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NOTE ON INTEGRAL CLOSURES OF SEMIGROUP RINGS

RYÛKI MATSUDA

Abstract. Let S be a subsemigroup which contains 0 of a torsion-free abelian (additive) group.

Then S is called a grading monoid (or a g-monoid). The group {s − s′|s, s′ ∈ S} is called the

quotient group of S, and is denored by q(S). Let R be a commutative ring. The total quotient

ring of R is denoted by q(R). Throught the paper, we assume that a g-monoid properly contains

{0}. A commutative ring is called a ring, and a non-zero-divisor of a ring is called a regular

element of the ring.

We consider integral elements over the semigroup ring R[X; S] of S over R. Let S be a g-

monoid with quotient group G. If nα ∈ S for an element α of G and a natural number n implies

α ∈ S, then S is called an integrally closed semigroup. We know the following fact:

Theorem 1 ([G2, Corollary 12.11]). Let D be an integral domain and S a g-monoid.

Then D[X; S] is integrally closed if and only if D is an integrally closed domain and S is an

integrally closed semigroup.

Let R be a ring. In this paper, we show that conditions for R[X; S] to be integrally closed

reduce to conditions for the polynomial ring of an indeterminate over a reduced total quotient

ring to be integrally closed (Theorem 15). Clearly the quotient field of an integral domain is a

von Neumann regular ring. Assume that q(R) is a von Neumann regular ring. We show that

R[X; S] is integrally closed if and only if R is integrally closed and S is integrally closed (Theorem

20). Let G be a g-monoid which is a group. If R is a subring of the ring T which is integrally

closed in T , we show that R[X; G] is integrally closed in T [X; S] (Theorem 13). Finally, let S

be sub-g-monoid of a totally ordered abelian group. Let R be a subring of the ring T which is

integrally closed in T . If g and h are elements of T [X; S] with h monic and gh ∈ R[X; S], we

show that g ∈ R[X; S] (Theorem 24).

1. General Rings

Let G be an abelian group. Then a maximal number n so that there exist a set of

n-elements in G which is independent over Z is called the torsion-free rank of G, and is

denoted by t.f.r.(G).

Lemma 2. Let G be a g-monoid which is finitely generated and with t.f.r.(G) =

n. Then R[X ; G] is isomorphic to the ring R[X1, X
−1
1 , . . . , Xn, X−1

n ] over R (where

X1, . . . , Xn are indeterminates).
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Proof. Since G is torsion-free, G is the direct sum Zu1 ⊕ · · · ⊕ Zun for some el-

ements ui of G. Set σ(Xi) = Xui for each i. Then we have an isomorphism σ of

R[X1, X
−1
1 , . . . , Xn, X−1

n ] onto R[X ; G].

Lemma 3. Let f be an element of R[X ; S]. Then f is a zero-divisor of R[X ; S] if

and only if there exists a non-zero element a of R such that aai = 0 for every coefficient

aiof f .

Proof. (1) Let f be a zero-divisor in R[X1, X
−1
1 , . . . , Xn, X−1

n ], then there exists a

non-zero element a of R such that af = 0. For, there exists a natural number m such

that Xmf is a zero-divisor in R[X1, . . . , Xn]. By [G1, (28.7) Proposition], there exists a

non-zero element a of R such that aXmf = 0, and hence af = 0.

(2) Let f be a zero-divisor in R[X ; S]. Then f is a zero-divisor in R[X ; G], where

G = q(S). There exists a finitely generated subgroup H of G such that f is a zero-divisor

in R[X ; H ]. R[X ; H ] is isomorphic to the ring R[X1, X
−1
1 , . . . , Xn, X−1

n ] for some n by

Lemma 2. By (1), there exists a non-zero element a of R such that af = 0.

Let S be a g-monoid with quotient group G, and T a sub-g-monoid of S with quotient

group H ⊂ G. Let R be a ring with total quotient ring K. Then all of R, R[X ; T ],

K[X ; T ] and q(R[X ; T ]) are canonically regarded as subrings of q(R[X ; S]) by Lemma 3.

Lemma 4([G1, (10.2) Proposition]). Let R be a subring of the ring T , and A be the

integral closure of R in T . If N is a multiplicative system in R, then the quotient ring

AN is the integral closure of RN in TN .

Lemma 5. If R[X ; S] is integrally closed, then R is integrally closed.

Proof. Let x be an element of K = q(R) which is integral over R. Since x is an

element of q(R[X ; S]) which is integral over R[X ; S], x belongs to R[X ; S], and hence

x ∈ R. Therefore R is integrally closed.

Lemma 6. If R[X ; S] is integrally closed, then S is integrally closed.

Proof. Let α be an element of q(S) which is integral over S. Since nα ∈ S for some

natural number n, we have an integral equation of the element Xα of q(R[X ; S]) over

R[X ; S]. It follows that Xα ∈ R[X ; S], and hence α ∈ S. Therefore S is integrally closed.

Lemma 7. If R[X ; S] is integrally closed, then R is a reduced ring.

Proof. Suppose that R has a non-zero nilpotent a. Take non-zero α of S. Then

1 + Xα is a regular element of R[X ; S] by Lemma 3. Then a/(1 + Xα) is a nilpotent of

q(R[X ; S]), and a/(1 + Xα) 6∈ R[X ; S]; a contradiction. Hence R is reduced.

Lemma 8. Let G be a g-monoid which is a group. Let {Hλ|λ} be the set of finitely

generated non-zero subgroups of G. Let Aλ be the integral closure of R[X ; Hλ]. Then

∪Aλ is the integral closure of R[X ; G].
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Proof. Let F be an element of q(R[X ; G]) which is integral over R[X ; G]. There

exists a finitely generated subgroup H of G such that F is an element of q(R[X ; H ]) and

F is integral over R[X ; H ]. Then we have H = Hλ for some λ, and F ∈ Aλ. Hence the

integral closure of R[X ; G] is ∩Aλ.

Lemma 9([BCL, Lemma 1]). Let G be a g-monoid which is a group, and H a non-

zero subgroup of G. Then R[X ; G] is a free R[X ; H ]-module. Let {αλ|λ} be a system of

complete representatives of G modulo H. Then {Xαλ |λ} is a free basis of R[X ; G] over

R[X ; H ].

Proposition 10. Let G be a g-monoid which is a group. Then R[X ; G] is integrally

closed if and only if, for every finitely generated non-zero subgroup H of G, R[X ; H ] is

integrally closed.

Proof. The sufficiency follows from Lemma 8.

The necessity: Let F be an element of q(R[X ; H ]) which is integral over R[X ; H ].

Since R[X ; G] is integrally closed, we have F ∈ R[X ; G]. Lemma 9 implies that F ∈

R[X ; H ]. Hence R[X ; H ] is integrally closed.

Lemma 11. Let X1, X2, . . . be indeterminates. Let R1 be the integral closure of

R[X1, X
−1
1 ], let R2 be the integral closure of R1[X2, X

−1
2 ], R3 be the integral closure of

R2[X3, X
−1
3 ], . . .. Then Rn is the integral closure of R[X1, X

−1
1 , . . . , Xn, X−1

n ].

Proof. We rely on the induction on n. Assume that Rn−1 is the integral closure

of R[X1, X
−1
1 , . . . , X−1

n−1, X
−1
n−1]. Clearly Rn−1[Xn, X−1

n ] is integral over R[X1, X
−1
1 , . . . ,

Xn, X−1
n ]. Hence Rn is integral over R[X1, X

−1
1 , . . . , Xn, X−1

n ]. Let F be an element of

q(R[X1, X
−1
1 , . . . , Xn, X−1

n ) which is integral over R[X1, X
−1
1 , . . . , Xn, X−1

n ]. Then F is

integral over Rn−1[Xn, X−1
n ]. Hence F ∈ Rn. Therefore Rn is the integral closure of

R[X1, X
−1
1 , . . . , Xn, X−1

n ].

Lemmas 8 and 11 show that to determine the integral closure of R[X ; G] reduces to

determine the integral closures of R′[X, X−1] for some ring R′.

Lemma 12. R[X1, X
−1
1 , . . . , Xn, X−1

n ] is integrally closed if and only if R[X1, . . . , Xn]

is integrally closed.

Proof. The sufficiency follows from Lemma 4.

The necessity: Let F be an element of q(R[X1, . . . , Xn]) which is integral over

R[X1, . . . , Xn]. We have F ∈ R[X1, X
−1
1 , . . . , Xn, X−1

n ] by assumption. If F 6∈ R[X1, . . . ,

Xn], we may assume that F = fdX
d
n + fd+1X

d+1
n + · · ·, where each fi ∈ R[X1, X

−1
1 , . . . ,

Xn−1, X
−1
n−1], fd 6= 0 and d < 0. R is reduced by Lemma 7. Hence there exists a prime

ideal P of R such that fd 6≡ 0 mod PR[X1, X
−1
1 , . . . , Xn−1, X

−1
n−1]. Set q(R/P ) = k.

Then there arises an element of k[X1, X
−1
1 , . . . , Xn, X−1

n ] − k[X1, . . . , Xn] which is inte-

gral over k[X1, . . . , Xn]; a contradiction. Therefore R[X1, . . . , Xn] is integrally closed.
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Theorem 13. Let G be a g-monoid which is a group. Let T be an extension ring

of the ring R and let A be the integral closure of R in T . Then A[X ; G] is the integral

closure of R[X ; G] in T [X ; G].

Proof. (1) Let X1, . . . , Xn be a finite number of indeterminates. Then A[X1, . . . , Xn]

is the integral closure of R[X1, . . . , Xn] in T [X1, . . . , Xn] (cf. [G1, (10.7) Theorem]).

(2) In (1), A[X1, X
−1
1 , . . . , Xn, X−1

n ] is the integral closure of R[X1, X
−1
1 ,. . . ,Xn, X−1

n ]

in T [X1, X
−1
1 , . . . , Xn, X−1

n ]. For, let N be the multiplicative system in R[X1, . . . , Xn]

generated by X1, . . . , Xn. Since A[X1, . . . , Xn] is the integral closure of R[X1, . . . , Xn] in

T [X1, . . . , Xn] by (1), we see that the quotient ring A[X1, . . . , Xn]N is the integral closure

of R[X1, . . . , Xn]N in T [X1, . . . , Xn]N by Lemma 4. Hence A[X1, X
−1
1 , . . . , Xn, X−1

n ] is

the integral closure of R[X1, X
−1
1 , . . . , Xn, X−1

n ] in T [X1, X
−1
1 , . . . , Xn, X−1

n ].

(3) Assume that G is finitely generated. Then A[X ; G] is the integral closure of

R[X ; G] in T [X ; G]. For, R[X ; G] (resp. A[X ; G] and T [X ; G]) is isomorphic to R[X1,

X−1
1 , . . . , Xn, X−1

n ] (resp. A[X1, X
−1
1 ,. . . ,Xn, X−1

n ] and T [X1, X
−1
1 , . . . , Xn, X−1

n ]) for

some n by Lemma 2. (2) implies that A[X ; G] is the integral closure of R[X ; G] in

T [X ; G].

(4) Assume that G is a g-monoid which is a group. Let F = ΣaiX
αi be an element

of T [X ; G] which is integral over R[X ; G]. We have Fm + Fm−1fm−1 + · · · + f0 = 0 for

the elements fi of R[X ; G]. There exists a finitely generated subgroup H of G such that

F is integral over R[X ; H ] and belongs to T [X ; H ]. (3) implies that F ∈ A[X ; H ]. Hence

A[X ; G] is the integral closure of R[X ; G] in T [X ; G].

Proposition 14. R[X ; S] is integrally closed if and only if S is integrally closed, R

is integrally closed and K[X ; G] is integrally closed, where K = q(R).

Proof. The necessity: S is integrally closed by Lemma 6. R is integrally closed by

Lemma 5. K[X ; G] is integrally closed by Lemma 4.

The sufficiency: Suppose that R[X ; S] is not integrally closed. There exists F ∈

q(R[X ; S])−R[X ; S] which is integral over R[X ; S]. We have F ∈ K[X ; G] by assumption.

Then we have F ∈ R[X ; G] by Theorem 13. Put F = ΣaiX
αi . There exists k such that

akXαk 6∈ R[X ; S]. R is reduced by assumption and by Lemma 7. Hence there exists a

prime ideal P of R which does not contain ak. Set D = R/P and āi = ai + P ∈ D for

each i. Then F̄ = ΣāiX
αi is an element of D[X ; G] − D[X ; S] which is integral over

D[X ; S]. Then F̄ is an element of k[X ; G]−k[X ; S] which is integral over k[X ; S], where

k = q(D). This contradicts to Theorem 1.

Let K be total quotient ring. We will denote the total quotient ring q(K[X1, . . . , Xn])

of K[X1, . . . , Xn] by K(X1, . . . , Xn).

Theorem 15. R[X ; S] is integrally closed if and only if S is integrally closed, R is

integrally closed, K[X1] is integrally closed and K(X1, . . . , Xn−1)[Xn] is integrally closed

for every n with n ≤ t.f.r.(q(S)), where K = q(R).
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Proof. The necessity: S is integrally closed, R is integrally closed and K[X ; G]
is integrally closed by Proposition 14. There exists a finitely generated subgroup H
of G such that t.f.r.(H) = n. K[X ; H ] is integrally closed by Proposition 10. Hence
(K[X1, X

−1
1 ,. . . , Xn−1, X

−1
n−1]) [Xn, X−1

n ] is integrally closed. Then K(X1,. . . , Xn−1)[Xn]
is integrally closed by Lemma 12.

The sufficiency: We will show that K[X1, X
−1
1 , . . . , Xn, X−1

n ] is integrally closed for
every n with n ≤ t.f.r(G). Suppose that K[X1, X

−1
1 , . . . , Xk, X−1

k ] is integrally closed
for k < t.f.r.(G). Then K[X−1

1 , . . . , Xk+1, X
−1
k+1] is integrally closed by Proposition 14.

Therefore K[X ; G] is integrally closed by Proposition 10. Then R[X ; S] is integrally
closed by Proposition 14.

2. Von Neumann Regular Rings

Let R be a ring. If, for each element a of R, there exists an element b of R such
that a = a2b, then R is called a von Neumann regular ring. We confer [G1, §11] for von
Neumann regular rings. Every field is clearly a von Neumann regular ring.

Lemma 16. If R is a von Neumann regular ring, then R[X ] and R[X, X−1] are

integrally closed.

Proof. Let F be an element of q(R[X ]) which is integral over R[X ]. We have
F = f/g, where f is an element of R[X ] and g is a regular element of R[X ]. R[X ] is
a Bezout ring, that is, every finitely generated ideal is principal by [GP, Corollary 3.1].
Hence there exist elements h, f ′, f1, g1 of R[X ] such that f = hf ′, g = hg′, h = ff1+gg1,
where h and g′ are regular. Then we have 1/g′ = Ff1 + g1. Hence 1/g′ is integral over
R[X ]. The integral equation of 1/g′ over R[X ] shows that g′ is a unit of R[X ]. [G1,
Corollary 11.4] implies that g′ is a unit of R. Then we have F = f/g = f ′/g′ ∈ R[X ].
Therefore R[X ] is integrally closed.

R[X, X−1] is integrally closed by Lemma 12.

Lemma 17. If R is von Neumann regular ring, then q(R[X ; G]) is a von Neumann

regular ring.

Proof. (1) Let f = Σn
0aiX

i be an element of R[X ]. Then there exists F ∈ q(R[X ])
such that f = f2F . For the proof, we rely on the induction on n. Thus suppose that
the assertion holds for fewer degrees. Assume that an 6= 0. There exists an idempotent
e of R such that Ran = Re. Put e′ = 1− e. Since deg (fe′) < n, there exist elements f1

and g1 of R[X ] with g1e
′ regular in Re′[X ] such that fe′ = f2f1e

′/(g1e
′). Note that fe

is regular in Re[X ]. We see that g1e
′ + fe is a regular element of R[X ]. Further we have

f = f2(f1e
′ + e)/(g1e

′ + fe).
(2) q(R[X1, . . . , Xn]) is von Neumann regular. For the proof, we rely on the induction

on n. (1) implies that q(R[X1]) is von Neumann regular. Suppose that q(R[X1, . . . , Xn−1])
is von Neumann regular. It follows that q(q(R[X1, . . . , Xn−1])[Xn]) is von Neumann
regular. That is, q(R[X1, . . . , Xn]) is von Neumann regular.
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(3) Let f be an element of q(R[X ; G]). There exists a finitely generated subgroup H

of G such that f ∈ q(R[X ; H ]). Since R[X ; H ] is isomorphic to the ring R[X1, X
−1
1 , . . . ,

Xn, X−1
n ] for some n, q(R[X ; H ]) is von Neumann regular by (2). Hence there exists

F ∈ q(R[X ; H ]) such that f = f2F . Therefore q(R[X ; G]) is von Neumann regular.

[G1, §11, Exercise 13] states that if R is its own total quotient ring and if R is reduced,

then R is 0-dimensional. If this is the case, then q(R[X ; G]) is a von Neumann regular

ring for every reduced ring R. Now we have the following,

Example 18 (Gilmer and Matsuda). Let k be a field and let X1, X2, . . . be indeter-

minates.

(1) Set R = k[[X1, X2, . . .]]1/(XiXj|i 6= j), where k[[X1, X2, . . .]]1 is the union of the

ascending net of rings k[[X1, . . . , Xn]] of all n. Then R is its own total quotient ring and

reduced. But R is not 0-dimensional.

(2) Let R = k[X1, X2, . . .]/(XiXj|i 6= j) and M = (X1, X2, . . .)R. Then RM is its

own total quotient ring and reduced. But RM is not 0-dimensional.

Lemma 19. If R is a von Neumann regular ring, then R[X ; G] is integrally closed.

Proof. (1) R[X, X−1] is integrally closed by Lemma 16.

(2) R[X1, X
−1
1 , . . . , Xn, X−1

n ] is integrally closed. For the proof, we rely on

the induction on n. Suppose that R[X1, X
−1
1 , . . . , Xn−1, X

−1
n−1] is integrally closed.

q(R[X1, . . . , Xn−1]) is von Neumann regular by Lemma 17. (1) implies that q(R[X1, . . . ,

Xn−1])[Xn, X−1
n ] is integrally closed. Then Proposition 14 implies that R[X1, X

−1
1 , . . . ,

Xn−1, X
−1
n−1] is integrally closed.

(3) Let F by an element of q(R[X ; G]) which is integral over R[X ; G]. There exists

a finitely generated subgroup H of G such that F ∈ q(R[X ; H ]) and F is integral over

R[X ; H ]. Since R[X ; H ] is isomorphic to the ring R[X1, X
−1
1 , . . . , Xn, X−1

n ] for some n,

(2) implies that F ∈ R[X ; H ]. Therefore R[X ; G] is integrally closed.

Theorem 20. Assume that q(R) is a von Neumann regular ring. Then R[X ; S] is

integrally closed if and only if S is integrally closed and R is integrally closed.

Proof. The necessity is clear.

The sufficiency: Set G = q(S) and K = q(R). Then K[X ; G] is integrally closed by

Lemma 19. Proposition 14 implies that R[X ; S] is integrally closed.

If R is a domain, then q(R) is clearly a von Neumann regular ring.

3. A Theorem

Let G be a totally ordered abelian group. Let f be an element of R[X ; G]. Put

f = a1X
α1 + · · · + anXαn , where the ai are non-zero elements of R and α1 < · · · < αn.

If an = 1, then f is called monic in R[X ; G].
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Lemma 21. Let G = Z ⊕ · · · ⊕ Z (the direct sum of n-copies of the additive group

Z) with the lexicographic order, and let X1 = X(1,0,...,0) < · · · < Xn = X(0,...,0,1). Let T

be a ring and R a subring of T which is integrally closed in T . Let g and h are elements

of T [X ; G] with h monic and gh ∈ R[X ; G]. Then g ∈ R[X ; G].

Proof. We may assume that g = g(X1, . . . , Xn) and h = h(X1, . . . , Xn) belong

to T [X1, . . . , Xn]. If n = 1, the assertion holds by [G1, (10.4) Theorem]. We rely on

the induction on n. Suppose that the asertion holds for n − 1. There exists a natural

number m such that the coefficients of g(X1, . . . , Xn−1, Xn) (resp. h(X1, . . . , Xn−1, Xn))

and g(X1, . . . , Xn−1, X
m
n−1) (resp. h(X1, . . . , Xn−1, X

m
n−1)) are the same and h(X1, . . . ,

Xn−1, X
m
n−1) is monic. Since g(X1, . . . , Xn−1, X

m
n−1)h(X1, . . . , Xn−1X

m
n−1) ∈ R[X1, . . . ,

Xn−1], we have g(X1, . . . , Xn−1, X
m
n−1) ∈ R[X1, . . . , Xn−1] by hypothesis. Hence g ∈

R[X ; G].

Lemma 22. Let G be a finitely gnerated subgroup of the totally ordered abelian group

R. Let T be a ring and R a subring which is integrally closed in T . If, for elements g

and h of T [X ; G] with h monic, gh belongs to R[X ; G], then g belongs to R[X ; G].

Proof. There exist real numbers π1, . . . , πn so that G = Zπi + · · · + Zπn and

{π1, . . . , πn} is independent over Z. We may assume that 0 < π1 < · · · < πn. Set

Xi = Xπi for each i. We may assume that g = g(X1, . . . , Xn) and h = h(X1, . . . , Xn)

are elements of T [X1, . . . , Xn]. Arrange the powers of g and h as follows: Σk1iπi < · · · <

Σkmiπi. It follows that Σk1iπi/π1 < · · · < Σkmiπi/π1.

Since all of π2/π1, . . . , πn/π1 are irrational, there exist positive rational numbers

a1 = 1, a2, . . . , an such that Σk1iai < · · · < Σkmiai. Hence there exist positive integers

p1, . . . , pn such that Σk1ipi < · · · < Σkmipi. Note that, if (k1, . . . , kn) 6= (l1, . . . , ln),

then Σkiπi 6= Σliπi. Then the coefficients of g(X1, . . . , Xn) (resp. h(X1, . . . , Xn)) and

g(Y p1, . . . , Y pn) (resp. h(Y p1, . . . , Y pn)) are the same and h(Y p1, . . . , Y pn) is monic

(where Y is an anothr indeterminate). Since g(Y p1, . . . , Y pn)h(Y p1, . . . , Y pn) ∈ R[Y ],

we have g(Y p1, . . . , Y pn) ∈ R[Y ]. Hence g ∈ R[X ; G].

Theorem 23. Let S be a sub-g-monoid of a totally ordered abelian group. Let R be

a subring of the ring T , and let A be the integral closure of R in T . If, for elements g

and h of T [X, S] with h monic, gh belongs to R[X, S], then g ∈ A[X ; S].

Proof. We may assume that G = S is a finitely generated group and R is integrally

closed in T . We may assume that G = H1⊕· · ·⊕Hk with the lexicographic order, where

the Hi are non-zero subgroups of the totally ordered abelian group R. Since G is finitely

generated, we may use a similar argument to [ZS, VI, (A)]. We rely on the induction

on t.f.r.(G). Assume that t.f.r.(G) = r, and suppose that the assertion holds for fewer

torsion-free ranks. The powers of g and h are of the form (h1, . . . , hk) for the hi ∈ Hi.

Suppose that each k-component hk is zero for every power of g and h. Then we have

g ∈ R[X ; G] by induction. Suppose that hk is non-zero for some power of g or h. Let

Hi = Zπi1 + · · ·+ Zπin(i), where the set {πi1, . . . , πin(i)} is independent over Z for each
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i. We may assume that 0 < πi1 < · · · < πin(i) for each i. Put Xij = X(0,...,πij,0,...) for

each i and j. We may assume that g and h belong to T [X11, . . . , Xkn(k)].

The case of n(i) = 1 for each i: Then G is order-isomorphic to Z⊕· · ·⊕Z (the didrect

sum of k-copies of Z) with the lexicographic order. By Lemma 21, we have g ∈ R[X ; G].
The case of n(i) > 1 for some i: For each l, arrange the l-components of g and h

as follows: Σkl1iπli < Σkl2iπli < · · · < Σklm(l)iπli. Then, as in the proof of Lemma 22,

there exist positive integers pij such that Σkl1ipli < Σkl2ipli < · · · < Σklm(l)ipli. Let

Y1, . . . , Yk be another indeterminates. Then the coefficients of g = g(X11, . . . , Xkn(k))

(resp. h = h(X11, . . . , Xkn(k)) and g(Y p11

1 , . . . , Y
p1n(1)
1 , . . . , Y pk1

k , . . . , Y
pkn(k)
k ) (resp.

h(Y p11

1 , . . . , Y
p1n(1)
1 , . . . , Y pk1

k , . . . , Y
pkn(k)
k ))) are the same and h(Y p11

1 , . . . , Y
p1n(1)
1 , . . . ,

Y pk1

k , . . . , Y
pkn(k)
k ) is monic. Since g(Y p11

1 , . . . , Y
p1n(1)
1 , . . . , Y pk1

k , . . . , Y
pkn(k)
k )h(Y p11

1 , . . . ,

Y
p1n(1)
1 , . . . , Y pk1

k , . . . , Y
pkn(k)
k ) ∈ R[Y1, . . . , Yk], we have g(Y p11

1 , . . . , Y
p1n(1)
1 , . . . , Y pk1

k ,

. . . , Y
pkn(k)
k )h(Y p11

1 , . . . , Y
p1n(1)
1 , . . . , Y pk1

k , . . . , Y
pkn(k)

k ) ∈ R[Y1, . . . , Yk]. Hence g(Y p11

1 ,

. . . , Y
p1n(1)
1 , . . . , Y pk1

k , . . . , Y
pkn(k)
k ) ∈ R[Y1, . . . , Yk]. Therefore g ∈ R[X ; G].
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