NOTE ON INTEGRAL CLOSURES OF SEMIGROUP RINGS

RYÜKI MATSUDA

Abstract. Let \(S \) be a subsemigroup which contains 0 of a torsion-free abelian (additive) group. Then \(S \) is called a grading monoid (or a \(g \)-monoid). The group \(\{ s - s' | s, s' \in S \} \) is called the quotient group of \(S \), and is denoted by \(q(S) \). Let \(R \) be a commutative ring. The total quotient ring of \(R \) is denoted by \(q(R) \). Throughout the paper, we assume that a \(g \)-monoid properly contains \(\{ 0 \} \). A commutative ring is called a ring, and a non-zero-divisor of a ring is called a regular element of the ring.

We consider integral elements over the semigroup ring \(R[X; S] \) of \(S \) over \(R \). Let \(S \) be a \(g \)-monoid with quotient group \(G \). If \(n\alpha \in S \) for an element \(\alpha \) of \(G \) and a natural number \(n \) implies \(\alpha \in S \), then \(S \) is called an integrally closed semigroup. We know the following fact:

Theorem 1 ([G2, Corollary 12.11]). Let \(D \) be an integral domain and \(S \) a \(g \)-monoid. Then \(D[X; S] \) is integrally closed if and only if \(D \) is an integrally closed domain and \(S \) is an integrally closed semigroup.

Let \(R \) be a ring. In this paper, we show that conditions for \(R[X; S] \) to be integrally closed reduce to conditions for the polynomial ring of an indeterminate over a reduced total quotient ring to be integrally closed (Theorem 15). Clearly the quotient field of an integral domain is a von Neumann regular ring. Assume that \(q(R) \) is a von Neumann regular ring. We show that \(R[X; S] \) is integrally closed if and only if \(R \) is integrally closed and \(S \) is integrally closed (Theorem 20). Let \(G \) be a \(g \)-monoid which is a group. If \(R \) is a subring of the ring \(T \) which is integrally closed in \(T \), we show that \(R[X; G] \) is integrally closed in \(T[X; S] \) (Theorem 13). Finally, let \(S \) be sub-\(g \)-monoid of a totally ordered abelian group. Let \(R \) be a subring of the ring \(T \) which is integrally closed in \(T \). If \(g \) and \(h \) are elements of \(T[X; S] \) with \(h \) monic and \(gh \in R[X; S] \), we show that \(g \in R[X; S] \) (Theorem 24).

1. General Rings

Let \(G \) be an abelian group. Then a maximal number \(n \) so that there exist a set of \(n \)-elements in \(G \) which is independent over \(\mathbb{Z} \) is called the torsion-free rank of \(G \), and is denoted by \(t.f.r.(G) \).

Lemma 2. Let \(G \) be a \(g \)-monoid which is finitely generated and with \(t.f.r.(G) = n \). Then \(R[X; G] \) is isomorphic to the ring \(R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}] \) over \(R \) (where \(X_1, \ldots, X_n \) are indeterminates).

Received April 21, 1999.
2000 Mathematics Subject Classification. Primary 13B22; secondary 20M25.
Key words and phrases. Semigroup ring, integral closure, von Neumann regular ring.
Proof. Since G is torsion-free, G is the direct sum $\mathbb{Z}u_1 \oplus \cdots \oplus \mathbb{Z}u_n$ for some elements u_i of G. Set $\sigma(X_i) = X^{\alpha_i}$ for each i. Then we have an isomorphism σ of $R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$ onto $R[X; G]$.

Lemma 3. Let f be an element of $R[X; S]$. Then f is a zero-divisor of $R[X; S]$ if and only if there exists a non-zero element a of R such that $aa_i = 0$ for every coefficient a_i of f.

Proof. (1) Let f be a zero-divisor in $R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$, then there exists a non-zero element a of R such that $af = 0$. For, there exists a natural number m such that X^mf is a zero-divisor in $R[X_1, \ldots, X_n]$. By [G1, (28.7) Proposition], there exists a non-zero element a of R such that $aX^mf = 0$, and hence $af = 0$.

(2) Let f be a zero-divisor in $R[X; S]$. Then f is a zero-divisor in $R[X; G]$, where $G = q(S)$. There exists a finitely generated subgroup H of G such that f is a zero-divisor in $R[X; H]$. $R[X; H]$ is isomorphic to the ring $R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$ for some n by Lemma 2. By (1), there exists a non-zero element a of R such that $af = 0$.

Let S be a g-monoid with quotient group G, and T a sub-g-monoid of S with quotient group $H \subset G$. Let R be a ring with total quotient ring K. Then all of R, $R[X; T]$, $K[X; T]$ and $q(R[X; T])$ are canonically regarded as subrings of $q(R[X; S])$ by Lemma 3.

Lemma 4([G1, (10.2) Proposition]). Let R be a subring of the ring T, and A be the integral closure of R in T. If N is a multiplicative system in R, then the quotient ring A_N is the integral closure of R_N in T_N.

Lemma 5. If $R[X; S]$ is integrally closed, then R is integrally closed.

Proof. Let x be an element of $K = q(R)$ which is integral over R. Since x is an element of $q(R[X; S])$ which is integral over $R[X; S]$, x belongs to $R[X; S]$, and hence $x \in R$. Therefore R is integrally closed.

Lemma 6. If $R[X; S]$ is integrally closed, then S is integrally closed.

Proof. Let α be an element of $q(S)$ which is integral over S. Since $n\alpha \in S$ for some natural number n, we have an integral equation of the element X^α of $q(R[X; S])$ over $R[X; S]$. It follows that $X^\alpha \in R[X; S]$, and hence $\alpha \in S$. Therefore S is integrally closed.

Lemma 7. If $R[X; S]$ is integrally closed, then R is a reduced ring.

Proof. Suppose that R has a non-zero nilpotent a. Take non-zero α of S. Then $1 + X^\alpha$ is a regular element of $R[X; S]$ by Lemma 3. Then $a/(1 + X^\alpha)$ is a nilpotent of $q(R[X; S])$, and $a/(1 + X^\alpha) \notin R[X; S]$; a contradiction. Hence R is reduced.

Lemma 8. Let G be a g-monoid which is a group. Let $\{H_\lambda | \lambda\}$ be the set of finitely generated non-zero subgroups of G. Let A_λ be the integral closure of $R[X; H_\lambda]$. Then $\bigcup A_\lambda$ is the integral closure of $R[X; G]$.
Proof. Let F be an element of $q(R[X; G])$ which is integral over $R[X; G]$. There exists a finitely generated subgroup H of G such that F is an element of $q(R[X; H])$ and F is integral over $R[X; H]$. Then we have $H = H_{\lambda}$ for some λ, and $F \in A_{\lambda}$. Hence the integral closure of $R[X; G]$ is $\cap A_{\lambda}$.

Lemma 9([BCL, Lemma 1]). Let G be a g-monoid which is a group, and H a non-zero subgroup of G. Then $R[X; G]$ is a free $R[X; H]$-module. Let $\{\alpha_{\lambda}|\lambda\}$ be a system of complete representatives of G modulo H. Then $\{X^{\alpha_{\lambda}}|\lambda\}$ is a free basis of $R[X; G]$ over $R[X; H]$.

Proposition 10. Let G be a g-monoid which is a group. Then $R[X; G]$ is integrally closed if and only if, for every finitely generated non-zero subgroup H of G, $R[X; H]$ is integrally closed.

Proof. The sufficiency follows from Lemma 8.

The necessity: Let F be an element of $q(R[X; G])$ which is integral over $R[X; H]$. Since $R[X; G]$ is integrally closed, we have $F \in R[X; G]$. Lemma 9 implies that $F \in R[X; H]$. Hence $R[X; H]$ is integrally closed.

Lemma 11. Let X_1, X_2, \ldots be indeterminates. Let R_1 be the integral closure of $R[X_1, X_1^{-1}], \ldots, X_n^{-1}$, then R_2 be the integral closure of $R_1[X_2, X_2^{-1}], R_3$ be the integral closure of $R_2[X_3, X_3^{-1}], \ldots$. Then R_n is the integral closure of $R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$.

Proof. We rely on the induction on n. Assume that R_{n-1} is the integral closure of $R[X_1, X_1^{-1}, \ldots, X_{n-1}, X_{n-1}]$. Clearly $R_{n-1}[X_n, X_n^{-1}]$ is integral over $R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$. Hence R_n is integral over $R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$. Let F be an element of $q(R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}])$ which is integral over $R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$. Then F is integral over $R_{n-1}[X_n, X_n^{-1}]$. Hence $F \in R_n$. Therefore R_n is the integral closure of $R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$.

Lemmas 8, 9, and 10 show that to determine the integral closure of $R[X; G]$ reduces to determine the integral closures of $R'[X, X^{-1}]$ for some ring R'.

Lemma 12. $R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$ is integrally closed if and only if $R[X_1, \ldots, X_n]$ is integrally closed.

Proof. The sufficiency follows from Lemma 4.

The necessity: Let F be an element of $q(R[X_1, \ldots, X_n])$. We have $F \in R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$ by assumption. If $F \notin R[X_1, \ldots, X_n]$, we may assume that $F = f_0X_0 + f_1X_1^{d} + \ldots$, where each $f_i \in R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}], f_d \neq 0$ and $d < 0$. R is reduced by Lemma 7. Hence there exists a prime ideal P of R such that $f_d \neq 0$ mod $PR[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$. Set $q(R/P) = k$. Then there arises an element of $k[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}] - k[X_1, \ldots, X_n]$ which is integral over $k[X_1, \ldots, X_n]$; a contradiction. Therefore $R[X_1, \ldots, X_n]$ is integrally closed.
Theorem 13. Let G be a g-monoid which is a group. Let T be an extension ring of the ring R and let A be the integral closure of R in T. Then $A/X; G$ is the integral closure of $R[X; G]$ in $T[X; G]$.

Proof. (1) Let X_1, \ldots, X_n be a finite number of indeterminates. Then $A[X_1, \ldots, X_n]$ is the integral closure of $R[X_1, \ldots, X_n]$ in $T[X_1, \ldots, X_n]$ (cf. [G1, (10.7) Theorem]).

(2) In (1), $A[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$ is the integral closure of $R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$ in $T[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$. For, let N be the multiplicative system in $R[X_1, \ldots, X_n]$ generated by X_1, \ldots, X_n. Since $A[X_1, \ldots, X_n]$ is the integral closure of $R[X_1, \ldots, X_n]$ in $T[X_1, \ldots, X_n]$ by (1), we see that the quotient ring $A[X_1, \ldots, X_n]/N$ is the integral closure of $R[X_1, \ldots, X_n]/N$ by Lemma 4. Hence $A[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$ is the integral closure of $R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$ in $T[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$.

(3) Assume that G is finitely generated. Then $A/X; G$ is the integral closure of $R[X; G]$ in $T[X; G]$. For, $R[X; G]$ (resp. $A[X; G]$ and $T[X; G]$) is isomorphic to $R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$ (resp. $A[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$ and $T[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$) for some n by Lemma 2. (2) implies that $A[X; G]$ is the integral closure of $R[X; G]$ in $T[X; G]$.

(4) Assume that G is a g-monoid which is a group. Let $F = \Sigma a_iX^{\alpha_i}$ be an element of $T[X; G]$ which is integral over $R[X; G]$. We have $F_m + F_{m-1}f_{m-1} + \cdots + F_0 = 0$ for the elements f_i of $R[X; G]$. There exists a finitely generated subgroup H of G such that F is integral over $R[X; H]$ and belongs to $T[X; H]$. (3) implies that $F \in A[X; H]$. Hence $A[X; G]$ is the integral closure of $R[X; G]$ in $T[X; G]$.

Proposition 14. $R[X; S]$ is integrally closed if and only if S is integrally closed, R is integrally closed and $K[X; G]$ is integrally closed, where $K = q(R)$.

The sufficiency: Suppose that $R[X; S]$ is not integrally closed. There exists $F \in q(R[X; S]) - R[X; S]$ which is integral over $R[X; S]$. We have $F \in K[X; G]$ by assumption. Then we have $F \in R[X; G]$ by Theorem 13. Put $F = \Sigma a_iX^{\alpha_i}$. There exists k such that $a_kX^{\alpha_k} \notin R[X; S]$. R is reduced by assumption and by Lemma 7. Hence there exists a prime ideal P of R which does not contain a_k. Set $D = R/P$ and $\bar{a}_i = a_i + P$ for each i. Then $\bar{F} = \Sigma \bar{a}_iX^{\alpha_i}$ is an element of $D[X; G] - D[X; S]$ which is integral over $D[X; S]$. Then \bar{F} is an element of $k[X; G] - k[X; S]$ which is integral over $k[X; S]$, where $k = q(D)$. This contradicts to Theorem 1.

Let K be total quotient ring. We will denote the total quotient ring $q(K[X_1, \ldots, X_n])$ of $K[X_1, \ldots, X_n]$ by $K(X_1, \ldots, X_n)$.

Theorem 15. $R[X; S]$ is integrally closed if and only if S is integrally closed, R is integrally closed, $K[X_1]$ is integrally closed and $K(X_1, \ldots, X_{n-1})[X_n]$ is integrally closed for every n with $n \leq t.f.r. (q(S))$, where $K = q(R)$.
Proof. The necessity: S is integrally closed, R is integrally closed and $K[X;G]$ is integrally closed by Proposition 14. There exists a finitely generated subgroup H of G such that $t.f.r(H) = n$. $K[X;H]$ is integrally closed by Proposition 10. Hence $(K[X_1, X_1^{-1}, \ldots, X_{n-1}, X_{n-1}^{-1}]) [X_n, X_n^{-1}]$ is integrally closed. Then $K(X_1, \ldots, X_{n-1})[X_n]$ is integrally closed by Lemma 12.

The sufficiency: We will show that $K[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$ is integrally closed for every n with $n \leq t.f.r(G)$. Suppose that $K[X_1, X_1^{-1}, \ldots, X_k, X_k^{-1}]$ is integrally closed for $k < t.f.r(G)$. Then $K[X_1^{-1}, \ldots, X_{k+1}, X_{k+1}^{-1}]$ is integrally closed by Proposition 14. Therefore $K[X;G]$ is integrally closed by Proposition 10. Then $R[X;S]$ is integrally closed by Proposition 14.

2. Von Neumann Regular Rings

Let R be a ring. If, for each element a of R, there exists an element b of R such that $a = ab$, then R is called a von Neumann regular ring. We confer [G1, §11] for von Neumann regular rings. Every field is clearly a von Neumann regular ring.

Lemma 16. If R is a von Neumann regular ring, then $R[X]$ and $R[X, X^{-1}]$ are integrally closed.

Proof. Let F be an element of $q(R[X])$ which is integral over $R[X]$. We have $F = f/g$, where f is an element of $R[X]$ and g is a regular element of $R[X]$. $R[X]$ is a Bezout ring, that is, every finitely generated ideal is principal by [GP, Corollary 3.1]. Hence there exist elements h, f', f_1, g_1 of $R[X]$ such that $f = hf'$, $g = hg'$, $h = ff_1 + gg_1$, where h and g' are regular. Then we have $1/g' = Ff_1 + g_1$. Hence $1/g'$ is integral over $R[X]$. The integral equation of $1/g'$ over $R[X]$ shows that g' is a unit of $R[X]$. [G1, Corollary 11.4] implies that g' is a unit of R. Then we have $F = f/g = f'/g' \in R[X]$. Therefore $R[X]$ is integrally closed.

$R[X, X^{-1}]$ is integrally closed by Lemma 12.

Lemma 17. If R is von Neumann regular ring, then $q(R[X;G])$ is a von Neumann regular ring.

Proof. (1) Let $f = \sum a_i X^i$ be an element of $R[X]$. Then there exists $F \in q(R[X])$ such that $f = f^2 F$. For the proof, we rely on the induction on n. Thus suppose that the assertion holds for fewer degrees. Assume that $a_n \neq 0$. There exists an idempotent e of R such that $Ra_n = Re$. Put $e' = 1 - e$. Since deg $(f' e') < n$, there exist elements f_1 and g_1 of $R[X]$ with $g_1 e'$ regular in $R e'[X]$ such that $f e' = f f_1 e' / (g_1 e')$. Note that $f e$ is regular in $R e[X]$. We see that $g_1 e' + f e$ is a regular element of $R[X]$. Further we have $f = f^2 (f_1 e' + e) / (g_1 e' + f e)$.

(2) $q(R[X_1, \ldots, X_n])$ is von Neumann regular. For the proof, we rely on the induction on n. (1) implies that $q(R[X_1])$ is von Neumann regular. Suppose that $q(R[X_1, \ldots, X_{n-1}])$ is von Neumann regular. It follows that $q(q(R[X_1, \ldots, X_{n-1}][X_n])$ is von Neumann regular. That is, $q(R[X_1, \ldots, X_n])$ is von Neumann regular.
(3) Let \(f \) be an element of \(q(R[X;G]) \). There exists a finitely generated subgroup \(H \) of \(G \) such that \(f \in q(R[X;H]) \). Since \(R[X;H] \) is isomorphic to the ring \(R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}] \) for some \(n \), \(q(R[X;H]) \) is von Neumann regular by (2). Hence there exists \(F \in q(R[X;H]) \) such that \(f = f^2 F \). Therefore \(q(R[X;G]) \) is von Neumann regular.

[G1, §11, Exercise 13] states that if \(R \) is its own total quotient ring and if \(R \) is reduced, then \(R \) is 0-dimensional. If this is the case, then \(q(R[X;G]) \) is a von Neumann regular ring for every reduced ring \(R \). Now we have the following,

Example 18 (Gilmer and Matsuda). Let \(k \) be a field and let \(X_1, X_2, \ldots \) be indeterminates.

1. Set \(R = k[[X_1, X_2, \ldots]]/(X_iX_j|i \neq j) \), where \(k[[X_1, X_2, \ldots]] \) is the union of the ascending net of rings \(k[[X_1, \ldots, X_n]] \) of all \(n \). Then \(R \) is its own total quotient ring and reduced. But \(R \) is not 0-dimensional.

2. Let \(R = k[[X_1, X_2, \ldots]]/(X_iX_j|i \neq j) \) and \(M = (X_1, X_2, \ldots)R \). Then \(R_M \) is its own total quotient ring and reduced. But \(R_M \) is not 0-dimensional.

Lemma 19. If \(R \) is a von Neumann regular ring, then \(R[X;G] \) is integrally closed.

Proof. (1) \(R[X, X^{-1}] \) is integrally closed by Lemma 16.

(2) \(R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}] \) is integrally closed. For the proof, we rely on the induction on \(n \). Suppose that \(R[X, X^{-1}], \ldots, X_{n-1}, X_{n-1}^{-1}] \) is integrally closed. \(q(R[X_1, \ldots, X_{n-1}]/[X_n, X_n^{-1}]) \) is von Neumann regular by Lemma 17. (1) implies that \(q(R[X_1, \ldots, X_{n-1}]/[X_n, X_n^{-1}]) \) is integrally closed. Then Proposition 14 implies that \(R[X_1, X_1^{-1}, \ldots, X_{n-1}, X_{n-1}^{-1}] \) is integrally closed.

(3) Let \(F \) be an element of \(q(R[X;G]) \) which is integral over \(R[X;G] \). There exists a finitely generated subgroup \(H \) of \(G \) such that \(F \in q(R[X;H]) \) and \(F \) is integral over \(R[X;H] \). Since \(R[X;H] \) is isomorphic to the ring \(R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}] \) for some \(n \), (2) implies that \(F \in R[X;H] \). Therefore \(R[X;G] \) is integrally closed.

Theorem 20. Assume that \(q(R) \) is a von Neumann regular ring. Then \(R[X;S] \) is integrally closed if and only if \(S \) is integrally closed and \(R \) is integrally closed.

Proof. The necessity is clear.

The sufficiency: Set \(G = q(S) \) and \(K = q(R) \). Then \(K[X;G] \) is integrally closed by Lemma 19. Proposition 14 implies that \(R[X;S] \) is integrally closed.

If \(R \) is a domain, then \(q(R) \) is clearly a von Neumann regular ring.

3. A Theorem

Let \(G \) be a totally ordered abelian group. Let \(f \) be an element of \(R[X;G] \). Put \(f = a_1X^{\alpha_1} + \cdots + a_nX^{\alpha_n} \), where the \(a_i \) are non-zero elements of \(R \) and \(\alpha_1 < \cdots < \alpha_n \).

If \(a_n = 1 \), then \(f \) is called monic in \(R[X;G] \).
Lemma 21. Let $G = \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}$ (the direct sum of n-copies of the additive group \mathbb{Z}) with the lexicographic order, and let $X_1 = X^{(1,0,\ldots,0)} < \cdots < X_n = X^{(0,\ldots,0,1)}$. Let T be a ring and R a subring of T which is integrally closed in T. Let g and h are elements of $T[X;G]$ with h monic and $gh \in R[X;G]$. Then $g \in R[X;G]$.

Proof. We may assume that $g = g(X_1, \ldots, X_n)$ and $h = h(X_1, \ldots, X_n)$ belong to $T[X_1, \ldots, X_n]$. If $n = 1$, the assertion holds by [G1, (10.4) Theorem]. We rely on the induction on n. Suppose that the assertion holds for $n - 1$. There exists a natural number m such that the coefficients of $g(X_1, \ldots, X_{n-1}, X_n)$ (resp. $h(X_1, \ldots, X_{n-1}, X_n)$) and $g(X_1, \ldots, X_{n-1}, X_n^m)$ (resp. $h(X_1, \ldots, X_{n-1}, X_n^m)$) are the same and $h(X_1, \ldots, X_{n-1}, X_n^m)$ is monic. Since $g(X_1, \ldots, X_{n-1}, X_n^m)h(X_1, \ldots, X_{n-1}, X_n^m) \in R[X_1, \ldots, X_{n-1}]$, we have $g(X_1, \ldots, X_{n-1}, X_n^m) \in R[X_1, \ldots, X_{n-1}]$ by hypothesis. Hence $g \in R[X;G]$.

Lemma 22. Let G be a finitely generated subgroup of the totally ordered abelian group R. Let T be a ring and R a subring which is integrally closed in T. If, for elements g and h of $T[X;G]$ with h monic, $gh \in R[X;G]$, then g belongs to $R[X;G]$.

Proof. There exist real numbers π_1, \ldots, π_n so that $G = Z\pi_1 + \cdots + Z\pi_n$ and $\{\pi_1, \ldots, \pi_n\}$ is independent over Z. We may assume that $0 < \pi_1 < \cdots < \pi_n$. Set $X_i = X^{\pi_i}$ for each i. We may assume that $g = g(X_1, \ldots, X_n)$ and $h = h(X_1, \ldots, X_n)$ are elements of $T[X_1, \ldots, X_n]$. Arrange the powers of g and h as follows: $\Sigma k_i\pi_i < \cdots < \Sigma k_m\pi_i$. It follows that $\Sigma k_i\pi_i/\pi_1 < \cdots < \Sigma k_m\pi_i/\pi_i$.

Since all of $\pi_2/\pi_1, \ldots, \pi_n/\pi_1$ are irrational, there exist positive rational numbers $a_1 = 1, a_2, \ldots, a_n$ such that $\Sigma k_i a_i < \cdots < \Sigma k_m a_i$. Hence there exist positive integers p_1, \ldots, p_n such that $\Sigma k_i p_i < \cdots < \Sigma k_m p_i$. Note that, if $(k_1, \ldots, k_n) \neq (l_1, \ldots, l_n)$, then $\Sigma k_i \pi_i \neq \Sigma l_i \pi_i$. Then the coefficients of $g(X_1, \ldots, X_n)$ (resp. $h(X_1, \ldots, X_n)$) and $g(Y^{p_1}, \ldots, Y^{p_n})$ (resp. $h(Y^{p_1}, \ldots, Y^{p_n})$) are the same and $h(Y^{p_1}, \ldots, Y^{p_n})$ is monic (where Y is an another indeterminate). Since $g(Y^{p_1}, \ldots, Y^{p_n})h(Y^{p_1}, \ldots, Y^{p_n}) \in R[Y]$, we have $g(Y^{p_1}, \ldots, Y^{p_n}) \in R[Y]$. Hence $g \in R[X;G]$.

Theorem 23. Let S be a sub-g-monoid of a totally ordered abelian group. Let R be a subring of the ring T, and let A be the integral closure of R in T. If, for elements g and h of $T[X,S]$ with h monic, $gh \in R[X,S]$, then $g \in A[X;S]$.

Proof. We may assume that $G = S$ is a finitely generated subring and R is integrally closed in T. We may assume that $G = H_1 \oplus \cdots \oplus H_k$ with the lexicographic order, where the H_i are non-zero subgroups of the totally ordered abelian group R. Since G is finitely generated, we may use a similar argument to [ZS, VI, (A)]. We rely on the induction on $t.f.r(G)$. Assume that $t.f.r(G) = r$, and suppose that the assertion holds for fewer torsion-free ranks. The powers of g and h of the form (h_1, \ldots, h_k) for the $h_i \in H_i$. Suppose that each k-component h_k is zero for every power of g and h. Then we have $g \in R[X;G]$ by induction. Suppose that h_k is non-zero for some power of g or h. Let $H_i = Z\pi_{i_1} + \cdots + Z\pi_{i_{m(i)}}$, where the set $\{\pi_{i_1}, \ldots, \pi_{i_{m(i)}}\}$ is independent over Z for each
i. We may assume that $0 < \pi_{i1} < \cdots < \pi_{in(i)}$ for each i. Put $X_{ij} = X^{(0, \ldots, \pi_{ij}, 0, \ldots)}$ for each i and j. We may assume that g and h belong to $T[X_{11}, \ldots, X_{kn(k)}]$.

The case of $n(i) = 1$ for each i: Then G is order-isomorphic to $\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}$ (the direct sum of k-copies of \mathbb{Z}) with the lexicographic order. By Lemma 21, we have $g \in R[X; G]$.

The case of $n(i) > 1$ for some i: For each l, arrange the l-components of g and h as follows: $\Sigma k_{11} \pi_{i1} < \Sigma k_{12} \pi_{i1} < \cdots < \Sigma k_{lm(l)i} \pi_{i1}$. Then, as in the proof of Lemma 22, there exist positive integers p_{ij} such that $\Sigma k_{11}p_{ii} < \Sigma k_{12}p_{ii} < \cdots < \Sigma k_{lm(l)i}p_{ii}$. Let Y_1, \ldots, Y_k be another indeterminates. Then the coefficients of $g = g(X_{11}, \ldots, X_{kn(k)})$ (resp. $h = h(X_{11}, \ldots, X_{kn(k)})$) and $g(Y_1^{p_{i1}}, \ldots, Y_1^{p_{in(1)}}, \ldots, Y_k^{p_{k1}}, \ldots, Y_k^{p_{kn(k)}})$ (resp. $h(Y_1^{p_{i1}}, \ldots, Y_1^{p_{in(1)}}, \ldots, Y_k^{p_{k1}}, \ldots, Y_k^{p_{kn(k)}})$) are the same and $h(Y_1^{p_{i1}}, \ldots, Y_1^{p_{in(1)}}, \ldots, Y_k^{p_{k1}}, \ldots, Y_k^{p_{kn(k)}})$ is monic. Since $g(Y_1^{p_{i1}}, \ldots, Y_1^{p_{in(1)}}, \ldots, Y_k^{p_{k1}}, \ldots, Y_k^{p_{kn(k)}})h(Y_1^{p_{i1}}, \ldots, Y_1^{p_{in(1)}}, \ldots, Y_k^{p_{k1}}, \ldots, Y_k^{p_{kn(k)}}) \in R[Y_1, \ldots, Y_k]$, we have $g(Y_1^{p_{i1}}, \ldots, Y_1^{p_{in(1)}}, \ldots, Y_k^{p_{k1}}, \ldots, Y_k^{p_{kn(k)}}) \in R[Y_1, \ldots, Y_k]$. Hence $g(Y_1^{p_{i1}}, \ldots, Y_1^{p_{in(1)}}, \ldots, Y_k^{p_{k1}}, \ldots, Y_k^{p_{kn(k)}}) \in R[Y_1, \ldots, Y_k]$. Therefore $g \in R[X; G]$.

References

Department of Mathematics, Ibaraki University, Mito, Ibaraki 310, Japan.