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THE DUAL SPACES OF THE SETS OF A-STRONGLY
CONVERGENT AND BOUNDED SEQUENCES

A. M. JARRAH AND E. MALKOWSKY

Abstract. In this paper we shall give the a—, 8-, v— and f-duals of the sets wf (A), wh, (A),
ch(A), cP(A) and cZ_(A). Furthermore, we shall determine the continuous dual spaces of the sets
wf(A), cf(A) and cP(A).

1. Introduction

We write w for the set of all complex sequences = (z£)52g, ¢ I, ¢ and ¢ for
the sets of all finite, bounded, convergent sequences and sequences convergent to naught,
respectively, further cs, bs and [; for the sets of all convergent, bounded and absolutely
convergent series.

By e and e(™ (n € INp), we denote the sequences such that e, = 1for k =0,1,..., and
el =1 and eé") = 0 for k # n. For any sequence x = ()52, let 2"l = 377 aye®
be its n—section.

Let X, Y Cw and z € w. Then we write

T x X ={rcw:rr= (zpzr)ioy € X}

and
MX,)Y)=()a'*Y={acw:az e foralz e X}
reX

for the multiplier space of X and Y. The sets M(X,l1), M(X,cs) and M(X,bs) are
called the a—, 8- and y—duals of X, respectively.

A Fréchet subspace X of w is called an FK space if it has continuous coordinates,
that is if convergence in X implies coordinatewise convergence. An FK space X D ¢ is
said to have AK if, for every sequence x = (1), € X, z[") — 2 (n — c0); it is said to
have AD if ¢ is dense in X. A BK space is an FK space which is a Banach space.
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If X is a p—normed space then we write X™* for the set of all continuous linear func-
tionals on X, the so—called continuous dual of X, with its norm || - || given by

[fII' = sup{[f ()] : [|=[| =1} for all f € X

Let X D ¢ be an FK space. Then the set X/ = {(f(e(™))>%, : f € X*} is called the
f—dual of X.

The sets co(A), ¢(A) and coo(A) of sequences that are A—strongly convergent to
naught, A-strongly convergent and A-strongly bounded were introduced and studied
by Méricz [12]. Their - and continuous duals were determined in [10] and [11]. In this
paper, we shall extend these results to 0 < p < 1 where p is an index. Furthermore, we
shall give the a—, v— and f-duals of the spaces w§(A), wB (A), ch(A), P(A) and B (A).

2. Some Notations and Preliminary Results
We shall frequently apply the following inequality (cf. [8, p. 22])
(a+b)P <a? +b” (0<p<1)forallab>0. (2.1)

Given any infinite matrix A = (ank)fffk:o of complex numbers and any sequence
z € w, we shall write A, (z) = > = ankzr (n =0,1,...), A(z) = (A, (2))22, provided
the series converge, and X4 = {x € w: A(x) € X}.

We define the matrix A by A = 1 for k = n, Ay = —1 for Kk = n—1 and
Apr = 0 otherwise (n = 0,1,...), and use the convention that any symbol with a
negative subscript has the value 0.

Given any real p > 0 and any sequence x, we write |z|? = (|zx|?)72, and

__PZ px)), [’ forn=0,1,....
s

Let 0 < p < oo and p = (un )22, be a nondecreasing sequence of positive reals tending
to infinity throughout. We shall consider the sets

n—00

w () = {x €w: lim <u_1?z > ka|”> = 0} () = ()7 (wh (1)as

wio (1) = {x € w:sup (71 > ka|”> } o B = (W) (wh()a,
0w

P(p)={z €w:x—le€ () for some ! €C}.
If p = 1 then we omit the index p, that is we write wo(u) = wg (1) ete.

The sets wh(u) and w2 (u) are special cases of mixed normed spaces studied for
instance in [1,2,5,6,9]. If uip = n+1 for n = 0,1,..., then the sets w}(u) and w&_ (1)
reduce to the sets wh and w?, introduced and studied by Maddox [7], and the sets cf(u),
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cP(p) and & (1) reduce to the sets [co],,, [c], and [cx], introduced and studied by Hyslop,
Kuttner and Thorpe [3, 4]. For p =1 the sets ¢} (), (p) and & (u) reduce to the sets
co(p), c(p) and coo () introduced and studied by Méricz [12] and Malkowsky [10].

Obviously the sets wh(u), wt (1), ch(u), () and & (u) are linear spaces and
wh(p) C wr, (w), h(u) C cP(u) and cb(p) C B (1). Furthermore, we have

Lemma 1. (a) Let 0 < p < 1. Then P(pu) C B (u) if and only if

n
sup —p Z [(Ap)k|P < oo or equivalently e € 2 (). (2.2)

n nk

(b) Let 1 < p < oco. Then e € B (u) and cP () C B ().

(c) Let 0 < p < oo. If x € P (), then | € C with x — le € ch(u) is unique.

(d) Let XP(pn) denote any of the spaces wh(u), wb (u), ch(p), P(p) and B (u). Then
XP(u) C XP(p) for 0 <p<p.

(e) If0 < p <1, then & (1) Clx

Proof. (a) First we assume that condition (2.2) holds. Let « € ¢P(u) be given. Then
there is | € C such that z — le € (), and so x =z — le + le € & (u), since & (u) is a
linear space.

Conversely, if condition (2.2) is not satisfied, then we can determine an increasing se-
quence (n,,)0—o of integers such that MP (e) > m (m = 0,1,...). Then z = e €
() \ B (), since

My(x—e)=0(n=0,1,...) and ML (x)=MF (e)>m (m=0,1,...).

MNm

(b) Now let p > 1. Since 1/p <1 and py, > pp—1 for all n, we have by (2.1)

n

1
(MP(e)? < M (e) = ™ > (uk = pr—1) =1foralln=0,1,...,
" k=0

hence e € & (u). The inclusion ¢?(p) C & () now follows as in the first part of the
proof of part (a).

(c) Let & € ¢P(u) and [,I’ € C such that x — le € ch(p) and z — l'e € ch(n). Given
€ > 0, there is n = n(e) € INg such that MP(z—le), ME(x—1'e) < e. Then, for0 < p <1
by inequality (2.1)

[L=UP < MP((x—le)— (x —1'e)) < MP(x —le) + ME(x —l'e) < 2¢
and, for p > 1 by Minkowski’s inequality
L=V < (MP((z —le) — (z — U'e))? < (MP(z — 1e))/P + (MP(z — Ue))'/? < 251/,

Since € > 0 was arbitrary, we have [ =’ in both cases.
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(d) Since p/p < 1, we have

p/Pp T
( Z|xk|p> S—pz |zg|P (n=10,1,...).

"kO

From this, we obtain the inclusions XP(u) C XP?(u) for XP(u) = wh(p) and XP(u) =
w8, ().

Since x € cf(u) or x € & (p) if and only if A(uz) € wh(u) or A(uzx) € go(u), re-
spectively, it follows that the inclusions also hold for X?(u) = cf () or XP(u) = 2 (1)
Finally, the inclusion ¢?(u) C cP(u) holds, since x € cP(u) if and only if z — le € Co(ﬂ)
for some [ € C.

(e) First
" k=0
implies oo (1) C loo, and so B (1) C lo for 0 < p <1 by part (d).

Following the notations 1ntroduced in [10], we say that a nondecreasing sequence
A = (\)22, of positive reals tending to infinity is ezponentially bounded if there are
reals s and ¢ with 0 < s <t < 1 such that for some subsequence (A, (,))72, of A, we have

An(v)
s < <tforally =0,1,...; (2.3)
>\n(z/+1)

such a subsequence (A,(,))72q will be called an associated subsequence.

If (n(v))s2, is a strictly increasing sequence of nonnegative integers then we shall
write X<~ for the set of all integers k with n(v) <k <n(r+1)—1,and ), and max,
for the sum and maximum taken over all k in K<"~.

If X is a pnormed sequence space and a € w, then we write

o0
lallx = Sup{ > anai|: |lall = 1}

k=0

provided the term on the right exists and is finite. This is the case whenever X D ¢ is a
p-normed FK space and a € X? by [13, Theorem 7.2.9, p. 107].

Let A = (\,)22, be a nondecreasing exponentially bounded sequence of positive reals
and (An(1))pZ an associated subsequence throughout.

If XP(A) denotes any of the sets wh (A), wl (A), c5(A), P(A) or & (A) then we shall
write X?(A) for the respective space with the sections 1/A\2 3" --- replaced by the
blocks 1/AP (1) >, - Further, we define

n
lzllwr, (a) = 1/p

(1<p<o0),

n
sup (/\Lp > |xk|p) 0<p<1)
" k=0
1 n
sup (3 £ 1wl
" k=0

n
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S‘j"(ki@ ) (O<p<1)
1/p
sup(kp1 Zy|xk|p) (1 <p<oo),

v n(v+1)

||93||1I;§Q(A) =

||$||C§Q(A) = ||A(A$)||wgo(1\) and ||$||aw(A) = ||A(A$)||wg’o(1\)-

Theorem 1. (a) The sets w(p) and w8 () with || - ||z (), and co(p) and & (i)
with || - ||cz_ () are p-normed FK spaces for 0 < p < 1 and BK spaces for 1 < p < oo,
wh(w) is a closed subspace of wo, (), ch(u) is a closed subspace of B (1), wh(p) has AK
for all p and ch(p) has AK for 0 < p < 1. (b) We assume that condition (2.2) holds for
0 <p<1. Then cP(u) with || - |le (u) i a p-normed FK space for 0 < p <1 and a BK
space for 1 < p < oo, cP(u) is a closed subspace of P (u), and if 0 < p < 1, then every
sequence = ()72, € P(u) has a unique representation

= Z zy, — 1)e™) where | €C is such that x — le € ch(A). (2.4)

(¢) If XP(A) and XP(A) denote any of the sets wh(A), w (A), B(A), ¢ P(A) and B, (M),
wh(A), wE,(A), é5(A), ?(A) and & _(A), respectively, then XP(A) = XP(A), [ - w2 (a)
and || - |lgz, (a) are equivalent on w§(A) and on w8 (A), || - ||z (a) and || - ||z, (a) are
equivalent on ch(A), B (A) and cP(A), in the case of cP(A) whenever condition (2.2)
holds for 0 <p < 1.

Proof. (a) The assertions concerning the sets w} (1) and w? (u) were proved in [9].
From this, all the assertions concerning ¢ (u) and £ () follow from [13, Theorems 4.3.13
and 4.3.14, pp 63 and 46], except for the one that ¢5(u) has AK for 0 < p < 1.

To show that cfj(u) has AK for 0 < p <1, let = € c¢§(u) and £ > 0 be given. Then there
is an integer mo € INy such that MP(z) < /2 for all n > mg. Let m > myp. Then, since
0 < p <1, we conclude

1 n
Hx[m] - m”cgo(u) = Mﬁ(x[m] —x)= sup ‘u—p (lﬂm-‘rllp'xm-i-l'p + Z |(A(N$))k|p>

n>m+1 k=m2

<MP o (x)+e/2<e/2+¢/2=¢.

(b) First we show that ¢P(u) is complete with || - ||,
By Lemma 1 (a) and (b), || - [[cz, () is defined on c?(u).
Let (2("™)2°_,; be a Cauchy sequence in c?(u). For each m € INg, let (™ € C denote
the number for which (™) —1(™)e € ¢f(u). First we observe that (z(™)%_ is a Cauchy
sequence in c?_(u), and so convergent by the completeness of & (u),

||x[m] — IHC&(#) —0 (m— ), say. (2.5)

We have to show x € cP(u).
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First we show that the sequence (1(™)°_, converges.
Let ¢ > 0 be given. Since (2(™)%°_, is a Cauchy sequence, we may choose M =
M () € Ny such that ||z(™) — :c(j)||cz;o(u) <e/3forallm,j > M. Let m,j > M. Since
xm —(Me 20) —1We € cB(u), there is n = n(m,j,e) € Ny such that MP(z(™) —
1me), MP(2) —1e) < ¢/3. Then, for 0 < p < 1 by inequality (2.1)
|l(m) _ l(j)|p§M5((l(m)7l(j))€)SMﬁ(x(m)7l(m)€)+||l‘(m)7m(j)||C&(M)M5(:E(j)7l(j)€)
<e/3+4+¢/3+¢/3=c¢,

and, for 1 < p < oo by Minkowski’s inequality

. X 1
om0 < (M;;((z<m> _ l(a))e)) /v
p(pm) g )P ) _ () (@) _ Doy
< (MEE™ = 10me)) T 4 2 — 2D g + (MEED —100e))

< 2(/3)Y/P 4+ ¢/3.

Thus (l(m));’,fzo is a Cauchy sequence in C, hence convergent,

I= lim ™) say. (2.6)

m—0o0

Now we show = — le € ch(u).
Let ¢ > 0 be given. By (2.5) and (2.6), there is M € INg such that ||z(*) —xller () < /3,
and, with C' = sup,, MZ(e) < oo (for 0 < p < 1 by condition (2.2)),

[ ICT I v
3(C+1) '

Further, since (M) —(M)e ¢ ¢b(u), there is N € INg such that MP(z) —[(Me) < ¢/3.
Let n > N. Then, for 0 < p < 1 by inequality (2.1)

M2 — 1) < M2 ™ — 1) 4 ™ — afl () + ME((T — 1OD)e)

2e eC
) 1 — [(M)ppgp Ly =Y <
<2e/3+| [PMPE(e) < 3 +3(C+1)_€’

and, for 1 < p < oo by Minkowski’s inequality

(M2(z —1e))'/? < (¢/3)V/7 + /3 + (Mf;((z - z<M>)e)) v
< (/3)YP +¢/3+ |l — 1M (MP(e)/P < 2(c/3)'/? + /3.

This shows that ¢?(u) is complete. Consequently ¢P(u) is a pnormed FK space for
0 < p < 1 and a BK space for 1 < p < oo by [13, Corollary 4.2.2, p. 56].

Finally, let 0 < p < 1 and = = (xx)7;2, € ?(1). Then, by Lemma 1 (c) there is a
uniquely determined [ € C such that x — le € ¢(u). We put y = x — le. Since cfj(u) has
AK, y =30 s yee® =372 (v — 1)e™®), and so the representation in (2.4) follows.
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(c) Let 0 < p < 0.

From
1 n(v+1)
Ap S lzklP < > Jwl? (v=0,1,...),
n(v+1) n(u+1) k=0

we conclude XP?(A) € XP(A).
Conversely, let € wh(A) and € > 0 be given. Then there is an integer vy € INy such

that

1
SN Yo lakl? < e for all v > wy.
n(v+1)

Since A,y — 00 (v — o0), we can choose an integer v; > vy such that

1 n(vo)—1
SN Z |z |P for all v > vy.
n(v) k=0

Let m > n(v1). Then there is an integer v(m) > vy such that m € K<¥(m)> and, using
(2.3), we obtain

n(vo)—1 v(m)
pVA Z|$k|p = )\p Dol Y el
n(v(m)) k=0 v=ro
v(m)
An(v(m)+1) >p 1
<e+ < )\Z (v Z |£Ek|p
An(v(m)) )\Z(y(m)—f—l) V;O H))‘p
v(m)
. 11
< v(m)—v -
§5+sz<t ) <1+ p1—tp>
vV=rgp

This shows @} (A) C wh(A). The inclusion w8 (A) C wh, (A) is shown in exactly the same
way. Now the identities cf(A) = é5(A), ¢P(A) = éP(A) and & (A) = éE_(A) are obvious.

3. The Duals of The Sets w}(A) and w2 (A)

In this section, we shall give the duals of the sets wf(A) and w2, (A) for 0 < p < co.
Let A = ()52, be a nondecreasing exponentially bounded sequence of positive reals
throughout and ()\n(y))ﬁozo an associated subsequence. We put

{a Cw: Y Mnmax,lag| < oo} 0<p<1)
WP(A) = v

{a €ws 2 Angr) (X, lanl)'/” < OO} (I <p<ooq=35)
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and on WP(A)

o0

Z )‘n V+1)maxl/|ak| (O <p< 1)

1/_

”a”WP(A) =
Z Mgy (S, las”) P (1< p < o00,q=27).

Theorem 2. Let XP(A) = wh(A) or XP(A) = w? (A) and 1 stand for «, 3, v or f.
Then (XP(A))' = Wp( ). The continuous dual (wh(A))* of wh(A) is norm isomorphic

to WP(A) when wiy(A) has the norm || - || gz (ay. This means, g € (wg(A))* if and only if
there is a sequence b = (b,)5>, € WP(A) such that

y) =D buyn for ally € wf(A) and g = [blwr(a)-
n=0

Furthermore, ||all5o ) = llallws(a) on (w?, (A))”.

Proof. The statements of the theorem with the exception of those concerning the
~v—and f—duals are well known [9, Theorems 2,4,5 and 6]
(a) Since wh(A) has AK we have (w O(A))ﬁ = (wO(A)) by [13, Theorem 7.2.7 (ii), p
106], and so (wh (A )) = WP(A). Further, since an AK space obviously has AD, we also

have (wE(A))” = (wB(A))” by [13, Theorem 7.2.7 (iii), p. 106], and so (w(A))” = W”( ).
Since wh (A) is a closed subspace of w? (A), it follows that (wE_(A)) F = = (wh(A )) by [13
Theorem 7.2.6, p.106], and so

(uB(4)7 = WP(A). (3.1)

Finally, by [13, Theorem 7.2.7 (i), p. 106], (w®,(A))” C (w? (A))” C (wP, (A))!, and so
by (3.1)
WP(A) € (whe(8)) € (whe(8)) € (uhe(A) = WP(A),

hence (w8 (A))” = WP(A).

o0

4. The Duals of The Sets ¢ (A), ¢?(A) and &_(A)

In this section, we shall determine the a—, 3—, v— and f-duals of the sets cfj(A), ¢’ (A)
and £ (A) and the continuous duals of ¢5(A) and ?(A) for 0 < p < 1.

Let A = (\y)22, be a nondecreasing exponentially bounded sequence of positive reals
throughout.

We need the following lemma for the determination of the a— duals of & (A), ¢P(A)
and c® (A).

Lemma 2. Let X C I, be a BK space such that sup, ||e["]|\cge(A) < oo. Then
X*=1.
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Proof. First we observe that X C [ implies [$ =1; C X“.
Conversely, let a € X®. For each m € INg, we define the map fém) : X — IR by

ém)(x) = Yo larzk| (x € X). Then ( (gm))%?:o is a sequence of seminorms on X

which are continuous, since X is a BK space. Further f,gm)(:n) <Y opeo larzk| = M(z) <
oo for all m € INg and all z € X. By the uniform boundedness principle, there is a con-
stant M; such that ||f(™)| < M for all m € INy. From this and sup,, H@[n}”c&,(A) < 00,
we conclude a € 1.

Theorem 3. Let XP(A) denote any of the sets cf(A), P(A) or B (A), then (XP(A))™
=1 for0O<p< 1.

Proof. Since obviously sup,, [[e™[|.z n) < 2, and ¢o(A) C ¢(A) C coo(A) C I by
Lemma 1 (b) and (e), we conclude from Lemma 2

¢ (A) = (A) = ¢ (A) = 1. (4.1)
Now we assume a € (ch(A))”. For each m € Ny, we define the map f(™) : ch(A) — R
as in the proof of Lemma 2, and again there is a constant M > 0 such that
> lawzk| < M for all z € ch(A) with ||z]|z_a) = 1. (4.2)
k=0
Since 1/A = (1/M)52, € ch(A), we have
o~ la|
R, = R, (la|/\) = — < oxforalln=0,1,....
(/) =305

Let v(m) € INg be given. We define the sequence z*(") by

v

ﬁ > Aty (MENSZiv=0,1,...,v(m))
2 — 5(:77?)
i ZO )‘n(;ﬂrl) (n > n(”(m) + 1))
p=
Then
0 (n>nv(m)+1)orn#n(v);r=0,1,...,v(m))
(A(AxW(m)))) - (4.3)
n A1) (n=n);v =0,1,...,v(m)).
and
)\’ﬂ(l/+1) (O Svs l/(m))
| (A@atem) | = (4.4)
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Therefore (™) € cf(A) and [|2"(™) ||z ) = 1. Further, by (4.3), (4.4) and (4.2),
and since :c,(:(m)) >0 for all k,

v(m) o
Z A1) By = Z (A Am(” m)) ) Z |ak|
v=0 n=0

oo

k
= " k=0

M

k

B
Il

0

Since v(m) € INy was arbitrary, we conclude > > An(v+1)RBn)y < 0o. Now

c- |ak|
Z |lak| = ZZ lak| < ZM(VH)Z < ZM(VH)PW(V) < oo.
k=0

Thus (c(A))” C Iy, and consequently, by (4.1)
(B (M) C (cg(A))™ €l = e (A) C (B (M) C (cf(A)7,

hence (2 (A))* = (ch(A)* =11 for 0 <p < 1.
Finally c5(A) C ¢P(A) implies (¢?(A))® C Iy, and ¢(A) C coo(A) implies i1 = ¢ (A) C
c*(A) C (cP(A)), so (P(A)* = 14.

Now we give the 3, v~ and f-duals of the sets ch(A), ¢?(A) and &_(A) for 0 < p < 1,
and the continuous duals of ¢5(A) and ¢P(A) in some cases.
If a € cs then we shall write R(a) for the sequence with R,(a) = > 72 ap (n =

0,1,...). We shall frequently apply Abel’s summation by parts
m—1 m
Z AnYn = Z Ry (a)(Ay)n — Rim(a)ym for allm =0,1,.... (4.5)
n=0 n=0

If u is a sequence with uy # 0 for all k =0, 1,. .. then we shall write 1/u for the sequence

with (1/u)r = 1/uy, for all k.

Theorem 4. Let 0 <p < 1. We put

Cs(A) = {a Ew: Z Ap(v+1)Max,,

v=0

e

)

and

Z

(a) If XP(A) is any of the sets ch(A) or B (A) and t stands for any of the symbols (3, ~
or f, then

|allcﬁ A) Z)\ V+1)maXl,

XP(A)T = Cp(A).
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This also holds when XP(A) = c¢(A) or XP(A) = P(A) for 0 < p < 1 whenever condition
(2.2) is satisfied. Otherwise
(cP(A))’ = Ca(A) Nes and (P(A))Y = Cy(A) Nbs.

(b) The continuous dual (ch(A))" of ch(A) is norm isomorphic to Cg(A) when cf(A) has
the p-norm || - [zz_(ay. Further

lallz (a) = llallcsay on B (A). (4.6)

(c) We have f € c¢*(A) if and only if

flx) =Ixr+ > anzxy for all z € c(A)
n=0
where a € Cg(A), | € C with x — le € co(A) and (4.7)

o)

xp=1f(e) = 2 an
n=0

Further, || f] is equivalent to
Ixrl+ llallcsa)- (4.8)
If condition (2.2) is satisfied, then this also holds for ¢’(A) (0 <p < 1).

Proof. In the case p = 1, the statements of the theorem concerning the /- and
continuous duals can be found in [10, 11].
(a) Let 0 < p < 1. First & (A) C coo(A) implies

(cso(N))? = Cs(A) C (B (M)

Conversely, let a € (cg(A))ﬁ. Since ¢f(A) is a pnormed FK space, the map f, : ¢f(A) —
C defined by fo(z) = Y 3o, arzi (x € cB(A)) is an element of (ch(A))". We define the
matrix A(A) by

_)\n—l (k? =n — 1)
Apg(A) =< Ay (k=mn) (n=0,1,...).
0 (otherwise)
By [13, Theorem 4.4.2, p. 66], there is g € (ch(A))" with
f=g0A(A) (4.9)
Since wh(A) is an FK space with AK, we have
b= (g(e™))30 € (wh ()" (4.10)

by [13, Theorem 7.2.9, p. 107].
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Let m € INg be given. Then, for the sequence z(™ defined by

B ,\ln (n>m),

we have 2(™) € ch(A) and

@) @) = {2 e e ugn)

and so (™ € cB(A). From (4.9) and (4.10), we obtain
— g(e(m)y — (M) — f(p(m)y S (m) _ S n
b = 9(e"™) = g ((A(M)) @) = (™) ;anxn nzzm = (m=0.1,.),

hence a € Cg(A), since (wg(A))ﬁ = WP(A) by Theorem 2 (a). Therefore (CS(A))B C
Cs(A). Thus we have shown (c’o’(A))ﬁ = (¢ (A)? = Cs(A) for 0 < p < 1.
If condition (2.2) holds, then c¢5(A) C ?(A) C & (A), and so (cP(A)’ = Cs(A).
The assertions concerning the y— and f—duals are proved in the same way as in Theorem
2 (a).
Now we consider the case where condition (2.2) does not hold. We assume a € Cg(A)Nes.
Let z € cP(A) be given. Then there is | € C such that z — le € C, and so ar =
a(z — le) + lae € cs, hence a € (P(A))”. Conversely, let a € (?(A))”. Then a €
(B(A))? = Cy(A), since E(A) C cP(A) implies (cP(A))? C (B(A))". Since e € cP(A), we
also have a = ae € cs.

The identity (cP(A))” = Cz(A) N bs is proved in exactly the same way.

(b) Since ch(A) is an FK space with AK, the representation of (cf(A))" follows from
[13, Theorem 7.2.9, p. 107].

(c) Let 0 < p < 1 and condition (2.2) hold.

We assume f € (cP(A))*. Then f; = f ) € (ch(A))*. Given = € cP(A), there
is a sequence a € Cgz(A) such that fi(x —le) = > 7o ar(xr — ). Since a € Cz(A) =
(cP(A))?, we have ax € ¢s for all z € ¢?(A), in particular, for z = e € ¢P(A), this implies
ae = a € cs, and we may write

flx)=1 <f(e) - Zak> —l—Zakxk.
k=0

k=0

Putting x; = f(e) — Zzio arTr, we obtain the given representation.
Conversely, if f has the given represenation, then f € ¢*(A), and so f € (cP(A))".
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