THE DUAL SPACES OF THE SETS OF Λ-STRONGLY CONVERGENT AND BOUNDED SEQUENCES

A. M. JARRAH AND E. MALKOWSKY

Abstract. In this paper we shall give the α -, β -, γ - and f-duals of the sets $w_0^p(\Lambda)$, $w_{\infty}^p(\Lambda)$, $c_0^p(\Lambda)$, $c^p(\Lambda)$ and $c_{\infty}^p(\Lambda)$. Furthermore, we shall determine the continuous dual spaces of the sets $w_0^p(\Lambda)$, $c_0^p(\Lambda)$ and $c^p(\Lambda)$.

1. Introduction

We write ω for the set of all complex sequences $x = (x_k)_{k=0}^{\infty}$, ϕ , l_{∞} , c and c_0 for the sets of all finite, bounded, convergent sequences and sequences convergent to naught, respectively, further cs, bs and l_1 for the sets of all convergent, bounded and absolutely convergent series.

By e and $e^{(n)}$ $(n \in \mathbb{N}_0)$, we denote the sequences such that $e_k = 1$ for $k = 0, 1, \ldots$, and $e_n^{(n)} = 1$ and $e_k^{(n)} = 0$ for $k \neq n$. For any sequence $x = (x_k)_{k=0}^{\infty}$, let $x^{[n]} = \sum_{k=0}^{n} x_k e^{(k)}$ be its *n*-section.

Let $X, Y \subset \omega$ and $z \in \omega$. Then we write

$$z^{-1} * X = \{ x \in \omega : xz = (x_k z_k)_{k=0}^{\infty} \in X \}$$

and

$$M(X,Y) = \bigcap_{x \in X} x^{-1} * Y = \{a \in \omega : ax \in Y \text{ for all } x \in X\}$$

for the multiplier space of X and Y. The sets $M(X, l_1)$, M(X, cs) and M(X, bs) are called the α -, β - and γ -duals of X, respectively.

A Fréchet subspace X of ω is called an *FK space* if it has continuous coordinates, that is if convergence in X implies coordinatewise convergence. An FK space $X \supset \phi$ is said to have *AK* if, for every sequence $x = (x_k)_{k=0}^{\infty} \in X, x^{[n]} \to x \ (n \to \infty)$; it is said to have *AD* if ϕ is dense in X. A *BK* space is an FK space which is a Banach space.

Received February 2, 1999.

²⁰⁰⁰ Mathematics Subject Classification. Primary 40H05, 46A45; secondary 47B07.

Key words and phrases. BK, AK, AD spaces, dual spaces.

This joint research paper was written when the second author visited Yarmouk University for the academic year 1997/1998. He expresses his sincere gratitude to Yarmouk University for their generous hospitality during his Visiting Professorship.

¹⁰⁹

If X is a p-normed space then we write X^* for the set of all continuous linear functionals on X, the so-called *continuous dual of* X, with its norm $\|\cdot\|$ given by

$$||f|| = \sup\{|f(x)| : ||x|| = 1\}$$
 for all $f \in X^*$

Let $X \supset \phi$ be an FK space. Then the set $X^f = \{(f(e^{(n)}))_{n=0}^{\infty} : f \in X^*\}$ is called the f-dual of X.

The sets $c_0(\Lambda)$, $c(\Lambda)$ and $c_{\infty}(\Lambda)$ of sequences that are Λ -strongly convergent to naught, Λ -strongly convergent and Λ -strongly bounded were introduced and studied by Móricz [12]. Their β - and continuous duals were determined in [10] and [11]. In this paper, we shall extend these results to 0 where <math>p is an index. Furthermore, we shall give the α -, γ - and f-duals of the spaces $w_0^p(\Lambda)$, $w_\infty^p(\Lambda)$, $c_0^p(\Lambda)$, $c^p(\Lambda)$ and $c_\infty^p(\Lambda)$.

2. Some Notations and Preliminary Results

We shall frequently apply the following inequality (cf. [8, p. 22])

$$(a+b)^p \le a^p + b^p \ (0 (2.1)$$

Given any infinite matrix $A = (a_{nk})_{n,k=0}^{\infty}$ of complex numbers and any sequence $x \in \omega$, we shall write $A_n(x) = \sum_{k=0}^{\infty} a_{nk} x_k$ $(n = 0, 1, ...), A(x) = (A_n(x))_{n=0}^{\infty}$, provided the series converge, and $X_A = \{x \in \omega : A(x) \in X\}$.

We define the matrix Δ by $\Delta_{nk} = 1$ for k = n, $\Delta_{nk} = -1$ for k = n - 1 and $\Delta_{nk} = 0$ otherwise (n = 0, 1, ...), and use the convention that any symbol with a negative subscript has the value 0.

Given any real p > 0 and any sequence x, we write $|x|^p = (|x_k|^p)_{k=0}^{\infty}$ and

$$M_n^p(x) = \frac{1}{\mu_n^p} \sum_{k=0}^n |(\Delta(\mu x))_k|^p \text{ for } n = 0, 1, \dots$$

Let $0 and <math>\mu = (\mu_n)_{n=0}^{\infty}$ be a nondecreasing sequence of positive reals tending to infinity throughout. We shall consider the sets

$$w_0^p(\mu) = \left\{ x \in \omega : \lim_{n \to \infty} \left(\frac{1}{\mu_n^p} \sum_{k=0}^n |x_k|^p \right) = 0 \right\}, \qquad c_0^p(\mu) = (\mu)^{-1} * (w_0^p(\mu)))_{\Delta},$$
$$w_\infty^p(\mu) = \left\{ x \in \omega : \sup_n \left(\frac{1}{\mu_n^p} \sum_{k=0}^n |x_k|^p \right) < \infty \right\}, \qquad c_\infty^p(\mu) = (\mu)^{-1} * (w_\infty^p(\mu))_{\Delta},$$
$$c^p(\mu) = \left\{ x \in \omega : x - le \in c_0^p(\mu) \text{ for some } l \in \mathbb{C} \right\}.$$

If p = 1 then we omit the index p, that is we write $w_0(\mu) = w_0^1(\mu)$ etc.

The sets $w_0^p(\mu)$ and $w_{\infty}^p(\mu)$ are special cases of mixed normed spaces studied for instance in [1,2,5,6,9]. If $\frac{1}{\mu_n^p} = \frac{1}{n+1}$ for $n = 0, 1, \ldots$, then the sets $w_0^p(\mu)$ and $w_{\infty}^p(\mu)$ reduce to the sets w_0^p and w_{∞}^p introduced and studied by Maddox [7], and the sets $c_0^p(\mu)$,

 $c^p(\mu)$ and $c^p_{\infty}(\mu)$ reduce to the sets $[c_0]_p$, $[c]_p$ and $[c_{\infty}]_p$ introduced and studied by Hyslop, Kuttner and Thorpe [3, 4]. For p = 1 the sets $c^p_0(\mu)$, $c^p(\mu)$ and $c^p_{\infty}(\mu)$ reduce to the sets $c_0(\mu)$, $c(\mu)$ and $c_{\infty}(\mu)$ introduced and studied by Móricz [12] and Malkowsky [10].

Obviously the sets $w_0^p(\mu)$, $w_\infty^p(\mu)$, $c_0^p(\mu)$, $c^p(\mu)$ and $c_\infty^p(\mu)$ are linear spaces and $w_0^p(\mu) \subset w_\infty^p(\mu)$, $c_0^p(\mu) \subset c^p(\mu)$ and $c_0^p(\mu) \subset c_\infty^p(\mu)$. Furthermore, we have

Lemma 1. (a) Let $0 . Then <math>c^p(\mu) \subset c^p_{\infty}(\mu)$ if and only if

$$\sup_{n} \frac{1}{\mu_n^p} \sum_{k=0}^{n} \left| (\Delta \mu)_k \right|^p < \infty \text{ or equivalently } e \in c_{\infty}^p(\mu).$$
(2.2)

(b) Let $1 \le p < \infty$. Then $e \in c_{\infty}^{p}(\mu)$ and $c^{p}(\mu) \subset c_{\infty}^{p}(\mu)$. (c) Let $0 . If <math>x \in c^{p}(\mu)$, then $l \in \mathbb{C}$ with $x - le \in c_{0}^{p}(\mu)$ is unique.

(d) Let $X^p(\mu)$ denote any of the spaces $w_0^p(\mu)$, $w_{\infty}^p(\mu)$, $c_0^p(\mu)$, $c^p(\mu)$ and $c_{\infty}^p(\mu)$. Then $X^p(\mu) \subset X^{\tilde{p}}(\mu)$ for 0 .

(e) If $0 , then <math>c^p_{\infty}(\mu) \subset l_{\infty}$.

Proof. (a) First we assume that condition (2.2) holds. Let $x \in c^p(\mu)$ be given. Then there is $l \in \mathbb{C}$ such that $x - le \in c_0^p(\mu)$, and so $x = x - le + le \in c_{\infty}^p(\mu)$, since $c_{\infty}^p(\mu)$ is a linear space.

Conversely, if condition (2.2) is not satisfied, then we can determine an increasing sequence $(n_m)_{m=0}^{\infty}$ of integers such that $M_{n_m}^p(e) > m$ (m = 0, 1, ...). Then $x = e \in c^p(\mu) \setminus c_{\infty}^p(\mu)$, since

$$M_n(x-e) = 0 \ (n=0,1,\ldots)$$
 and $M_{n_m}^p(x) = M_{n_m}^p(e) > m \ (m=0,1,\ldots).$

(b) Now let $p \ge 1$. Since $1/p \le 1$ and $\mu_n \ge \mu_{n-1}$ for all n, we have by (2.1)

$$(M_n^p(e))^{1/p} \le M_n^1(e) = \frac{1}{\mu_n} \sum_{k=0}^n (\mu_k - \mu_{k-1}) = 1$$
 for all $n = 0, 1, \dots$

hence $e \in c_{\infty}^{p}(\mu)$. The inclusion $c^{p}(\mu) \subset c_{\infty}^{p}(\mu)$ now follows as in the first part of the proof of part (a).

(c) Let $x \in c^p(\mu)$ and $l, l' \in \mathbb{C}$ such that $x - le \in c_0^p(\mu)$ and $x - l'e \in c_0^p(\mu)$. Given $\varepsilon > 0$, there is $n = n(\varepsilon) \in \mathbb{N}_0$ such that $M_n^p(x - le), M_n^p(x - l'e) < \varepsilon$. Then, for 0 by inequality (2.1)

$$|l - l'|^p \le M_n^p((x - le) - (x - l'e)) \le M_n^p(x - le) + M_n^p(x - l'e) < 2\varepsilon$$

and, for $p \ge 1$ by Minkowski's inequality

$$|l-l'| \le (M_n^p((x-le) - (x-l'e)))^{1/p} \le (M_n^p(x-le))^{1/p} + (M_n^p(x-l'e))^{1/p} < 2\varepsilon^{1/p}.$$

Since $\varepsilon > 0$ was arbitrary, we have l = l' in both cases.

(d) Since $p/\tilde{p} \leq 1$, we have

$$\left(\frac{1}{\mu_n^{\tilde{p}}}\sum_{k=0}^n |x_k|^{\tilde{p}}\right)^{p/\tilde{p}} \le \frac{1}{\mu_n^p}\sum_{k=0}^n |x_k|^p \ (n=0,1,\ldots).$$

From this, we obtain the inclusions $X^p(\mu) \subset X^{\tilde{p}}(\mu)$ for $X^p(\mu) = w_0^p(\mu)$ and $X^p(\mu) = w_{\infty}^p(\mu)$.

Since $x \in c_0^p(\mu)$ or $x \in c_{\infty}^p(\mu)$ if and only if $\Delta(\mu x) \in w_0^p(\mu)$ or $\Delta(\mu x) \in w_{\infty}^p(\mu)$, respectively, it follows that the inclusions also hold for $X^p(\mu) = c_0^p(\mu)$ or $X^p(\mu) = c_{\infty}^p(\mu)$. Finally, the inclusion $c^p(\mu) \subset c^{\tilde{p}}(\mu)$ holds, since $x \in c^p(\mu)$ if and only if $x - le \in c_0^p(\mu)$ for some $l \in \mathbb{C}$.

(e) First

$$|x_n| = \left|\frac{1}{\mu_n}\sum_{k=0}^{\infty} (\Delta(\mu x))_k\right| \le M_n^1(x) \ (n = 0, 1, \ldots)$$

implies $c_{\infty}(\mu) \subset l_{\infty}$, and so $c_{\infty}^{p}(\mu) \subset l_{\infty}$ for 0 by part (d).

Following the notations introduced in [10], we say that a nondecreasing sequence $\Lambda = (\lambda_n)_{n=0}^{\infty}$ of positive reals tending to infinity is *exponentially bounded* if there are reals s and t with $0 < s \leq t < 1$ such that for some subsequence $(\lambda_{n(\nu)})_{\nu=0}^{\infty}$ of Λ , we have

$$s \le \frac{\lambda_{n(\nu)}}{\lambda_{n(\nu+1)}} \le t \text{ for all } \nu = 0, 1, \dots;$$

$$(2.3)$$

such a subsequence $(\lambda_{n(\nu)})_{\nu=0}^{\infty}$ will be called an *associated subsequence*.

If $(n(\nu))_{\nu=0}^{\infty}$ is a strictly increasing sequence of nonnegative integers then we shall write $K^{<\nu>}$ for the set of all integers k with $n(\nu) \leq k \leq n(\nu+1) - 1$, and \sum_{ν} and \max_{ν} for the sum and maximum taken over all k in $K^{<\nu>}$.

If X is a p-normed sequence space and $a \in \omega$, then we write

$$||a||_X^* = \sup\left\{\left|\sum_{k=0}^{\infty} a_k x_k\right| : ||x|| = 1\right\}$$

provided the term on the right exists and is finite. This is the case whenever $X \supset \phi$ is a *p*-normed FK space and $a \in X^{\beta}$ by [13, Theorem 7.2.9, p. 107].

Let $\Lambda = (\lambda_n)_{n=0}^{\infty}$ be a nondecreasing exponentially bounded sequence of positive reals and $(\lambda_{n(\nu)})_{\nu=0}^{\infty}$ an associated subsequence throughout.

If $X^p(\Lambda)$ denotes any of the sets $w_0^p(\Lambda)$, $w_{\infty}^p(\Lambda)$, $c_0^p(\Lambda)$, $c^p(\Lambda)$ or $c_{\infty}^p(\Lambda)$ then we shall write $\tilde{X}^p(\Lambda)$ for the respective space with the sections $1/\lambda_n^p \sum_{k=0}^n \cdots$ replaced by the blocks $1/\lambda_{n(\nu+1)}^p \sum_{\nu} \cdots$. Further, we define

$$\|x\|_{w_{\infty}^{p}(\Lambda)} = \begin{cases} \sup_{n} \left(\frac{1}{\lambda_{n}^{p}} \sum_{k=0}^{n} |x_{k}|^{p}\right) & (0$$

112

$$\|x\|_{\tilde{w}^p_{\infty}(\Lambda)} = \begin{cases} \sup_{\nu} \left(\frac{1}{\lambda^p_{n(\nu+1)}} \sum_{\nu} |x_k|^p\right) & (0$$

Theorem 1. (a) The sets $w_0^p(\mu)$ and $w_\infty^p(\mu)$ with $\|\cdot\|_{w_\infty^p(\mu)}$, and $c_0^p(\mu)$ and $c_\infty^p(\mu)$ with $\|\cdot\|_{c_\infty^p(\mu)}$ are *p*-normed *FK* spaces for 0 and*BK* $spaces for <math>1 \le p < \infty$, $w_0^p(\mu)$ is a closed subspace of $w_\infty^p(\mu)$, $c_0^p(\mu)$ is a closed subspace of $c_\infty^p(\mu)$, $w_0^p(\mu)$ has *AK* for all *p* and $c_0^p(\mu)$ has *AK* for 0 . (b) We assume that condition (2.2) holds for $<math>0 . Then <math>c^p(\mu)$ with $\|\cdot\|_{c_\infty^p(\mu)}$ is a *p*-normed *FK* space for 0 and a*BK* $space for <math>1 \le p < \infty$, $c^p(\mu)$ is a closed subspace of $c_\infty^p(\mu)$, and if 0 , then every $sequence <math>x = (x_k)_{k=0}^{\infty} \in c^p(\mu)$ has a unique representation

$$x = le + \sum_{k=0}^{\infty} (x_k - l)e^{(k)} \text{ where } l \in \mathbb{C} \text{ is such that } x - le \in c_0^p(\Lambda).$$
(2.4)

(c) If $X^p(\Lambda)$ and $\tilde{X}^p(\Lambda)$ denote any of the sets $w_0^p(\Lambda)$, $w_0^p(\Lambda)$, $c_0^p(\Lambda)$, $c^p(\Lambda)$ and $c_{\infty}^p(\Lambda)$, $\tilde{w}_0^p(\Lambda)$, $\tilde{w}_{\infty}^p(\Lambda)$, $\tilde{c}_0^p(\Lambda)$, $\tilde{c}^p(\Lambda)$ and $\tilde{c}_{\infty}^p(\Lambda)$, respectively, then $X^p(\Lambda) = \tilde{X}^p(\Lambda)$, $\|\cdot\|_{w_{\infty}^p(\Lambda)}$ and $\|\cdot\|_{\tilde{w}_{\infty}^p(\Lambda)}$ are equivalent on $w_0^p(\Lambda)$ and on $w_{\infty}^p(\Lambda)$, $\|\cdot\|_{c_{\infty}^p(\Lambda)}$ and $\|\cdot\|_{\tilde{c}_{\infty}^p(\Lambda)}$ are equivalent on $c_0^p(\Lambda)$, $c_{\infty}^p(\Lambda)$ and $c^p(\Lambda)$, in the case of $c^p(\Lambda)$ whenever condition (2.2) holds for 0 .

Proof. (a) The assertions concerning the sets $w_0^p(\mu)$ and $w_{\infty}^p(\mu)$ were proved in [9]. From this, all the assertions concerning $c_0^p(\mu)$ and $c_{\infty}^p(\mu)$ follow from [13, Theorems 4.3.13 and 4.3.14, pp 63 and 46], except for the one that $c_0^p(\mu)$ has AK for 0 . $To show that <math>c_0^p(\mu)$ has AK for $0 , let <math>x \in c_0^p(\mu)$ and $\varepsilon > 0$ be given. Then there

To show that $c_0(\mu)$ has AK for $0 , let <math>x \in c_0(\mu)$ and $\varepsilon > 0$ be given. Then there is an integer $m_0 \in \mathbb{N}_0$ such that $M_n^p(x) < \varepsilon/2$ for all $n \ge m_0$. Let $m \ge m_0$. Then, since 0 , we conclude

$$\|x^{[m]} - x\|_{c_{\infty}^{p}(\mu)} = M_{n}^{p}(x^{[m]} - x) = \sup_{n \ge m+1} \frac{1}{\mu_{n}^{p}} \left(|\mu_{m+1}|^{p} |x_{m+1}|^{p} + \sum_{k=m+2}^{n} |(\Delta(\mu x))_{k}|^{p} \right)$$

$$< M_{m+1}^{p}(x) + \varepsilon/2 < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

(b) First we show that $c^p(\mu)$ is complete with $\|\cdot\|_{c_{\infty}^p(\mu)}$. By Lemma 1 (a) and (b), $\|\cdot\|_{c_{\infty}^p(\mu)}$ is defined on $c^p(\mu)$.

Let $(x^{(m)})_{m=0}^{\infty}$ be a Cauchy sequence in $c^p(\mu)$. For each $m \in \mathbb{N}_0$, let $l^{(m)} \in \mathbb{C}$ denote the number for which $x^{(m)} - l^{(m)}e \in c_0^p(\mu)$. First we observe that $(x^{(m)})_{m=0}^{\infty}$ is a Cauchy sequence in $c_{\infty}^p(\mu)$, and so convergent by the completeness of $c_{\infty}^p(\mu)$,

$$||x^{[m]} - x||_{c_{\infty}^{p}(\mu)} \to 0 \quad (m \to \infty), \text{ say.}$$
 (2.5)

We have to show $x \in c^p(\mu)$.

First we show that the sequence $(l^{(m)})_{m=0}^{\infty}$ converges. Let $\varepsilon > 0$ be given. Since $(x^{(m)})_{m=0}^{\infty}$ is a Cauchy sequence, we may choose M = $M(\varepsilon) \in \mathbb{N}_0$ such that $||x^{(m)} - x^{(j)}||_{c_{\infty}^{p}(\mu)} < \varepsilon/3$ for all $m, j \ge M$. Let $m, j \ge M$. Since $x^{(m)} - l^{(m)}e, x^{(j)} - l^{(j)}e \in c_0^p(\mu)$, there is $n = n(m, j, \varepsilon) \in \mathbb{N}_0$ such that $M_n^p(x^{(m)} - v^{(m)})$ $l^{(m)}e$, $M_n^p(x^{(j)} - l^{(j)}e) < \varepsilon/3$. Then, for 0 by inequality (2.1)

$$\begin{split} |l^{(m)} - l^{(j)}|^p &\leq M_n^p((l^{(m)} - l^{(j)})e) \leq M_n^p(x^{(m)} - l^{(m)}e) + \|x^{(m)} - x^{(j)}\|_{c_{\infty}^p(\mu)} M_n^p(x^{(j)} - l^{(j)}e) \\ &< \varepsilon/3 + \varepsilon/3 + \varepsilon/3 = \varepsilon, \end{split}$$

and, for $1 \leq p < \infty$ by Minkowski's inequality

$$\begin{split} |l^{(m)} - l^{(j)}| &\leq \left(M_n^p((l^{(m)} - l^{(j)})e)\right)^{1/p} \\ &\leq \left(M_n^p(x^{(m)} - l^{(m)}e)\right)^{1/p} + \|x^{(m)} - x^{(j)}\|_{c_{\infty}^p(\mu)} + \left(M_n^p(x^{(j)} - l^{(j)}e)\right)^{1/p} \\ &< 2(\varepsilon/3)^{1/p} + \varepsilon/3. \end{split}$$

Thus $(l^{(m)})_{m=0}^{\infty}$ is a Cauchy sequence in C, hence convergent,

$$l = \lim_{m \to \infty} l^{(m)}, \text{ say.}$$
(2.6)

Now we show $x - le \in c_0^p(\mu)$.

Let $\varepsilon > 0$ be given. By (2.5) and (2.6), there is $M \in \mathbb{N}_0$ such that $\|x^{(M)} - x\|_{c_{\infty}^p(\mu)} < \varepsilon/3$, and, with $C = \sup_n M_n^p(e) < \infty$ (for 0 by condition (2.2)),

$$|l - l^{(M)}| < \left(\frac{\varepsilon}{3(C+1)}\right)^{1/p}$$

Further, since $x^{(M)} - l^{(M)}e \in c_0^p(\mu)$, there is $N \in \mathbb{N}_0$ such that $M_n^p(x^{(M)} - l^{(M)}e) < \varepsilon/3$. Let $n \ge N$. Then, for 0 by inequality (2.1)

$$\begin{split} M_n^p(x-le) &\leq M_n^p(x^{(M)} - l^{(M)}e) + \|x^{(m)} - x\|_{c_{\infty}^p(\mu)} + M_n^p((l-l^{(M)})e) \\ &< 2\varepsilon/3 + |l-l^{(M)}|^p M_n^p(e) < \frac{2\varepsilon}{3} + \frac{\varepsilon C}{3(C+1)} \leq \varepsilon, \end{split}$$

and, for $1 \le p < \infty$ by Minkowski's inequality

$$\begin{split} (M_n^p(x-le))^{1/p} &< (\varepsilon/3)^{1/p} + \varepsilon/3 + \left(M_n^p((l-l^{(M)})e)\right)^{1/p} \\ &< (\varepsilon/3)^{1/p} + \varepsilon/3 + |l-l^{(M)}| \left(M_n^p(e)\right)^{1/p} < 2(\varepsilon/3)^{1/p} + \varepsilon/3. \end{split}$$

This shows that $c^p(\mu)$ is complete. Consequently $c^p(\mu)$ is a *p*-normed FK space for $0 and a BK space for <math>1 \le p < \infty$ by [13, Corollary 4.2.2, p. 56].

Finally, let $0 and <math>x = (x_k)_{k=0}^{\infty} \in c^p(\mu)$. Then, by Lemma 1 (c) there is a uniquely determined $l \in \mathbb{C}$ such that $x - le \in c^p(\mu)$. We put y = x - le. Since $c_0^p(\mu)$ has AK, $y = \sum_{k=0}^{\infty} y_k e^{(k)} = \sum_{k=0}^{\infty} (x_k - l) e^{(k)}$, and so the representation in (2.4) follows. (c) Let 0 .

From

$$\frac{1}{\lambda_{n(\nu+1)}^p} \sum_{\nu} |x_k|^p \le \frac{1}{\lambda_{n(\nu+1)}^p} \sum_{k=0}^{n(\nu+1)} |x_k|^p \ (\nu = 0, 1, \ldots),$$

we conclude $X^p(\Lambda) \subset \tilde{X}^p(\Lambda)$.

Conversely, let $x \in \tilde{w}_0^p(\Lambda)$ and $\varepsilon > 0$ be given. Then there is an integer $\nu_0 \in \mathbb{N}_0$ such that

$$\frac{1}{\lambda_{n(\nu+1)}^p} \sum_{\nu} |x_k|^p < \varepsilon \text{ for all } \nu \ge \nu_0.$$

Since $\lambda_{n(\nu)} \to \infty$ ($\nu \to \infty$), we can choose an integer $\nu_1 > \nu_0$ such that

$$\frac{1}{\lambda_{n(\nu)}^p} \sum_{k=0}^{n(\nu_0)-1} |x_k|^p \text{ for all } \nu \ge \nu_1.$$

Let $m \ge n(\nu_1)$. Then there is an integer $\nu(m) \ge \nu_1$ such that $m \in K^{<\nu(m)>}$ and, using (2.3), we obtain

$$\begin{split} \frac{1}{\lambda_m^p} \sum_{k=0}^m |x_k|^p &\leq \frac{1}{\lambda_{n(\nu(m))}^p} \left(\sum_{k=0}^{n(\nu_0)-1} |x_k|^p + \sum_{\nu=\nu_0}^{\nu(m)} \sum_{\nu} |x_k|^p \right) \\ &< \varepsilon + \left(\frac{\lambda_{n(\nu(m)+1)}}{\lambda_{n(\nu(m))}} \right)^p \frac{1}{\lambda_{n(\nu(m)+1)}^p} \sum_{\nu=\nu_0}^{\nu(m)} \lambda_{n(\nu+1)}^p \frac{1}{\lambda_{n(\nu+1)}^p} \sum_{\nu} |x_k|^p \\ &\leq \varepsilon + \frac{\varepsilon}{s^p} \sum_{\nu=\nu_0}^{\nu(m)} \left(t^{\nu(m)-\nu} \right)^p < \varepsilon \left(1 + \frac{1}{s^p} \frac{1}{1-t^p} \right). \end{split}$$

This shows $\tilde{w}_0^p(\Lambda) \subset w_0^p(\Lambda)$. The inclusion $\tilde{w}_\infty^p(\Lambda) \subset w_\infty^p(\Lambda)$ is shown in exactly the same way. Now the identities $c_0^p(\Lambda) = \tilde{c}_0^p(\Lambda)$, $c^p(\Lambda) = \tilde{c}^p(\Lambda)$ and $c_\infty^p(\Lambda) = \tilde{c}_\infty^p(\Lambda)$ are obvious.

3. The Duals of The Sets $w_0^p(\Lambda)$ and $w_\infty^p(\Lambda)$

In this section, we shall give the duals of the sets $w_0^p(\Lambda)$ and $w_{\infty}^p(\Lambda)$ for 0 . $Let <math>\Lambda = (\lambda_n)_{n=0}^{\infty}$ be a nondecreasing exponentially bounded sequence of positive reals

throughout and $(\lambda_{n(\nu)})_{\nu=0}^{\infty}$ an associated subsequence. We put $\left\{ \begin{cases} a \in \omega : \sum_{k=1}^{\infty} \lambda_{n(\nu+1)} \max_{\nu} |a_k| < \infty \end{cases} \right\} \qquad (0 < p \le 1)$

$$\mathcal{W}^{p}(\Lambda) = \begin{cases} \left\{ \begin{array}{l} a \in \omega : \sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} \max_{\nu} |a_{k}| < \infty \right\} & (0 < p \le 1) \\ \left\{ a \in \omega : \sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} \left(\sum_{\nu} |a_{k}|^{p} \right)^{1/p} < \infty \right\} & (1 < p < \infty, q = \frac{p}{p-1}) \end{cases} \end{cases}$$

and on $\mathcal{W}^p(\Lambda)$

$$\|a\|_{\mathcal{W}^{p}(\Lambda)} = \begin{cases} \sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} \max_{\nu} |a_{k}| & (0$$

Theorem 2. Let $X^p(\Lambda) = w_0^p(\Lambda)$ or $X^p(\Lambda) = w_\infty^p(\Lambda)$ and \dagger stand for α , β , γ or f. Then $(X^p(\Lambda))^{\dagger} = \mathcal{W}^p(\Lambda)$. The continuous dual $(w_0^p(\Lambda))^*$ of $w_0^p(\Lambda)$ is norm isomorphic to $\mathcal{W}^p(\Lambda)$ when $w_0^p(\Lambda)$ has the norm $\|\cdot\|_{\tilde{w}_{\infty}^p(\Lambda)}$. This means, $g \in (w_0^p(\Lambda))^*$ if and only if there is a sequence $b = (b_n)_{n=0}^{\infty} \in \mathcal{W}^p(\Lambda)$ such that

$$g(y) = \sum_{n=0}^{\infty} b_n y_n \text{ for all } y \in w_0^p(\Lambda) \quad and \quad \|g\| = \|b\|_{\mathcal{W}^p(\Lambda)}.$$

Furthermore, $\|a\|_{\tilde{w}_{\infty}^{p}(\Lambda)}^{*} = \|a\|_{\mathcal{W}^{p}(\Lambda)}$ on $(w_{\infty}^{p}(\Lambda))^{\beta}$.

Proof. The statements of the theorem with the exception of those concerning the γ - and f-duals are well known [9, Theorems 2,4,5 and 6].

(a) Since $w_0^p(\Lambda)$ has AK, we have $(w_0^p(\Lambda))^{\beta} = (w_0^p(\Lambda))^{\hat{f}}$ by [13, Theorem 7.2.7 (ii), p. 106], and so $(w_0^p(\Lambda))^{\hat{f}} = \mathcal{W}^p(\Lambda)$. Further, since an AK space obviously has AD, we also have $(w_0^p(\Lambda))^{\beta} = (w_0^p(\Lambda))^{\gamma}$ by [13, Theorem 7.2.7 (iii), p. 106], and so $(w_0^p(\Lambda))^{\gamma} = \mathcal{W}^p(\Lambda)$. Since $w_0^p(\Lambda)$ is a closed subspace of $w_{\infty}^p(\Lambda)$, it follows that $(w_{\infty}^p(\Lambda))^{\hat{f}} = (w_0^p(\Lambda))^{\hat{f}}$ by [13, Theorem 7.2.7, it follows that $(w_{\infty}^p(\Lambda))^{\hat{f}} = (w_0^p(\Lambda))^{\hat{f}}$ by [13, Theorem 7.2.6, p.106], and so

$$(w^p_{\infty}(\Lambda))^f = \mathcal{W}^p(\Lambda). \tag{3.1}$$

Finally, by [13, Theorem 7.2.7 (i), p. 106], $(w_{\infty}^p(\Lambda))^{\beta} \subset (w_{\infty}^p(\Lambda))^{\gamma} \subset (w_{\infty}^p(\Lambda))^{f}$, and so by (3.1)

$$\mathcal{W}^p(\Lambda) \subset (w^p_{\infty}(\Lambda))^{\beta} \subset (w^p_{\infty}(\Lambda))^{\gamma} \subset (w^p_{\infty}(\Lambda))^{\beta} = \mathcal{W}^p(\Lambda),$$

hence $(w^p_{\infty}(\Lambda))^{\gamma} = \mathcal{W}^p(\Lambda).$

4. The Duals of The Sets $c_0^p(\Lambda)$, $c^p(\Lambda)$ and $c_\infty^p(\Lambda)$

In this section, we shall determine the α -, β -, γ - and f-duals of the sets $c_0^p(\Lambda)$, $c^p(\Lambda)$ and $c_{\infty}^p(\Lambda)$ and the continuous duals of $c_0^p(\Lambda)$ and $c^p(\Lambda)$ for 0 .

Let $\Lambda = (\lambda_n)_{n=0}^{\infty}$ be a nondecreasing exponentially bounded sequence of positive reals throughout.

We need the following lemma for the determination of the α - duals of $c^p_{\infty}(\Lambda)$, $c^p(\Lambda)$ and $c^p_{\infty}(\Lambda)$.

Lemma 2. Let $X \subset l_{\infty}$ be a BK space such that $\sup_{n} \|e^{[n]}\|_{c_{\infty}^{p}(\Lambda)} < \infty$. Then $X^{\alpha} = l_{1}$.

116

Proof. First we observe that $X \subset l_{\infty}$ implies $l_{\infty}^{\alpha} = l_1 \subset X^{\alpha}$.

Conversely, let $a \in X^{\alpha}$. For each $m \in \mathbb{N}_0$, we define the map $f_a^{(m)} : X \to \mathbb{R}$ by $f_a^{(m)}(x) = \sum_{k=0}^m |a_k x_k| \ (x \in X)$. Then $(f_a^{(m)})_{m=0}^{\infty}$ is a sequence of seminorms on X which are continuous, since X is a BK space. Further $f_a^{(m)}(x) \leq \sum_{k=0}^{\infty} |a_k x_k| = M(x) < \infty$ for all $m \in \mathbb{N}_0$ and all $x \in X$. By the uniform boundedness principle, there is a constant M_1 such that $||f^{(m)}|| \leq M_1$ for all $m \in \mathbb{N}_0$. From this and $\sup_n ||e^{[n]}||_{c_{\infty}^p(\Lambda)} < \infty$, we conclude $a \in l_1$.

Theorem 3. Let $X^p(\Lambda)$ denote any of the sets $c_0^p(\Lambda)$, $c^p(\Lambda)$ or $c_{\infty}^p(\Lambda)$, then $(X^p(\Lambda))^{\alpha} = l_1$ for 0 .

Proof. Since obviously $\sup_n \|e^{[n]}\|_{c_{\infty}^p(\Lambda)} \leq 2$, and $c_0(\Lambda) \subset c(\Lambda) \subset c_{\infty}(\Lambda) \subset l_{\infty}$ by Lemma 1 (b) and (e), we conclude from Lemma 2

$$c_0^{\alpha}(\Lambda) = c^{\alpha}(\Lambda) = c_{\infty}^{\alpha}(\Lambda) = l_1.$$
(4.1)

Now we assume $a \in (c_0^p(\Lambda))^{\alpha}$. For each $m \in \mathbb{N}_0$, we define the map $f^{(m)} : c_0^p(\Lambda) \to \mathbb{R}$ as in the proof of Lemma 2, and again there is a constant M > 0 such that

$$\sum_{k=0}^{\infty} |a_k x_k| \le M \text{ for all } x \in c_0^p(\Lambda) \text{ with } \|x\|_{\tilde{c}_{\infty}^p(\Lambda)} = 1.$$
(4.2)

Since $1/\Lambda = (1/\lambda_n)_{n=0}^{\infty} \in c_0^p(\Lambda)$, we have

$$R_n = R_n(|a|/\lambda) = \sum_{k=n}^{\infty} \frac{|a_k|}{\lambda_k} < \infty \text{ for all } n = 0, 1, \dots$$

Let $\nu(m) \in \mathbb{N}_0$ be given. We define the sequence $x^{(\nu(m))}$ by

$$x_n^{(\nu(m))} = \begin{cases} \frac{1}{\lambda_n} \sum_{\mu=0}^{\nu} \lambda_{n(\mu+1)} & (n \in N^{<\nu>}; \nu = 0, 1, \dots, \nu(m)) \\ \frac{1}{\lambda_n} \sum_{\mu=0}^{\nu(m)} \lambda_{n(\mu+1)} & (n \ge n(\nu(m)+1)). \end{cases}$$

Then

$$\left(\Delta(\Lambda x^{(\nu(m))})\right)_{n} = \begin{cases} 0 & (n \ge n(\nu(m)+1) \text{ or } n \ne n(\nu); \nu = 0, 1, \dots, \nu(m)) \\ \lambda_{n(\nu+1)} & (n = n(\nu); \nu = 0, 1, \dots, \nu(m)). \end{cases}$$
(4.3)

and

$$\sum_{\nu} \left| \left(\Delta(\Lambda x^{(\nu(m))}) \right)_n \right| = \begin{cases} \lambda_{n(\nu+1)} \ (0 \le \nu \le \nu(m)) \\ 0 \qquad (\nu \ge \nu(m)). \end{cases}$$
(4.4)

Therefore $x^{(\nu(m))} \in c_0^p(\Lambda)$ and $||x^{(\nu(m))}||_{\tilde{c}_{\infty}^p(\Lambda)} = 1$. Further, by (4.3), (4.4) and (4.2), and since $x_k^{(\nu(m))} \ge 0$ for all k,

$$\sum_{\nu=0}^{\nu(m)} \lambda_{n(\nu+1)} R_{n(\nu)} = \sum_{n=0}^{\infty} \left(\Delta(\Lambda x^{(\nu(m))}) \right)_n \sum_{k=n}^{\infty} \frac{|a_k|}{\lambda_k} = \sum_{k=0}^{\infty} \frac{|a_k|}{\lambda_k} \sum_{n=0}^k \left(\Delta(\Lambda x^{(\nu(m))}) \right)_n = \sum_{k=0}^{\infty} |a_k| |x_k^{(\nu(m))}| \le M.$$

Since $\nu(m) \in \mathbb{N}_0$ was arbitrary, we conclude $\sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} R_{n(\nu)} < \infty$. Now

$$\sum_{k=0}^{\infty} |a_k| = \sum_{\nu=0}^{\infty} \sum_{\nu} |a_k| \le \sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} \sum_{\nu} \frac{|a_k|}{\lambda_k} \le \sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} R_{n(\nu)} < \infty.$$

Thus $(c_0^p(\Lambda))^{\alpha} \subset l_1$, and consequently, by (4.1)

$$(c_{\infty}^{p}(\Lambda))^{\alpha} \subset (c_{0}^{p}(\Lambda))^{\alpha} \subset l_{1} = c_{\infty}^{\alpha}(\Lambda) \subset (c_{\infty}^{p}(\Lambda))^{\alpha} \subset (c_{0}^{p}(\Lambda))^{\alpha},$$

hence $(c_{\infty}^{p}(\Lambda))^{\alpha} = (c_{0}^{p}(\Lambda))^{\alpha} = l_{1}$ for 0 . $Finally <math>c_{0}^{p}(\Lambda) \subset c^{p}(\Lambda)$ implies $(c^{p}(\Lambda))^{\alpha} \subset l_{1}$, and $c(\Lambda) \subset c_{\infty}(\Lambda)$ implies $l_{1} = c_{\infty}^{\alpha}(\Lambda) \subset c^{\alpha}(\Lambda) \subset (c^{p}(\Lambda))^{\alpha}$, so $(c^{p}(\Lambda))^{\alpha} = l_{1}$.

Now we give the β -, γ - and f-duals of the sets $c_0^p(\Lambda)$, $c^p(\Lambda)$ and $c_{\infty}^p(\Lambda)$ for 0 , $and the continuous duals of <math>c_0^p(\Lambda)$ and $c^p(\Lambda)$ in some cases.

If $a \in cs$ then we shall write R(a) for the sequence with $R_n(a) = \sum_{k=n}^{\infty} a_k$ (n = 0, 1, ...). We shall frequently apply Abel's summation by parts

$$\sum_{n=0}^{m-1} a_n y_n = \sum_{n=0}^m R_n(a) (\Delta y)_n - R_m(a) y_m \text{ for all } m = 0, 1, \dots$$
 (4.5)

If u is a sequence with $u_k \neq 0$ for all k = 0, 1, ... then we shall write 1/u for the sequence with $(1/u)_k = 1/u_k$ for all k.

Theorem 4. Let 0 . We put

$$C_{\beta}(\Lambda) = \left\{ a \in \omega : \sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} \max_{\nu} \left| \sum_{k=n}^{\infty} \frac{a_k}{\lambda_k} \right| < \infty \right\}$$

and

$$\|a\|_{C_{\beta}(\Lambda)} = \sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} \max_{\nu} \left| \sum_{k=n}^{\infty} \frac{a_k}{\lambda_k} \right|.$$

(a) If $X^p(\Lambda)$ is any of the sets $c_0^p(\Lambda)$ or $c_{\infty}^p(\Lambda)$ and \dagger stands for any of the symbols β , γ or f, then

$$X^p(\Lambda)^\dagger = C_\beta(\Lambda).$$

This also holds when $X^p(\Lambda) = c(\Lambda)$ or $X^p(\Lambda) = c^p(\Lambda)$ for 0 whenever condition (2.2) is satisfied. Otherwise

$$(c^{p}(\Lambda))^{\beta} = C_{\beta}(\Lambda) \cap cs \text{ and } (c^{p}(\Lambda))^{\gamma} = C_{\beta}(\Lambda) \cap bs.$$

(b) The continuous dual $(c_0^p(\Lambda))^*$ of $c_0^p(\Lambda)$ is norm isomorphic to $C_\beta(\Lambda)$ when $c_0^p(\Lambda)$ has the *p*-norm $\|\cdot\|_{\tilde{c}_p^p(\Lambda)}$. Further

$$\|a\|_{\tilde{c}^p_{\infty}(\Lambda)}^* = \|a\|_{C_{\beta}(\Lambda)} \text{ on } c^p_{\infty}(\Lambda).$$

$$(4.6)$$

(c) We have $f \in c^*(\Lambda)$ if and only if

$$f(x) = l\chi_f + \sum_{n=0}^{\infty} a_n x_n \text{ for all } x \in c(\Lambda)$$

where $a \in C_{\beta}(\Lambda), \ l \in \mathbb{C}$ with $x - le \in c_0(\Lambda)$ and (4.7)
 $\chi_f = f(e) - \sum_{n=0}^{\infty} a_n.$

Further, ||f|| is equivalent to

$$|\chi_f| + ||a||_{C_\beta(\Lambda)}.\tag{4.8}$$

If condition (2.2) is satisfied, then this also holds for $c^p(\Lambda)$ (0 .

Proof. In the case p = 1, the statements of the theorem concerning the β - and continuous duals can be found in [10, 11].

(a) Let $0 . First <math>c_{\infty}^{p}(\Lambda) \subset c_{\infty}(\Lambda)$ implies

$$(c_{\infty}(\Lambda))^{\beta} = C_{\beta}(\Lambda) \subset (c_{\infty}^{p}(\Lambda))^{\beta}.$$

Conversely, let $a \in (c_0^p(\Lambda))^{\beta}$. Since $c_0^p(\Lambda)$ is a *p*-normed FK space, the map $f_a : c_0^p(\Lambda) \to \mathbb{C}$ defined by $f_a(x) = \sum_{k=0}^{\infty} a_k x_k$ $(x \in c_0^p(\Lambda))$ is an element of $(c_0^p(\Lambda))^*$. We define the matrix $\Delta(\Lambda)$ by

$$\Delta_{nk}(\Lambda) = \begin{cases} -\lambda_{n-1} & (k=n-1) \\ \lambda_n & (k=n) \\ 0 & (otherwise) \end{cases} \quad (n=0,1,\ldots).$$

By [13, Theorem 4.4.2, p. 66], there is $g \in (c_0^p(\Lambda))^*$ with

$$f = g \circ \Lambda(\Delta) \tag{4.9}$$

Since $w_0^p(\Lambda)$ is an FK space with AK, we have

$$b = (g(e^{(n)}))_{n=0}^{\infty} \in (w_0^p(\Lambda))^{\beta}$$
(4.10)

by [13, Theorem 7.2.9, p. 107].

Let $m \in \mathbb{N}_0$ be given. Then, for the sequence $x^{(m)}$ defined by

$$x_n^{(m)} = \begin{cases} 0 & (n < m) \\ \frac{1}{\lambda_n} & (n \ge m), \end{cases}$$

we have $x^{(m)} \in c_0^p(\Lambda)$ and

$$\left(\Delta_n(\Lambda)\right)(x^{(m)}) = \begin{cases} 1 & (n=m) \\ 0 & (n\neq m) \end{cases} = e^{(m)} \in w_0^p(\Lambda),$$

and so $x^{(m)} \in c_0^p(\Lambda)$. From (4.9) and (4.10), we obtain

$$b_m = g(e^{(m)}) = g\left((\Delta(\Lambda))(x^{(m)})\right) = f(x^{(m)}) = \sum_{n=0}^{\infty} a_n x_n^{(m)} = \sum_{n=m}^{\infty} \frac{a_n}{\lambda_n} \ (m = 0, 1, \ldots),$$

hence $a \in C_{\beta}(\Lambda)$, since $(w_0^p(\Lambda))^{\beta} = \mathcal{W}^p(\Lambda)$ by Theorem 2 (a). Therefore $(c_0^p(\Lambda))^{\beta} \subset C_{\beta}(\Lambda)$. Thus we have shown $(c_0^p(\Lambda))^{\beta} = (c_{\infty}^p(\Lambda))^{\beta} = C_{\beta}(\Lambda)$ for 0 .

If condition (2.2) holds, then $c_0^p(\Lambda) \subset c^p(\Lambda) \subset c_\infty^p(\Lambda)$, and so $(c^p(\Lambda))^\beta = C_\beta(\Lambda)$.

The assertions concerning the γ - and f-duals are proved in the same way as in Theorem 2 (a).

Now we consider the case where condition (2.2) does not hold. We assume $a \in C_{\beta}(\Lambda) \cap cs$. Let $x \in c^{p}(\Lambda)$ be given. Then there is $l \in \mathbb{C}$ such that $x - le \in \mathbb{C}$, and so $ax = a(x - le) + lae \in cs$, hence $a \in (c^{p}(\Lambda))^{\beta}$. Conversely, let $a \in (c^{p}(\Lambda))^{\beta}$. Then $a \in (c_{0}^{p}(\Lambda))^{\beta} = C_{\beta}(\Lambda)$, since $c_{0}^{p}(\Lambda) \subset c^{p}(\Lambda)$ implies $(c^{p}(\Lambda))^{\beta} \subset (c_{0}^{p}(\Lambda))^{\beta}$. Since $e \in c^{p}(\Lambda)$, we also have $a = ae \in cs$.

The identity $(c^p(\Lambda))^{\gamma} = C_{\beta}(\Lambda) \cap bs$ is proved in exactly the same way.

(b) Since $c_0^p(\Lambda)$ is an FK space with AK, the representation of $(c_0^p(\Lambda))^*$ follows from [13, Theorem 7.2.9, p. 107].

(c) Let 0 and condition (2.2) hold.

We assume $f \in (c^p(\Lambda))^*$. Then $f_1 = f |_{c_0^p(\Lambda)} \in (c_0^p(\Lambda))^*$. Given $x \in c^p(\Lambda)$, there is a sequence $a \in C_\beta(\Lambda)$ such that $f_1(x - le) = \sum_{k=0}^{\infty} a_k(x_k - l)$. Since $a \in C_\beta(\Lambda) = (c^p(\Lambda))^\beta$, we have $ax \in cs$ for all $x \in c^p(\Lambda)$, in particular, for $x = e \in c^p(\Lambda)$, this implies $ae = a \in cs$, and we may write

$$f(x) = l\left(f(e) - \sum_{k=0}^{\infty} a_k\right) + \sum_{k=0}^{\infty} a_k x_k.$$

Putting $\chi_f = f(e) - \sum_{k=0}^{\infty} a_k x_k$, we obtain the given representation. Conversely, if f has the given representation, then $f \in c^*(\Lambda)$, and so $f \in (c^p(\Lambda))^*$.

References

[1] K.-G. Grosse-Erdmann, Strong weighted mean summability and Kuttner's theorem, to appear.

- [2] —, The blocking technique, weighted mean operators and Hardy's inequality, to appear.
- [3] J. M. Hyslop, Note on the strong summability of series, Proc. Glasgow Math. Assoc., 1(1951/53), 16-20.
- [4] B. Kuttner and B. Thorpe, Strong convergence, J. Reine Angew. Math., 311/312(1979), 42-56.
- [5] I. Jovanović and V. Rakočević, Multipliers of mixed normed spaces, Publ. Inst. Math. Beograd, 56(1994), 61-68.
- [6] C. N. Kelllog, An extension of the Hausdorff-Young theorem, Michigan Math. J., 18(1971), 121-127.
- [7] I. J. Maddox, On Kuttner's theorem, J. London Math. Soc., 43(1968), 285-290.
- [8] —, Elements of Functional Analysis, Cambridge University Press, 1970.
- [9] E. Malkowsky, Matrix transformations in a new class of sequences that includes spaces of absolutely and strongly summable sequences, Habilitationsschrift Giessen, 1988.
- [10] —, The continuous duals of the spaces $c_0(\Lambda)$ and $c_{\infty}(\Lambda)$ for exponentially bounded sequences Λ , Acta Sci. Math. Szeged, **61**(1995), 241-250.
- [11] —, Linear Operators in certain BK spaces, Bolyai Society Mathematical Studies, Approximation Theory and Function Series Budapest, 1995 Budapest 1996, 259-273.
- F. Móricz, On Λ-strong convergence of numerical sequences and Fourier series, Acta Math. Hung. 54(1989), 319-327.
- [13] A. Wilansky, Summability through Functional Analysis, North-Holland Mathematics studies, No. 85, 1984

Department of Mathematics, Faculty of Science, Yarmouk University, Irbid, Jordan. E-mail: ajarrah@yu.edu.jo

Department of Mathematics, University of Giessen, Arndtstrasse 2, D–35392 Giessen, Germany. E-mail: Malkowsky@math.uni-giessen.de