

Applying Lemma 3.2 to Theorem 4.9 of [7, p.53] we easily get

Lemma 3.3. Let 1 ≤ p < ∞. Then A = (Ank) ∈ (l1(X, λ), lp(Y, µ)) if and only if

sup
∞
∑

n=1

‖µnλ−1
k Ankz‖p < ∞,

where the supremum is taken over all z ∈ S and all k ≥ 1.

Following Lemma can easily be obtained by taking pk = 1 in Theorem 3.2 of [9] and
considering all Ak ∈ B(X, Y ) (cf. [7, p.26]).

Lemma 3.4. Let Ak ∈ B(X, Y ) for all k ≥ 1. Then (Ak) ∈ lβ1 (X, λ) if and only if

supk ‖λ
−1
k Ak‖ < ∞.

Theorem 3.5. A = (Ank) ∈ (l1(X, λ), Γ(Y, µ)) if and only if

(i) supk ‖λ
−1
k Ank‖ < ∞, for each n ≥ 1, and

(ii) ‖µnλ−1
k Ank‖

1/n → 0 as n → ∞ uniformly in k.

Proof. Sufficient part of the theorem can be proved easily with the help of Lemma
3.4.

Let A = (Ank) ∈ (l1(X, λ), Γ(Y, µ)). The necessity of (i) follows easily by applying
Lemma 3.4 to the fact that yn =

∑∞

k=1 Ankxk exists for each x = (xk) ∈ l1(X, λ). For
the necessity of (ii) suppose A = (Ank) ∈ (l1(X, λ), Γ(Y, µ)) but ‖µnλ−1

k Ank‖
1/n

9 0 as
n → ∞, uniformly in k. Thus for an ε > 0 and a given N there exist an n > N and a
k ≥ 1 such that

‖µnλ−1
k Ank‖

1/n ≥ ε. (3.1)

Further since Γ(Y, µ) ⊂ l1(Y, µ) therefore (Ank) ∈ (l1(X, λ), l1(Y, µ)) and so by Lemma
3.3, taking p = 1 therein, we get

sup
∞
∑

k=1

‖µnλ−1
k Ankz‖ < ∞,

where the supremum is taken over all z ∈ S and all k ≥ 1. Thus there exists L > 0 such
that

‖µnλ−1
k Ankz‖ ≤

L

2
,
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for all n ≥ 1, k ≥ 1 and z ∈ S and so for each n ≥ 1

Vn = sup
k

‖µnλ−1
k Ank‖ ≤

L

2
. (3.2)

Now by considering the sequences x = (θ, θ, θ, . . . θ, z, θ, θ, . . .) in l1(X, λ) where z ∈ X

is at the kth place, k ≥ 1, we get that

‖µnλ−1
k Ankz‖1/n → 0 as n → ∞, for each k and for each z. (3.3)

Thus in view of (3.1) we may choose n(1) and k(1) such that

‖µn(1)λ
−1
k(1)An(1)k(1)‖

1/n(1) ≥ ε (3.4)

and so there exists z1 ∈ S such that

‖µn(1)λ
−1
k(1)An(1)k(1)z1‖ ≥

1

2n(1)
‖µn(1)λ

−1
k(1)An(1)k(1)‖. (3.5)

Next in view of (3.1) and (3.3) we choose n(2) > n(1) sufficiently large and k(2) > k(1)

such that

L

2n(2)
<
[ ε

8

]n(1)

(3.6)

µn(2)λ
−1
k(2)An(2)k(2)‖

1/n(2) ≥ ε, and (3.7)

‖µn(2)λ
−1
k(1)An(2)k(1)‖

1/n(2) <
ε

16
. (3.8)

Now we select z2 ∈ S such that

‖µn(2)λk(2)An(2)k(2)z2‖ ≥
1

2n(2)
‖µn(2)λ

−1
k(2)An(2)k(2)‖. (3.9)

Further in view of (3.1) and (3.3) we choose n(3) > n(2) sufficiently large and k(3) >

k(2) such that

L

2n(3)
<
[ ε

16

]n(2)

(3.10)

‖µn(3)λ
−1
k(3)An(3)k(3)‖

1/n(3) ≥ ε, (3.11)

and
{

‖µn(3)λ
−1
k(2)An(3)k(2)z2‖

1/n(3) < ε
24 ,

‖µn(3)λ
−1
k(1)An(3)k(1)z1‖

1/n(3) < ε
24 .

(3.12)

Now we can select z3 ∈ S such that

‖µn(3)λ
−1
k(3)An(3)k(3)z3‖ ≥

1

2n(3)
‖µn(3)λ

−1
k(3)An(3)k(3)‖. (3.13)
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Again by (3.1) and (3.3) we can choose n(4) > n(3) sufficiently large and k(4) > k(3),
such that

L

2n(4)
<
[ ε

24

]n(3)

(3.14)

‖µn(4)λ
−1
k(4)An(4)k(4)‖

1/n(4) ≥ ε, and (3.15)










‖µn(4)λ
−1
k(3)An(4)k(3)z3‖

1/n(4) < ε
32 ,

‖µn(4)λ
−1
k(2)An(4)k(2)z2‖

1/n(4) < ε
32 ,

‖µn(4)λ
−1
k(1)An(4)k(1)z1‖

1/n(4) < ε
32 .

(3.16)

We take z4 ∈ S such that

‖µn(4)λ
−1
k(4)An(4)k(4)z4‖ ≥

1

2n(4)
‖µn(4)λ

−1
k(4)An(4)k(4)‖, (3.17)

and so on.
We define

xk =
1

2n(j)
zj , k = k(j), j = 1, 2, 3 . . . , and

= θ, otherwise.

Now taking into consideration (3.2), (3.4), (3.5) and (3.6) we get that

‖µn(1)yn(1)‖
1/n(1)≥‖µn(1)λ

−1
k(1)An(1)k(1)

1

2n(1)
z1‖

1/n(1)−‖
∞
∑

j=2

µn(1)λ
−1
k(j)An(1)k(j)xk(j)‖

1/n(1)

>
1

2
·
1

2
· ε −

ε

8
=

ε

8

because by (3.4) and (3.5) we have

‖µn(1)λ
−1
k(1)An(1)k(1)

1

2n(1)
z1‖

1/n(1) ≥
1

2
·
1

2
‖µn(1)λ

−1
k(1)An(1)k(1)‖

1/n(1)

≥
1

2
·
1

2
ε

and by (3.2) and (3.6) we have

‖
∞
∑

j=2

µn(1)λ
−1
k(j)An(1)k(j)xk(j)‖ ≤

∞
∑

j=2

‖µn(1)λ
−1
k(j)An(1)k(j)

1

2n(j)
zj‖

≤ Vn(1)

∞
∑

j=2

1

2n(j)
≤

L

2n(2)
<
[ε

8

]n(1)

Further by (3.4), (3.9), (3.10) and (3.12) we get

‖µn(2)Yn(2)‖
1/n(2) ≥ ‖µn(2)λ

−1
k(2)An(2)k(2)

1

2n(2)
z2‖

1/n(2) − ‖µn(2)λ
−1
k(1)An(2)k(1)xk(1)‖

1/n(2)
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−‖
∞
∑

j=3

µn(2)λ
−1
k(j)An(2)k(j)xk(j)‖

1/n(2)

>
1

2
·
1

2
· ε −

ε

16
−

ε

16
=

ε

8
,

since (3.7) and (3.9) yield

‖µn(2)λ
−1
k(2)An(2)k(2)

1

2n(2)
z2‖

1/n(2) ≥
1

2
·
1

2
‖µn(2)λ

−1
k(2)An(2)k(2)‖

1/n(2)

≥
1

2
·
1

2
ε,

(3.8) yields

‖µn(2)λ
−1
k(1)An(2)k(1)xk(1)‖ = ‖µn(2)λ

−1
k(1)An(2)k(1)

1

2n(1)
z1‖

<
L

2n(1)

[ ε

16

]n(2)

<
[ ε

16

]n(2)

and (3.2) and (3.10) yield,

‖

∞
∑

j=3

µn(2)λ
−1
k(j)An(2)k(j)xk(j)‖ ≤

∞
∑

j=3

‖µn(2)λ
−1
k(j)An(2)k(j)‖

1

2n(j)

≤ Vn(2)

∞
∑

j=3

1

2n(j)
≤

L

2n(3)
<
[ ε

16

]n(2)

.

Similarly by (3.2), (3.11), (3.12), (3.13) and (3.14) we get

‖µn(3)yn(3)‖
1/n(3)≥‖µn(3)λ

−1
k(3)An(3)k(3)

1

2n(3)
z3‖

1/n(3)−‖µn(3)λ
−1
k(2)An(3)k(2)xk(2)‖

1/n(3)

−‖µn(3)λ
−1
k(1)An(3)k(1)xk(1)‖

1/n(3)−‖

∞
∑

j=4

µn(3)λ
−1
k(j)An(3)k(j)xk(j)‖

1/n(3)

>
1

2
·
1

2
· ε −

ε

24
−

ε

24
−

ε

24
=

ε

8
,

since by (3.11) and (3.13)

‖µn(3)λ
−1
k(3)An(3)k(3)

1

2n(3)
z3‖

1/n(3) ≥
1

2
·
1

2
‖µn(3)λ

−1
k(3)An(3)k(3)‖

1/n(3) ≥
1

2
·
1

2
ε,

by (3.12)

‖µn(3)λ
−1
k(2)An(3)k(2)xk(2)‖ =

1

2n(2)
‖µn(3)λ

−1
k(2)An(3)k(2)z2‖

1/n(3)

≤
1

2n(2)

[ ε

24

]n(3)

<
[ ε

24

]n(3)
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and similarly

‖µn(3)λ
−1
k(1)An(3)k(1)xk(1)‖ <

[ ε

24

]n(3)

,

and by (3.2) and (3.14)

‖

∞
∑

j=4

µn(3)λ
−1
k(j)An(3)k(j)xk(j)‖ ≤

∞
∑

j=4

‖µn(3)λ
−1
k(j)An(3)k(j)‖

1

2n(j)

≤ Vn(3)

∞
∑

j=4

1

2n(j)
≤

L

2n(4)
<
[ ε

24

]n(3)

Thus proceeding along the above lines we see that there exist sequences (n(j)), (k(j)) of

integers and x = (xk) ∈ l1(X, λ) defined as above such that

‖µn(j)yn(j)‖
1/n(j) >

ε

8
; j = 1, 2, 3 . . .

that is y = (yn) 6∈ Γ(Y, µ), which is a contradiction. This completes the proof.

4. Characterization of B(c0(X, λ), c0(Y, µ))

In this section we obtain necessary and sufficient conditions for a matrix of linear

operators to map c0(X, λ) into c0(Y, µ) and as an application of this result we characterize

B(c0(X, λ), c0(Y, µ)), the Banach space of all bounded linear operators from the Banach

space c0(X, λ) into the Banach space c0(Y, µ) by obtaining matrix representation (Ank)

of each A ∈ B(c0(X, λ), c0(Y, µ)).

From Theorem 3.3 [8] by taking pk = 1 and Ak ∈ B(X, Y ) for all k, we easily get:

Lemma 4.1. (Ak) ∈ cβ
0 (X, λ) if and only if ‖(λ−1

k Ak)‖ < ∞.

Definition 4.2. A normed space X-valued sequence space (E(X),J ) equipped with

the linear topology J is said to be a GK-space if map Pn : E(X) → X , Pn(x) = xn, is

continuous for each n. A GK-space is said to be a GAK-space if for each x = (xk) in

E(X), sn(x) → x as n → ∞ with respect to J , where sn(x) = (x1, x2, x, . . . xn, θ, θ, . . .).

Further (E(X),J ) is said to be a GC-space if Rn : X → E(X), Rn(x) = δn(x), is

continuous for each n, where δn(x) = (θ, θ, . . . , θ, x, θ . . .), x at nth place.

Above definitions are the generalizations of K-, AK- and C-spaces of scalar sequences

(see [4]).

Following lemma can easily be proved:

Lemma 4.3. The Banach space (c0(X, λ), ‖.‖λ) is a GK-, GAK-and GC-space.

Theorem 4.4. (a) (Ank) ∈ (c0(X, λ), c0(Y, µ)) if and only if

(i) supn ‖(µnλ−1
k Ank)‖ = H < ∞; and
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(ii) limn µnAnk = θ, for each k ≥ 1.
(b) A ∈ B(c0(X, λ), c0(Y, µ)) if and only if A is a matrix transformation (Ank) satisfying

(i) and (ii). Moreover

‖A‖ = sup
n

‖(µnλ−1
k Ank)‖

Proof. (a) Let (Ank) ∈ (c0(X, λ), c0(Y, µ)). Necessity of (ii) follows easily by con-
sidering the sequences (θ, θ, θ, . . . θ, x, θ, . . .), x ∈ X at kth place, k ≥ 1. We note that
c0(X, λ) is a Banach space with ‖x‖λ = supk ‖λkxk‖, x = (xk) ∈ c0(X, λ). Thus for
x ∈ c0(X, λ) and each n ≥ 1 if we define

Tn(x) =

∞
∑

k=1

µnAnkxk,

and

Tn,p(x) =

p
∑

k=1

µnAnkxk, p ≥ 1,

then for each n, Tn,p(x) → Tn(x) in Y as p → ∞ for every x ∈ c0(X, λ). Moreover for
each n and p

‖Tn,p(x)‖ ≤ (

p
∑

k=1

‖µnλ−1
k Ank‖)‖x‖λ

which shows that Tn,p : c0(X, λ) → Y is a bounded linear operator. Hence by Banach-
Steinhaus theorem, Tn : c0(X, λ) → Y is also a bounded linear operator for each n ≥ 1.

Further the transform y = (yn), where yn =
∑∞

k=1 Ankxk, of each x = (xk) ∈ c0(X, λ)
is in c0(Y, µ) therefore (Tn(x))∞n=1 is bounded for each x ∈ c0(X, λ). Again on application
of Banach-Steinhaus theorem we get L > 0 such that ‖Tn(x)‖ ≤ L‖x‖λ, for all n ≥ 1
and x ∈ c0(X, λ). Now for any n ≥ 1 if we consider x1, x2, x3 . . . xp ∈ S, p ≥ 1, arbitrary
then x = (λ−1

1 x1, λ
−1
2 x2, λ

−1
3 x3 . . . λ−1

p xp, θ, θ . . .) ∈ c0(X, λ) with ‖x‖λ ≤ 1, and so we
have

‖

p
∑

k=1

µnλ−1
k Ankxk‖ = ‖Tn(x)‖ ≤ L‖x‖λ ≤ L,

for all x1, x2, . . . xp ∈ S, p ≥ 1. Thus taking supremum over these quantities we easily
get

‖(µnλ−1
k Ank)‖ ≤ L, for every n ≥ 1,

and hence
sup

n
‖(µnλ−1

k Ank)‖ ≤ L.

This proves the necessity of (i).
Let (i) and (ii) hold. Then by Lemma 4.1 it follows that for every x ∈ c0(X, λ) and

for each n ≥ 1,
∑∞

k=1 Ankxk converges in Y . Now for x ∈ c0(X, λ) and ε > 0 there exists
K such that ‖λkxk‖ < ε, for every k ≥ K and in view of (ii) there exists N such that

K−1
∑

k=1

‖µnAnkxk‖ < ε, for all n ≥ N,
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hence

‖µnyn‖ ≤

K−1
∑

k=1

‖µnAnkxk‖ + ‖

∞
∑

k=K

µnλ−1
k Ank(λkxk)‖

≤
K−1
∑

k=1

‖µnAnkxk‖ + ‖RK(µnλ−1
k Ank‖ sup

k≥K
‖λkxk‖

< (1 + H)ε,

for all n ≥ N , as ‖RK(µnλ−1
k Ank)‖ ≤ ‖(µnλ−1

k Ank)‖ ≤ H , i.e., (yn) ∈ c0(Y, µ), which

proves the sufficiency of (i) and (ii).

(b) Let A : c0(X, λ) → c0(Y, µ) be a bounded linear operator, and consider Ankx =

PY
n oAoRX

k (x). Clearly PY
n : c0(Y, µ) → Y , defined by PY

n (y) = yn is linear and

bounded as c0(Y, µ) is a GK-space. Again RX
k : X → c0(X, λ) defined by RX

k (x) =

(θ, θ, . . . , θ, x, θ, . . .), x at kth place. is linear and bounded since c0(X, λ) is a GC-space.

Thus Ank : X → Y is linear and bounded for each n ≥ 1 and k ≥ 1. Further we note

that (c0(X, λ), ‖ · ‖λ) is a GAK-space, so for each x ∈ c0(X, λ), sp(x) → x in c0(X, λ).

Thus if A(x) = (yn) then we have

yn = PY
n (A(x)) = (PY

n oA)(lim
p

(sp(x))

= PY
n o(lim

p
A(

p
∑

k=1

RX
k (xk)))

= lim
p

p
∑

k=1

PY
n oAoRX

k (xk) =

∞
∑

k=1

Ankxk

which shows that A determines the matrix (Ank), where Ank ∈ B(X, Y ), mapping

c0(X, λ) into c0(Y, µ) hence it will satisfy (i) and (ii).

Conversely (Ank) ∈ (c0(X, λ), c0(Y, µ)) satisfies (i) and (ii) and so clearly it deter-

mines a linear operator A : c0(X, λ) → c0(Y, µ) such that

A(x) =

(

∞
∑

k=1

Ankxk

)∞

n=1

Further

‖A(x)‖µ = sup
n

‖µn

∞
∑

k=1

Ankxk‖

≤ sup
n

‖(µnλ−1
k Ank)‖ sup

k
‖λkxk‖ ≤ H‖x‖λ

shows that A is bounded.
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Now whether the bounded linear operator A : c0(X, λ) → c0(Y, µ) determines a

matrix A = (Ank) ∈ (c0(X, λ), c0(Y, µ)) or vice-verse, we have from what has been

discussed above that

‖A(x)‖µ ≤ H‖x‖λ

and so

‖A‖ ≤ H. (4.1)

On the other hand in view of (i) for ε > 0 there exists m such that

‖(µmλ−1
k Amk)‖ > H −

ε

2

and further there exist p ≥ 1 and x1, x2, . . . xp ∈ S such that

‖

p
∑

k=1

µmλ−1
k Amkxk‖ > H −

ε

2
−

ε

2
= H − ε.

Now if we consider x = (λ−1
1 x1, λ

−1
2 x2, . . . λ

−1
p xp, θ, θ, . . .) in c0(X, λ) then ‖x‖λ ≤ 1 and

‖A(x)‖µ = sup
n

‖µn

p
∑

k=1

Ankλ−1
k xk‖

≥ ‖µm

p
∑

k=1

Amkλ−1
k xk‖ > H − ε

i.e. ‖A‖ > H − ε, for ε > 0 arbitrary, and so ‖A‖ ≥ H . This together with (4.1) leads to

‖A‖ = H = sup
n

‖(µnλ−1
k Ank)‖.

This completes the proof.

Finally we note that the Theorems 3.1, 3.2 and 3.3 of Das and Chaudhary [1] can

easily be deduced from our Theorem 4.2.
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