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Competition of TwoHost Species for a Single-Limited
Resource Mediated by Parasites

Sze-Bi Hsu and I-Fang Sun

Abstract. In this paper we consider a mathematical model of two host species competing
for a single -limited resource mediated by parasites. Each host population is divided into
susceptible and infective populations. We assume that species 1 has the lowest break-even
concentration with respect to nutrient, when there is no parasite. Thus species 1 is a superior
competitor that outcompetes species 2. When parasites present, the competitive outcome is
determined by the contact rate of the superior competitor. We analyze the model by finding
the conditions for the existence of various equilibria and doing their stability analysis. Two
bifurcation diagrams are presented. The first one is in β1β2 plane (See Figure 3) and the
second one is in R(0)-line (See Figure 4).

1 Introduction

Ecologists are interested in understanding how and to what extent interspecific interactions in-
fluence community structure, species coexistence and biodiversity. Host-parasite interactions oc-
curr frequently in nature and has been shown that parasites could affect the growth and survival
rate of a host thus influence its competitive ability. In the past two decades, people investigate
the potential importance of parasites and pathogens in determining the outcome in trophic inter-
actions and community process. In the paper ([1]) the authors reviewed the recent research on
how parasites influence competitive and predatory interactions of the host species they infected.
However, no theoretical model has been developed that consider the competitive outcome be-
tween two hosts who shared the same parasite. In this paper we shall investigate a mathematical
model of competition of two host species for a single-limited resource mediated by parasites. Es-
pecially we focus on the question: Can infection produce coexistence of species? When there
is no infection mediated by parasites, it is well-known that species with the smallest break-even
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concentration will survive ([2],[3],[4],[5],[6]). With the infection by parasites we show that it is
possible that two species coexist if the contact rate of surviving species is large enough. We shall
find conditions for the existence of various equilibria and their stability analysis. A bifurcation
diagram is presented with contact rates β1, β2 as two bifurcation parameters. We also present a
bifurcation diagram by using input concentrationR(0) of the nutrient as a bifurcation parameter.

2 TheModel

The model of two hosts competing for a single-limited resource mediated by parasites leads to the
following system of differential equations

dR

dt
= (R(0) −R)D − 1

y1

m1R

a1 +R
(S1 + I1)−

1

y2

m2R

a2 +R
(S2 + I2)

dS1

dt
=

(
m1R

a1 +R
− d1

)
S1 − β1I1S1 + γ1I1

dI1
dt

= β1I1S1 − (d1 + δ1 + γ1)I1 (2.1)

dS2

dt
=

(
m2R

a2 +R
− d2

)
S2 − β2I2S2 + γ2I2

dI2
dt

= β2I2S2 − (d2 + δ2 + γ2) I2

R(0) ≥ 0, S1(0) > 0, I1(0) > 0, S2(0) > 0, I2(0) > 0.

Here we assume that each host population is divided into susceptible, infectious populations
which are designated S, I. The parameter R is the concentration of resource. The rest of the
model’s parameters are defined in Table 1.

Table1 Definition of parameters used in the model
Parameter Definition
R(0) input concentration of nutrient R

D dilution rate

yi yield constant of i-th host

mi maximum growth rate of i-th host

ai half-saturation constant for i-th host

di death rate of i-th host

δi per capita additional mortality of i-th host when infected
with parasite

γi per capita rate of recovery of i-th host from infection
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Figure 1:

When there is no parasites, the infective populations I1(t), I2(t) satisfy I1(t) ≡ 0, I2(t) ≡ 0.
Then the system (2.1) becomes

R′ = (R(0) −R)D − 1

y1

m1R

a1 +R
S1 −

1

y2

m2R

a2 +R
S2,

S
′
1 =

(
m1R

a1 +R
− d1

)
S1, (2.2)

S
′
2 =

(
m2R

a2 +R
− d2

)
S2,

R(0) ≥ 0, S1(0) > 0, S2(0) > 0.

If the maximal growth rate mi is less than or equal to the death rate di of the i-th host, then
Si(t) → 0 as t → ∞ , i.e. the i-th host cannot survive. Consider the break-even concentration
of the i-th host λi =

ai
(mi/di)−1 > 0.

If the break-even concentration λi is less than the input concentration R(0) then the i-th host
species goes to extinction due to the input concentrationR(0) is too small to support the survival
of i-th host species Si ([3],[6]).

Thereafter we assume that
0 < λ1 < λ2 < R(0). (H1)

Under assumption (H1), we conclude that 1st host species S1 outcompetes the 2nd host species
S2 ([3], [6]) and the solutions R(t), S1(t), S2(t) satisfy

lim
t→∞

R(t) = λ1,
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lim
t→∞

S1(t) = S∗
1 =

(R(0) − λ1)Dy1
d1

,

lim
t→∞

S2(t) = 0.

3 Equilibria andTheir Stability Analysis of the System (2.1):

In the following we study the existence of equilibria and their stability analysis. The equilibria
take the forms :

E1 = (λ1, S
∗
1 , 0, 0, 0),

E1I1 = (R̂1, Ŝ1, Î1, 0, 0),

E1I12 = (λ2, S̃1, Ĩ1, S̃2, 0),

E1I12I2 = (R̄, S̄1, Ī1, S̄2, Ī2).

The variational matrix of the system (2.1) at E = (R,S1, I1, S2, I2) is

J(E) =


a11 a12 a13 a14 a15

a21 a22 a23 0 0

0 a32 a33 0 0

a41 0 0 a44 a45

0 0 0 a54 a55


where

a11 = −D − 1

y1
f ′
1(R)(S1 + I1)−

1

y2
f ′
2(R)(S2 + I2),

a12 = − 1

y1
f1(R),

a13 = − 1

y1
f1(R),

a14 = − 1

y2
f2(R),

a15 = − 1

y2
f2(R),

a21 = f ′
1(R)S1,

a22 = (f1(R)− d1)− β1I1,

a23 = −β1S1 + γ1,

a32 = β1I1,

a33 = β1S1 − (d1 + δ1 + γ1),
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a41 = f ′
2(R)S2,

a44 = (f2(R)− d2)− β2I2,

a45 = −β2S2 + γ2,

a54 = β2I2,

a55 = β2S2 − (d2 + δ2 + γ2),

f1(R) =
m1R

a1 +R
,

f2(R) =
m2R

a2 +R
.

Theorem 3.1. E1 = (λ1, S
∗
1 , 0, 0, 0) always exists.

(i) If

β1S
∗
1 − (d1 + δ1 + γ1) < 0 (3.1)

then E1 is locally asymptotically stable.

(ii) If

β1S
∗
1 − (d1 + δ1 + γ1) > 0 (3.2)

then the equilibrium E1I1 = (R̂1, Ŝ1, Î1, 0, 0) exists, where R̂1, Ŝ1, Î1 satisfy

Ŝ1 =
d1 + δ1 + γ1

β1
> 0, (3.3)

(
m1R̂1

a1 + R̂1

− d1

)
Ŝ1 = (d1 + δ1)Î1 > 0 ⇔ R̂1 > λ1, (3.4)

(R(0) − R̂1)D =
1

y1

m1R̂1

a1 + R̂1


m1R̂1

a1 + R̂1

+ δ1

d1 + δ1

 Ŝ1. (3.5)

Proof. The variational matrix J(E1) of system (2.1) at equilibrium E1 = (λ1, S
∗
1 , 0, 0, 0) is

J(E1) =


M1

−d1
y1 − 1

y2 f2(λ1) − 1
y2 f2(λ1)

−β1S
∗
1 + γ1 0 0

0 0

0 0

0 0

β1S
∗
1 − (d1 + δ1 + γ1) 0 0

0 f2(λ1)− d2 γ2

0 0 −(d2 + δ2 + γ2)
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The eigenvalues of J(E1) are

µ1 = −(d2 + δ2 + γ2) < 0,

µ2 = f2(λ1)− d2 < 0, (by(H1))

µ3 = β1S
∗
1 − (d1 + δ1 + γ1),

and µ4, µ5 are the eigenvalues of

M1 =

[
−D − 1

y1 f
′
1(λ1)S

∗
1 −d1

y1
f ′
1(λ1)S

∗
1 0

]

which characteristic polynomial is g(µ) = µ(µ + (D + 1
y1 f

′
1(λ1)S

∗
1)) +

d1
y1 f

′
1(λ1)S

∗
1 . Then

Re λ(M1) < 0, i.e., Re µ4 < 0 and, Re µ5 < 0. Thus E1 is locally stable if µ3 < 0, i.e.
β1S

∗
1 < d1 + δ1 + γ1 and E1 is unstable if µ3 > 0, i.e. β1S∗

1 > d1 + δ1 + γ1.

Next we shall show that if E1 is unstable then the equilibrium E1I1 = (R̂1, Ŝ1, Î1, 0, 0) exists
where R̂1, Ŝ1, Î1 satisfy (3.3), (3.4), (3.5). From (3.4), (3.5) we have the following Figure 2.

Figure 2

claim : λ1 < R̂1
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If not, λ1 ≥ R̂1 then

(R(0) − λ1)D < (R(0) − R̂1)D

=
1

y1

m1R̂1

a1 + R̂1

m1R̂1

a1 + R̂1

+ δ1

d1 + δ1

d1 + δ1 + γ1
β1

≤ 1

y1

m1λ1

a1 + λ1

m1λ1

a1 + λ1
+ δ1

d1 + δ1

d1 + δ1 + γ1
β1

=
1

y1
d1

d1 + δ1
d1 + δ1

d1 + δ1 + γ1
β1

=
d1
y1

d1 + δ1 + γ1
β1

,

or equivalently

S∗
1 =

(R(0) − λ1)Dy1
d1

≤ d1 + δ1 + γ1
β1

.

This is a contradiction to instability condition (3.2). Hence we complete the proof.

The variational matrix of (2.1) at E1I1 = (R̂1, Ŝ1, Î1, 0, 0) is

J(E1I1) =


M2

− 1
y2 f2(R̂1) − 1

y2 f2(R̂1)

0 0

0 0

0 0 0

0 0 0

f2(R̂1)− d2 γ2

0 −(d2 + δ2 + γ2)

 .

The eigenvalues of J(E1I1) are

µ1 = −(d2 + δ2 + γ2) < 0

µ2 = f2(R̂1)− d2

and µ3, µ4, µ5 eigenvalues of the 3× 3 matrix

M2 =


−D − 1

y1 f
′
1(R̂1)(Ŝ1 + Î1) − 1

y1 f1(R̂1) − 1
y1 f1(R̂1)

f ′
1(R̂1)Ŝ1 −γ1Î1

Ŝ1
−β1Ŝ1 + γ1

0 β1Î1 0


which characteristic polynomial is µ3 + a1µ

2 + a2µ+ a3

where

a1 =
γ1Î1

Ŝ1

+ J1 > 0, J1 = D +
1

y1
f ′
1(R̂1)(Ŝ1 + Î1),
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a2 =
γ1Î1

Ŝ1

J1 + f ′
1(R̂1)Ŝ1

1

y1
f1(R̂1) + β1Î1(δ1 + d1) > 0,

a3 = β1Î1(δ1 + d1)J1 + β1Î1
1

y1
f1(R̂1)f

′
1(R̂1)Ŝ1 > 0.

From Routh-Hurwitz criteria, E1I1 is locally asymptotically stable if a1a2 > a3.

The routine computations show a1a2 > a3 as follows(
γ1Î1

Ŝ1

+ J1

)(
γ1Î1

Ŝ1

J1 + f ′
1(R̂1)Ŝ1

1

y1
f1(R̂1) + β1Î1(δ1 + d1)

)
> β1Î1(δ1 + d1)J1 + β1Î1

1

y1
f1(R̂1)f

′
1(R̂1)Ŝ1,

or (
r1I1

Ŝ1

)2

J1 +
r1Î1

Ŝ1

(f
′
1(R̂1)Ŝ1

1

y1
f1(R̂1) + β1Î1(δ1 + d1))

+
r1Î1

Ŝ1

J2
1 + J1(f

′
1(R̂1)Ŝ1

1

y1
f1(R̂1)) (H2)

> β1Î1
1

y1
f1(R̂1)f

′
1(R̂1)Ŝ1.

Theorem 3.2. Let (3.4) and Re λ(M2) < 0 (i.e. (H2) holds).

(i) If

R̂1 < λ2 (3.6)

then E1I1 is locally asymptotically stable.

(ii) If

R̂1 > λ2 (3.7)

then the equilibrium E1I12 = (λ2, S̃1, Ĩ1, S̃2, 0) exists, where

S̃1 = Ŝ1 =
d1 + δ1 + γ1

β1
(3.8)

and S̃2, Ĩ1 satisfy

Ĩ1 =
1

d1 + δ1

(
m1λ2

a1 + λ2
− d1

)
S̃1 > 0 (3.9)

S̃2 =
y2
d2

(R(0) − λ2)D − 1

y1

(
m1λ2

a1 + λ2

)
S̃1


m1λ2

a1 + λ2
+ δ1

d1 + δ1


 > 0. (3.10)
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Proof. (i) µ2 < 0 if and only if R̂1 < λ2. Since we assume Re λ(M2) , i.e. (H2) holds then
E1I1 = (R̂1, Ŝ1, Î1, 0, 0) is locally asymptotically stable.

(ii) Under the assumption (H2), we shall prove that the instability condition (3.7) implies the
existence of equilibrium E1I12.

From (H1), Ĩ1 > 0.

claim : S̃2 > 0.

If not, S̃2 ≤ 0, then

(R(0) − λ2)D ≤ 1

y1

(
m1λ2

a1 + λ2

) ( m1λ2

a1 + λ2
+ δ1

)
d1 + δ1

d1 + δ1 + γ1
β1

The instability condition R̂1 > λ2 implies

(R(0) − λ2)D > (R(0) − R̂1)D =
1

y1

m1R̂1

a1 + R̂1


m1R̂1

a1 + R̂1

+ δ1

d1 + δ1

 d1 + δ1 + γ1
β1

>
1

y1

m1λ2

a1 + λ2

m1λ2

a1 + λ2
+ δ1

d1 + δ1

d1 + δ1 + γ1
β1

We obtain a contradiction. Thus we have S̃2 > 0. Hence we complete the proof.

The variation matrix of (2.1) at E1I12 = (λ2, S̃1, Ĩ1, S̃2, 0) is

J(E1I12) =

 M3

− 1
y2 f2(λ2)

0

0

−β2S̃2 + γ2

0 0 0 0 β2S̃2 − (d2 + δ2 + γ2)


The eigenvalues of J(E1I12) is

µ1 = β2S̃2 − (d2 + δ2 + γ2)

and µ2, µ3, µ4, µ5 which are eigenvalues of the 4× 4 matrix

M3 =


−D − 1

y1 f
′
1(λ2)(S̃1 + Ĩ1)− 1

y2 f
′
2(λ2)S̃2 − 1

y1 f1(λ2) − 1
y1 f1(λ2) − 1

y2 f2(λ2)

f ′
1(λ2)S̃1 (f1(λ2)− d1)− β1Ĩ1 −β1S̃1 + γ1 0

0 β1Î1 0 0

f ′
2(λ2)S̃2 0 0 0

 .
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From routine computation the characteristic polynomial ofM3 is µ4 + a1µ
3 + a2µ

2 + a3µ+ a4

where

a1 = J2 − (f1(λ2)− d2 − β1Ĩ1), J2 = D +
1

y1
f ′
1(λ2)(S̃1 + Ĩ1) +

1

y2
f ′
2(λ2)S̃2,

a2 =
1

y1
f1(λ2)f

′
1(λ2)S̃1 + β1Ĩ1(β1S̃1 − γ1) + f ′

2(λ2)S̃2
1

y2
f2(λ2),

a3 = β1Ĩ1(
1

y1
f1(λ2)f

′
1(λ2)S̃1 + J2(β1S̃1 − γ1))

− f ′
2(λ2)S̃2

1

y2
f2(λ2)(f1(λ2)− d1 − β1Ĩ1),

a4 = β1Ĩ1(β1S̃1 − γ1)
1

y2
f2(λ2).

We note that
β1S̃1 − γ1 = d1 + δ1 > 0

and from (H1)

f1(λ2)− d1 − β1Ĩ1 = (f1(λ2)− d1)− β1
1

d1 + δ1
(f1(λ2)− d1)S̃1

= (f1(λ2)− d1)(1−
S1 + d1 + γ1

d1 + δ1
) < 0,

then it follows that a1 > 0, a2 > 0, a3 > 0, a4 > 0. FromRouth-Hurwitz criteria,E1I12 is locally
asymptotically stable if and only if

a3(a1a2 − a3) > a21a4. (H3)

We conjecture that (H3) holds if µ1 < 0.

Theorem 3.3. Let (H3) and (3.7) hold.

(i) If

S̃2 < Ŝ2 =
d2 + δ2 + γ2

β2
(3.11)

then E1I12 is locally asymptotically stable.

(ii) If the instability condition

S̃2 > Ŝ2 (3.12)
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holds, then equilibrium E1I12I2 = (R̄, S̄1, Ī1, S̄2, Ī2) exists where

S̄1 = Ŝ1 =
d1 + δ1 + γ1

β1
, (3.13)

S̄2 = Ŝ2 =
d2 + δ2 + γ2

β2
, (3.14)

Ī1 =
1

d1 + δ1

(
m1R̄

a1 + R̄
− d1

)
S̄1 > 0 ⇔ R̄ > λ1, (3.15)

Ī2 =
1

d2 + δ2

(
m2R̄

a2 + R̄
− d2

)
S̄2 > 0 ⇔ R̄ > λ2, (3.16)

and R̄ satisfies

(R(0) − R̄)D =
1

y1

m1R̄

a1 + R̄
S̄1


m1R̄

a1 + R̄
+ δ1

d1 + δ1

+

1

y2

m2R̄

a2 + R̄
S̄2


m2R̄

a2 + R̄
+ δ2

d2 + δ2

 (3.17)

Proof. (i) Since Re λ(M3) < 0 and from (3.11) µ1 < 0, E1I12 is locally asymptotically stable.

(ii) From (H1), it suffice to show that (3.16) holds. If not, R̄ ≤ λ2 then

(R(0) − λ2)D ≤ (R(0) − R̄)D =
1

y1

m1R̄

a1 + R̄
S̄1

m1R̄

a1 + R̄
+ δ1

d1 + δ1
+

1

y2

m2R̄

a2 + R̄
S̄2

m2R̄

a2 + R̄
+ δ2

d2 + δ2

≤ 1

y1

m1λ2

a1 + λ2
S̄1

m1λ2

a1 + λ2
+ δ1

d1 + δ1
+

1

y2

m2λ2

a2 + λ2
S̄2

m2λ2

a2 + λ2
+ δ2

d2 + δ2

=
1

y1

m1λ2

a1 + λ2
S̄1

m1λ2

a1 + λ2
+ δ1

d1 + δ1
+

1

y2
d2S̄2

S̃2 =
y2
d2

(R(0) − λ2)D − 1

y2

(
m1λ2

a1 + λ2

)
S̃1


m1λ2

a1 + λ2
+ δ1

d1 + δ1




≤ y2
d2

1

y2
d2S̄2 = S̃2

This contradiction to the instability (3.12).
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It is difficult to determine the local stability of E1I12I2 . We verify it by extensive numerical sim-
ulation. We conjecture that Hopf bifurcation may occurs and there exists periodic solutions in
some parameter ranges.

4 Bifurcation Analysis

Let (H1) hold. The equilibrium E1 = (λ1, S
∗
1 , 0, 0, 0) is locally stable if (3.1) holds. We rewrite

(3.1) as

β1 < β̂1 =
(d1 + δ1 + γ1)d1

(R(0) − λ1)Dy1
. (4.1)

Whenβ1 > β̂1, the equilibriumE1 becomes unstable and the equilibriumE1I1 = (R̂1, Ŝ1, Î1, 0, 0)

exists. If (3.6) and (H2) hold then E1I is locally stable. From (3.6) it follow that

(R(0) − λ2)D < (R(0) − R̂1)D =
1

y1

m1R̂1

a1 + R̂1

(
m1R̂1

a1 + R̂1

+ δ1

)
d1 + δ1

Ŝ1

<
1

y1

m1λ2

a1 + λ2

(
m1λ2

a1 + λ2
+ δ1

)
d1 + δ1

d1 + δ1 + γ1
β1

or

β1 < β̃1 =
1

y1

m1λ2

a1 + λ2

(
m1λ2

a1 + λ2
+ δ1

)
d1 + δ1

d1 + δ1 + γ1

(R(0) − λ2)D
(4.2)

and
β̂1 < β̃1.

If β1 > β̃1 then the equilibrium E1I is unstable and the equilibrium E1I12 = (λ2, S̃1, Ĩ1, S̃2, 0)

exists. If (3.11) and (H3) hold then the equilibrium E1I12 is locally stable. It can be shown that
(3.11) can be rewritten as

β2 <
A1(

A2 −
A3

β1

) := f(β1) (4.3)

where

A1 =
d2
y2

(d2 + δ2 + γ2),

A2 = (R(0) − λ2)D,
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A3 =
1

y1

m1λ2

a1 + λ2

d1 + δ1 + γ1
δ1 + d1

(
m1λ2

a1 + λ2
+ δ1

)
.

We note that the vertical asymptote of the curve β2 = A1(
A2 − A3

β1

) is β1 = A3
A2

= β̃1.

Ifβ2 > A1(
A2 − A3

β1

) then the equilibriumE1I12 becomes unstable and the equilibriumE1I12I2 =

(R̄, S̄1, Ī1, S̄2, Ī2) exists. It is difficult to prove the local stability of E1I12I2 analytically. In the
Figure 3, using β1, β2 as bifurcation parameters, we plot a bifurcation diagram. It shows that the
Hopf bifurcation occurs and there are periodic oscillation for some parameter ranges.

Figure 3

In region I , the equilibrium E1 is locally stable.

In region II , the equilibrium E1I1 is locally stable.

In region III , the equilibrium E1I12 is locally stable.

In region IV , the equilibrium E1I12I2 is locally stable or unstable.

Under the basic assumption (H1), species 1 outcompetes species 2 when there is no infection by
the parasites. When the contact rate β1 satisfies 0 < β1 < β̂1 regardless of magnitudes of the
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species 2’s contact rate β2, the species 1 still outcompetes the species 2 and there is no infection
population of species 1. If we increase β1 such that β̂1 < β1 < β̃1, then regardless of the mag-
nitudes of β2 species 1 still outcompetes species 2, but there is some infective population for the
species 1 in this case. For β1 > β̃1, species 1 and species 2 coexist. If the point (β1, β2) is under
the curve β2 = f(β1) =

A1

(A2−A3
β1

)
in the β1−β2 plane, then species 1 which has both susceptible

and infective population, coexists with species 2 which has only susceptible population. If the
point (β1, β2) is above the curve β2 = f(β1) in the β1 − β2 plane then species 1 and species 2
both with infective population coexists in the steady state or the form of periodic oscillation.

If we vary the input concentration R(0) and fix the other parameters then from (3.17), (4.1),
(4.2) it follows that

β1 < β̂1 ⇔ R(0) < λ1 +
(d1 + δ1 + γ1)d1

Dy1β1
= R̂(0)

β1 < β̃1 ⇔ R(0) < λ2 +
(d1 + δ1 + γ1)

Dy1β1

m1λ2

a1 + λ2

(
m1λ2
a1 + λ2

+ δ1

)
d1 + δ1

= R̃(0)

β2 <
A1(

A2 − A3
β1

) ⇔ R(0) < R̃(0) +
d2(d2 + δ2 + γ2)

β2Dy1
= R̄(0)

From the hypothesis (H1), we have R̂(0) < R̃(0) < R̄(0).

The bifurcation diagram is the following Figure 4:

Figure 4

Thus in order to have coexistence of species 1 and species 2, we need to have large input concen-
tration R(0) i.e. R(0) > R̃(0).

5 Discussion and Numerical Simulations

By the following scalings:

R → R/R(0), S1 → S1/R
(0)y1, I1 → I1/R

(0)y1
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S2 →
S2

R(0)y2
, I2 → I2/R

(0)y2, m1 → m1/D, m2 → m2/D

d1 → d1/D, d2 → d2/D, a1 → a1/R
(0), a2 → a2/R

(0)

β1 → β1R
(0)y1/D, δ1 → δ1/D, γ1 → γ1/D

β2 → β2R
(0)y2/D, δ2 → δ2/D, γ2 → γ2/D

t → tD

then the non-dimensional system for (2.1) is

dR

dt
= (1−R)D − m1R

a1 +R
(S1 + I1)−

m2R

a2 +R
(S2 + I2)

dS1

dt
=

(
m1R

a1 +R
− d1

)
S1 − β1I1S1 + γ1I1

dI1
dt

= β1I1S1 − (d1 + δ1 + γ1)I1 (5.1)

dS2

dt
=

(
m2R

a2 +R
− d2

)
S2 − β2I2S2 + γ2I2

dI2
dt

= β2I2S2 − (d2 + δ2 + γ2) I2

0 < R(0) < 1, S1(0) > 0, I1(0) > 0, S2(0) > 0, I2(0) > 0.

Hence we may assume D = 1, R(0) = 1, y1 = 1, y2 = 1 in (2.1).

Let d1 = 1, m1 = 2, a1 = 0.5, d2 = 1.2, m2 = 1.8, a2 = 0.35, then

0 < λ1 =
a1

(m1
d1

)− 1
= 0.5 < λ2 =

a2
(m2
d2

)− 1
= 0.7 < R(0) = 1.

Let δ1 = 0.05, δ2 = 0.03, γ1 = 0.1, γ2 = 0.2, then

β̂1 =
(d1 + δ1 + γ1)d1

(R(0) − λ1)Dy1
= 2.3,

β̃1 =
1

y1

m1λ2

a1 + λ2

m1λ2
a1+λ2

+ δ1

d1 + δ1

d1 + δ1 + γ1

(R(0) − λ2)D
= 5.1821.

Let R(0) = 0.8, S1(0) = 0.5, I1(0) = 0.1, S2(0) = 0.5, I2(0) = 0.1.

(i) Let β1 = 1.5, β2 = 3, we conject that E1 = (λ1, S
∗
1 , 0, 0, 0) is globally stable where

λ1 = 0.5, S∗
1 = (R(0)−λ1)Dy1

d1
= 0.5.

(ii) Let β1 = 3, β2 = 6, we conject that E1I1 = (R̂1, Ŝ1, Î1, 0, 0) is globally stable.

(iii) Choose a point (β1, β2) below the curve β2 = f(β1), β1 = 10, β2 = 11 < f(β1) =

11.8724, we expect E1I12 = (λ2, S̃1, Ĩ1, S̃2, 0) is globally stable.
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Figure 5(i) Let β1 = 1.5 and β2 = 3

Figure 5(ii) Let β1 = 3 and β2 = 6



Competition of Two Host Species for a Single-Limited Resource Mediated by Parasites 17

Figure 5(iii) Let β1 = 10 and β2 = 11

(iv) For point (β1, β2) above the curve β2 = f(β1), choosing β1 = 10, β2 = 12 > f(β1) =

11.8724, we predict E1I12I2 = (R̄, S̄1, Ī1, S̄2, Ī2) is globally stable.

Figure 5(iv) Let β1 = 10 and β2 = 12
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