
TAMKANG JOURNAL OF MATHEMATICS

Volume 31, Number 2, Summer 2000

ON TWO NEW MULTIDIMENSIONAL INTEGRAL INEQUALITIES

OF THE HILBERT TYPE

B. G. PACHPATTE

Abstract. The main aim of this paper is to establish two new multidimensional integral inequal-

ities similar to the integral analogue of the well known Hilbert’s inequality by using elementary

analysis.

1. Introduction

The integral analogue of the most celebrated Hilbert’s double series theorem can be

stated as follows (see [1, p. 226]).

Theorem H. If p > 1, p′ = p/(p− 1) and

∫
∞

0

fp(x)dx ≤ A,

∫
∞

0

gp′

(y)dy ≤ B,

then ∫
∞

0

∫
∞

0

f(x)g(y)

x + y
dxdy <

π

sin(π/p)
A1/pB1/p′

,

unless f ≡ 0 or g ≡ 0.

The Hilbert’s double series theorem (see [1, p. 226]) and its integral analogue given

in Theorem H led to a great many papers which deals with alternative proofs, various

generalizations, numerous variants and applications in analysis. A survey of some of

the earlier developments of this kind of inequalities and many important applications

in analysis can be found in [1, Chapter IX]. Recently, in [4-10] the present author has

established some new inequalities similar to Hilbert’s double series inequality and its

integral analogue which are of independent interest. The main purpose of this paper is

to establish two new integral inequalities similar to the integral analogue of the Hilbert’s

inequality involving functions of two and many independent variables. The analysis used
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in the proofs is elementary and our results provides new estimates on inequalities of this

type.

2. Statement of Results

In what follows we denote by R set of real numbers. Let Ix = [0, x), Iy = [0, y),

Iz = [0, z), Iw = [0, w), I = [0,∞), I0 = (0,∞) denotes the subintervals of R, where

x, y, z, w are the elements of I0 and let ∆1 = Ix × Iy and ∆2 = Iz × Iw. For the

function u(s, t) the partial derivatives ∂
∂su(s, t) and ∂

∂tu(s, t) are denoted by D1u(s, t) and

D2u(s, t) respectively. The higher order derivatives of u(s, t) can be denoted similarly.

We denote by H(∆), where ∆ = I × I, the class of functions u(s, t) ∈ C(n−1,m−1)(∆)

such that Di
1u(0, t) = 0, 0 ≤ i ≤ n − 1, t ∈ I, Dj

2u(s, 0) = 0, 0 ≤ j ≤ m − 1, s ∈ I, and

Dn
1 Dm−1

2 u(s, t) and Dn−1
1 Dm

2 u(s, t) are absolutely continuous on I × I.

Let E and F be bounded domains in In defined by E =
∏n

i=1[0, ai) and F =∏n
i=1[0, bi), where ai, bi are the elements of I0. Let x = (x1, . . . , xn), y = (y1, . . . , yn)

denote the variable points in E and F respectively and dx = dx1 · · · dxn and dy =

dy1 · · ·dyn. For any continuous real-valued functions u and v defined on E and F respec-

tively, we denote by
∫

E u(ξ)dξ and
∫

F v(η)dη the n-fold integrals
∫ a1

0 · · ·
∫ an

0 u(ξ1, . . . , ξn)

×dξ1 · · · dξn and
∫ b1
0

· · ·
∫ bn

0
v(η1, . . . , ηn)dη1 · · · dηn respectively. For any x ∈ E, y ∈ F

we denote by
∫

Ex
u(s)ds and

∫
Fy

v(t)dt the n-fold integrals
∫ x1

0
· · ·

∫ xn

0
u(s1, . . . , sn)ds1

· · ·dsn and
∫ y1

0 · · ·
∫ yn

0 v(t1, . . . , tn)dt1 · · · dtn respectively. We denote by G(E) and G(F )

respectively the classes of continuous functions u : E → R and v : F → R for which the

partial derivatives D1 · · ·Dnu(x) and D1 · · ·Dnv(y) exist and such that

u(0, x2, . . . , xn) = u(x1, 0, x3, . . . , xn) = · · · = u(x1, . . . , xn−1, 0) = 0,

v(0, y2, . . . , yn) = v(y1, 0, y3, . . . , yn) = · · · = v(y1, . . . , yn−1, 0) = 0,

where Di = ∂
∂xi

for i = i, . . . , n.

Our first theorem deals with an inequality similar to the integral analogue of the

Hilbert’s inequality involving functions of two independent variables and their higher

order partial derivatives.

Theorem 1. Let u(s, t) ∈ H(∆1) and v(k, r) ∈ H(∆2). Then for 0 ≤ i ≤ n − 1,

0 ≤ j ≤ m − 1, the following inequality holds

∫ x

0

∫ y

0

(

∫ z

0

∫ w

0

|Di
1D

j
2u(s, t)||Di

1D
j
2v(k, r)|

s2n−2i−1t2m−2j−1 + k2n−2i−1r2m−2j−1
dkdr)dsdt

≤ 1

2
[Ai,jBi,j ]

2√xyzw(

∫ x

0

∫ y

0

(x − s)(y − t)|Dn
1 Dm

2 u(s, t)|2dsdt)1/2

×(

∫ z

0

∫ w

0

(z − k)(w − r)|Dn
1 Dm

2 v(k, r)|2dkdr)1/2. (1)
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for x, y, z, w in I0, where

Ai,j =
1

(n − i − 1)!(m − j − 1)!
, (2)

Bi,j =
1

(2n − 2i − 1)(2m − 2j − 1)
. (3)

Remark 1. If we take i = 0, j = 0 in (1), then we get the following inequality

∫ x

0

∫ y

0

(

∫ z

0

∫ w

0

|u(s, t)||v(k, r)|
s2n−1t2m−1 + k2n−1r2m−1

dkdr)dsdt

≤ 1

2
[A0,0B0,0]

2√xyzw(

∫ x

0

∫ y

0

(x − s)(y − t)|Dn
1 Dm

2 u(s, t)|2dsdt)1/2

×(

∫ z

0

∫ w

0

(z − k)(w − r)|Dn
1 Dm

2 v(k, r)|2dkdr)1/2. (4)

Furthermore, if we take n = 1, m = 1 in (4), then we get the following inequality recently

established by Pachpatte in [9]

∫ x

0

∫ y

0

(

∫ z

0

∫ w

0

|u(s, t)||v(k, r)|
st + kr

dkdr)dsdt

≤ 1

2

√
xyzw(

∫ x

0

∫ y

0

(x − s)(y − t)|D1D2u(s, t)|2dsdt)1/2

×(

∫ z

0

∫ w

0

(z − k)(w − r)|D1D2v(k, r)|2dkdr)1/2. (5)

Another interesting inequality similar to the integral analogue of the Hilbert’s in-

equality involving functions of several variables and their partial derivatives is given in

the following theorem.

Theorem 2. Let u(x) ∈ G(E) and v(y) ∈ G(F ). Then the following inequality holds

∫
E

(

∫
F

|u(x)||v(y)|∏n
i=1 xi +

∏n
i=1 yi

dy)dx

≤ 1

2
(

n∏
i=1

ai)
1/2(

n∏
i=1

bi)
1/2 × (

∫
E

n∏
i=1

(ai − xi)|D1 · · ·Dnu(x)|2dx)1/2

×(

∫
F

n∏
i=1

(bi − yi)|D1 · · ·Dnv(y)|2dy)1/2. (6)

Remark 2. In the special case when n = 2, the inequality (6) reduces to the

inequality (5) with suitable changes, which is recently established by the present author

in [9].
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3. Proof of Theorem 1

From the hypotheses we have the following identities (see [11]])

Di
1D

j
2u(s, t) = Ai,j

∫ s

0

∫ t

0

(s − ξ)n−i−1(t − η)m−j−1Dn
1 Dm

2 u(ξ, η)dξdη, (7)

Di
1D

j
2v(k, r) = Ai,j

∫ k

0

∫ r

0

(k − σ)n−i−1(r − τ)m−j−1Dn
1 Dm

2 v(σ, τ)dσdτ, (8)

for (s, t) ∈ ∆1, (k, r) ∈ ∆2. From (7) and (8) and using Schwarz inequality we observe
that

|Di
1D

j
2u(s, t)| ≤ Ai,jBi,j [s

2n−2i−1t2m−2j−1]1/2 × (

∫ s

0

∫ t

0

|Dn
1 Dm

2 u(ξ, η)|2dξdη)1/2, (9)

and

|Di
1D

j
2v(k, r)| ≤ Ai,jBi,j [k

2n−2i−1r2m−2j−1]1/2 × (

∫ k

0

∫ r

0

|Dn
1 Dm

2 v(σ, τ)|2dσdτ)1/2.

(10)
From (9) and (10) and using the elementary inequality c1/2d1/2 ≤ 1

2 (c + d), (for c, d
nonnegative reals) we observe that

|Di
1D

j
2u(s, t)||Di

1D
j
2v(k, r)|

s2n−2i−1t2m−2j−1 + k2n−2i−1r2m−2j−1
≤ 1

2
[Ai,jBi,j ]

2(

∫ s

0

∫ t

0

|Dn
1 Dm

2 u(ξ, η)dξdη)1/2

×(

∫ k

0

∫ r

0

|Dn
1 Dm

2 v(σ, τ)|2dσdτ)1/2. (11)

Integrating both sides of (11) first over r from 0 to w and over k from 0 to z and then
integrating both sides of the resulting inequality over t from 0 to y and over s from 0 to
x and using Schwarz inequality and Fubini’s theorem we observe that

∫ x

0

∫ y

0

(

∫ z

0

∫ w

0

|Di
1D

j
2u(s, t)||Di

1D
j
2v(k, r)|

s2n−2i−1t2m−2j−1 + k2n−2i−1r2m−2j−1
dkdr)dsdt

≤ 1

2
[Ai,jBi,j ]

2(

∫ x

0

∫ y

0

(

∫ s

0

∫ t

0

|Dn
1 Dm

2 u(ξ, η)|2dξdη)1/2dsdt)

×(

∫ z

0

∫ w

0

(

∫ k

0

∫ r

0

|Dn
1 Dm

2 v(σ, τ)|2dσdτ)1/2dkdr)

≤ 1

2
[Ai,jBi,j ]

2√xy(

∫ x

0

∫ y

0

(

∫ s

0

∫ t

0

|Dn
1 Dm

2 u(ξ, η)|2dξdη)dsdt)1/2

×
√

zw(

∫ z

0

∫ w

0

(

∫ k

0

∫ r

0

|Dn
1 Dm

2 v(σ, τ)|2dσdτ)dkdr)1/2

=
1

2
[Ai,jBi,j ]

2√xyzw(

∫ x

0

∫ y

0

(x − s)(y − t)|Dn
1 Dm

2 u(s, t)|2dsdt)1/2

×(

∫ z

0

∫ w

0

(z − k)(w − r)|Dn
1 Dm

2 v(k, r)|2dkdr)1/2.
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This is the desired inequality in (1) and the proof is complete.

4. Proof of Theorem 2

From the hypotheses we have the following identities (see [12])

u(x) =

∫
Ex

D1 · · ·Dnu(s)ds, (12)

v(y) =

∫
Fy

D1 · · ·Dnv(t)dt, (13)

for x ∈ E and y ∈ F . From (12) and (13) and using Schwarz inequality we have

|u(x)| ≤ (

n∏
i=1

xi)
1/2(

∫
Ex

|D1 · · ·Dnu(s)|2ds)1/2, (14)

|v(y)| ≤ (

n∏
i=1

yi)
1/2(

∫
Fy

|D1 · · ·Dnv(t)|2dt)1/2. (15)

From (14), (15) and using the elementary inequality c1/2d1/2 ≤ 1
2 (c + d), (for c, d non-

negative reals) and rewriting we observe that

|u(x)||v(y)|
n∏

i=1

xi +
n∏

i=1

yi

≤ 1

2
(

∫
Ex

|D1 · · ·Dnu(s)|2ds)1/2 × (

∫
Fy

|D1 · · ·Dnv(t)|2dt)1/2. (16)

Integrating both sides of (16) first over F and then integrating both sides of the resulting
inequality over E and using Schwarz inequality and Fubini’s theorem we observe that

∫
E

(

∫
F

|u(x)||v(y)|
n∏

i=1

xi +
n∏

i=1

yi

dy)dx ≤ 1

2
(

∫
E

(

∫
Ex

|D1 · · ·Dnu(s)|2ds)1/2dx)

×(

∫
F

(

∫
Fy

|D1 · · ·Dnv(t)|2dt)1/2dy)

≤ 1

2
(

n∏
i=1

ai)
1/2(

∫
E

(

∫
Ex

|D1 · · ·Dnu(s)|2ds)dx)1/2

×(

n∏
i=1

bi)
1/2(

∫
F

(

∫
Fy

|D1 · · ·Dnv(t)|2dt)dy)1/2

=
1

2
(

n∏
i=1

ai)
1/2(

n∏
i=1

bi)
1/2 × (

∫
E

n∏
i=1

(ai − xi)|D1 · · ·Dnu(x)|2dx)1/2

×(

∫
F

n∏
i=1

(bi − yi)|D1 · · ·Dnv(y)|2dy)1/2.
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This is the required inequality in (6) and the proof is complete.

Remark 3. If we apply the elementary inequality c1/2d1/2 ≤ 1
2 (c + d), (for c, d

nonnegative reals) on the right hand sides of (1) and (6), then we get respectively the
following new inequalities

∫ x

0

∫ y

0

(

∫ z

0

∫ w

0

|Di
1D

j
2u(s, t)||Di

1D
j
2v(k, r)|

s2n−2i−1t2m−2j−1 + k2n−2i−1r2m−2j−1
dkdr)dsdt

≤ 1

4
[Ai,jBi,j ]

2√xyzw × [

∫ x

0

∫ y

0

(x − s)(y − t)|Dn
1 Dm

2 u(s, t)|2dsdt

+

∫ z

0

∫ w

0

(z − k)(w − r)|Dn
1 Dm

2 v(k, r)|2dkdr], (17)

and

∫
E

(

∫
F

|u(x)||v(y)|
n∏

i=1

xi +
n∏

i=1

yi

≤ 1

4
(

n∏
i=1

ai)
1/2(

n∏
i=1

bi)
1/2 × [

∫
E

n∏
i=1

(ai − xi)|D1 · · ·Dnu(x)|2dx

+

∫
F

n∏
i=1

(bi − yi)|D1 · · ·Dnv(y)|2dy]. (18)

We note that the inequalities established in (1), (6), (17), (18) can be considered as

further extensions of the inequalities recently established by the present author in [9, 10].
For a number of new inequalities similar to Hilbert’s inequality, we refer the interested

readers to the recent papers [4-10]. In fact our results are obtained by using quite

elementary analysis and the bounds obtained in the inequalities are new and can not be

compared with the bound given in the integral analogue of the Hilbert’s inequality.
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