TAMKANG JOURNAL OF MATHEMATICS
Volume 31, Number 2, Summer 2000

NOTE ON INTEGRAL CLOSURES OF SEMIGROUP RINGS

RYUKI MATSUDA

Abstract. Let S be a subsemigroup which contains 0 of a torsion-free abelian (additive) group.
Then S is called a grading monoid (or a g-monoid). The group {s — s’|s, s’ € S} is called the
quotient group of S, and is denored by ¢(S). Let R be a commutative ring. The total quotient
ring of R is denoted by ¢(R). Throught the paper, we assume that a g-monoid properly contains
{0}. A commutative ring is called a ring, and a non-zero-divisor of a ring is called a regular
element of the ring.

We consider integral elements over the semigroup ring R[X;S] of S over R. Let S be a g-
monoid with quotient group G. If na € S for an element o of G and a natural number n implies

a € S, then S is called an integrally closed semigroup. We know the following fact:

Theorem 1 ([G2, Corollary 12.11]). Let D be an integral domain and S a g-monoid.
Then D[X;S] is integrally closed if and only if D is an integrally closed domain and S is an

integrally closed semigroup.

Let R be a ring. In this paper, we show that conditions for R[X; S] to be integrally closed
reduce to conditions for the polynomial ring of an indeterminate over a reduced total quotient
ring to be integrally closed (Theorem 15). Clearly the quotient field of an integral domain is a
von Neumann regular ring. Assume that ¢(R) is a von Neumann regular ring. We show that
R[X; S] is integrally closed if and only if R is integrally closed and S is integrally closed (Theorem
20). Let G be a g-monoid which is a group. If R is a subring of the ring T which is integrally
closed in T, we show that R[X; G] is integrally closed in T[X; S] (Theorem 13). Finally, let S
be sub-g-monoid of a totally ordered abelian group. Let R be a subring of the ring 7' which is
integrally closed in T. If g and h are elements of T'[X;S] with h monic and gh € R[X; 5], we
show that g € R[X;S] (Theorem 24).

1. General Rings

Let G be an abelian group. Then a maximal number n so that there exist a set of
n-elements in G which is independent over Z is called the torsion-free rank of G, and is
denoted by t.f.r.(G).

Lemma 2. Let G be a g-monoid which is finitely generated and with t.f.or.(G) =
n. Then R[X;G] is isomorphic to the ring R[X1,X; ', ..., X0, X7 over R (where
X1,..., X, are indeterminates).
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Proof. Since G is torsion-free, G is the direct sum Zui @ - -- & Zu,, for some el-
ements u; of G. Set o(X;) = X" for each 7. Then we have an isomorphism o of
R[X1, XY, ..., X, X1 onto R[X;G].

Lemma 3. Let f be an element of R[X;S]. Then f is a zero-divisor of R|X;S] if
and only if there exists a non-zero element a of R such that aa; = 0 for every coefficient

a;of f.

Proof. (1) Let f be a zero-divisor in R[X1, X;',..., X, X7 '], then there exists a
non-zero element a of R such that af = 0. For, there exists a natural number m such
that X™ f is a zero-divisor in R[X71,...,X,]. By [G1, (28.7) Proposition], there exists a
non-zero element a of R such that aX™ f = 0, and hence af = 0.

(2) Let f be a zero-divisor in R[X;S]. Then f is a zero-divisor in R[X;G], where
G = ¢(S). There exists a finitely generated subgroup H of G such that f is a zero-divisor
in R[X; H]. R[X;H] is isomorphic to the ring R[X1, X;',..., Xy, X, ] for some n by
Lemma 2. By (1), there exists a non-zero element a of R such that af = 0.

Let S be a g-monoid with quotient group G, and T a sub-g-monoid of S with quotient
group H C G. Let R be a ring with total quotient ring K. Then all of R, R[X;T],
K[X;T] and ¢(R[X;T]) are canonically regarded as subrings of ¢(R[X;S]) by Lemma 3.

Lemma 4([G1, (10.2) Proposition]). Let R be a subring of the ring T, and A be the
integral closure of R in T. If N is a multiplicative system in R, then the quotient ring
Ap is the integral closure of Ry in Tn.

Lemma 5. If R[X; S| is integrally closed, then R is integrally closed.

Proof. Let x be an element of K = ¢(R) which is integral over R. Since z is an
element of ¢(R[X;S]) which is integral over R[X;S], z belongs to R[X;S], and hence
x € R. Therefore R is integrally closed.

Lemma 6. If R[X;S] is integrally closed, then S is integrally closed.

Proof. Let a be an element of ¢(5) which is integral over S. Since na € S for some
natural number n, we have an integral equation of the element X* of ¢(R[X;S]) over
R[X; S]. It follows that X € R[X; S], and hence a € S. Therefore S is integrally closed.

Lemma 7. If R[X;S] is integrally closed, then R is a reduced ring.

Proof. Suppose that R has a non-zero nilpotent a. Take non-zero o of S. Then
1+ X is a regular element of R[X;S] by Lemma 3. Then a/(1 + X®) is a nilpotent of
q(R[X;S]), and a/(1 + X“) ¢ R[X; S]; a contradiction. Hence R is reduced.

Lemma 8. Let G be a g-monoid which is a group. Let {Hx|A} be the set of finitely
generated non-zero subgroups of G. Let Ay be the integral closure of R[X; Hy]. Then
UA) is the integral closure of R[X;G].
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Proof. Let F be an element of ¢(R[X;G]) which is integral over R[X;G]. There
exists a finitely generated subgroup H of G such that F' is an element of ¢(R[X; H]) and
F is integral over R[X; H]. Then we have H = H) for some A, and F € A). Hence the
integral closure of R[X;G] is NAj.

Lemma 9([BCL, Lemma 1]). Let G be a g-monoid which is a group, and H a non-
zero subgroup of G. Then R[X; G| is a free R[X; H]-module. Let {ax|A} be a system of
complete representatives of G modulo H. Then {X**|\} is a free basis of R[X;G] over
R[X; H].

Proposition 10. Let G be a g-monoid which is a group. Then R[X; G| is integrally
closed if and only if, for every finitely generated non-zero subgroup H of G, R[X; H] is
integrally closed.

Proof. The sufficiency follows from Lemma 8.

The necessity: Let F' be an element of ¢(R[X; H]) which is integral over R[X; H].
Since R[X;G] is integrally closed, we have F' € R[X;G]. Lemma 9 implies that F €
R[X; H]. Hence R[X; H] is integrally closed.

Lemma 11. Let X, Xs,... be indeterminates. Let Ry be the integral closure of
R[X1, X[ Y], let Ry be the integral closure of Ry[X2, X5 '], Rz be the integral closure of
Ro[X3,X3',.... Then R, is the integral closure of R[X1, X1 ", ..., Xn, X7 Y.

Proof. We rely on the induction on n. Assume that R,_; is the integral closure
of R[X1, X; ..., X 1, X 1. Clearly R,,_1[X,, X, ] is integral over R[X1, X, ...,
X, X7, Hence R, is integral over R[X1, X; ', ..., X, X;7']. Let F be an element of
q(R[X1, XY, . .., X, X;71) which is integral over R[X1, X;',..., Xy, X;7!]. Then F is
integral over R, _1[X,, X, 1]. Hence F' € R,,. Therefore R, is the integral closure of
RIX1, X4, X0, X1

Lemmas 8 and 11 show that to determine the integral closure of R[X; G| reduces to
determine the integral closures of R'[X, X ~!] for some ring R'.

Lemma 12. R[X 1, X; ', ..., X,,, X, 1] is integrally closed if and only if R[X1, ..., Xy]
is integrally closed.

Proof. The sufficiency follows from Lemma 4.

The necessity: Let F be an element of ¢(R[X1,...,X,]) which is integral over
R[X1,...,X,]. Wehave F € R[Xy, X, ',..., X, X;;!] by assumption. If F ¢ R[X,...,
X,], we may assume that F = f3 X9+ fq.1 X3 4 ... where each f; € R[X1, X, ...,
Xn,l,X,;ll], fa#0and d < 0. R is reduced by Lemma 7. Hence there exists a prime
ideal P of R such that fg # 0 mod PR[Xy,X; ', ..., X, 1,X,',]. Set q(R/P) = k.
Then there arises an element of k[X1, X;',..., X, X7 1] — k[X1, ..., X,,] which is inte-
gral over k[X1,...,X,]; a contradiction. Therefore R[ X7, ..., X,] is integrally closed.
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Theorem 13. Let G be a g-monoid which is a group. Let T be an extension ring
of the ring R and let A be the integral closure of R in T. Then A[X;G] is the integral
closure of R[X; G| in T[X;G].

Proof. (1) Let X1, ..., X, be a finite number of indeterminates. Then A[X1,..., X,]
is the integral closure of R[X7,...,X,] in T[Xy,...,X,] (cf. [G1, (10.7) Theorem)).

(2) In (1), A[X1, X; ..., X, X, ] is the integral closure of R[X71, X, 1, .., X, XY
in T[X1,X; Y, ..., X, X;7!]. For, let N be the multiplicative system in R[X7,...,X,]
generated by Xi,..., X,. Since A[X},...,X,,] is the integral closure of R[X1,...,X,] in
T[X1,...,Xn] by (1), we see that the quotient ring A[X1, ..., X,]n is the integral closure
of R[X1,...,Xp|n in T[Xy,..., X,]n by Lemma 4. Hence A[X;, X', ..., X, X 1] is
the integral closure of R[X1, X; ', ..., Xy, X7 in T[X1, X7 1,0, X, XY

(3) Assume that G is finitely generated. Then A[X; @] is the integral closure of
R[X;G] in T[X;G]. For, R[X;G] (resp. A[X;G] and T[X;G]) is isomorphic to R[X7,
X7t X, X7 (resp. A[Xy, Xp Y. X, XY and T[X, XY, X, X)) for
some n by Lemma 2. (2) implies that A[X;G] is the integral closure of R[X;G] in
TX;G].

(4) Assume that G is a g-monoid which is a group. Let F' = ¥a; X% be an element
of T[X; G] which is integral over R[X;G]. We have F,, + F,—1fm-1+ -+ fo =0 for
the elements f; of R[X;G|. There exists a finitely generated subgroup H of G such that
F is integral over R[X; H] and belongs to T'[X; H]. (3) implies that F' € A[X; H]|. Hence
A[X; @] is the integral closure of R[X;G] in T[X;G].

Proposition 14. R[X; S| is integrally closed if and only if S is integrally closed, R
is integrally closed and K[X; G| is integrally closed, where K = q(R).

Proof. The necessity: S is integrally closed by Lemma 6. R is integrally closed by
Lemma 5. K[X;G] is integrally closed by Lemma 4.

The sufficiency: Suppose that R[X;S] is not integrally closed. There exists F €
q(R[X; S])—R[X; S] which is integral over R[X; S]. We have F' € K[X; G] by assumption.
Then we have F € R[X; G| by Theorem 13. Put F' = Xa;X*. There exists k such that
ar X ¢ R[X;S]. R is reduced by assumption and by Lemma 7. Hence there exists a
prime ideal P of R which does not contain ay. Set D = R/P and @, = a; + P € D for
each 7. Then F = Y@, X% is an element of D[X;G] — D[X;S] which is integral over
D[X;S]. Then F is an element of k[X; G] — k[X; S] which is integral over k[X; S], where
k = q(D). This contradicts to Theorem 1.

Let K be total quotient ring. We will denote the total quotient ring ¢(K[X7, ..., X,])
of K[X1,...,X,] by K(X1,...,X,).

Theorem 15. R[X;S] is integrally closed if and only if S is integrally closed, R is
integrally closed, K|[X1] is integrally closed and K(Xq, ..., X,—1)[Xy,] is integrally closed
for every n with n < t.f.r.(q(S)), where K = q(R).



INTEGRAL CLOSURES OF SEMIGROUP RINGS 141

Proof. The necessity: S is integrally closed, R is integrally closed and K[X;G]
is integrally closed by Proposition 14. There exists a finitely generated subgroup H
of G such that t.f.r.(H) = n. K[X; H] is integrally closed by Proposition 10. Hence
(K[X1, X7 X1, X4 )) [ X, X1 ds integrally closed. Then K (X1,. .., X, 1)[X,]
is integrally closed by Lemma 12.

The sufficiency: We will show that K[X;, X;',..., X, X7 !] is integrally closed for
every n with n < t.f.r(G). Suppose that K[X;, X;*,... ,Xk,Xl;l] is integrally closed
for k < t.fr.(G). Then K[X; ', ..., Xp11, X,;_:l] is integrally closed by Proposition 14.
Therefore K[X;G] is integrally closed by Proposition 10. Then R[X;S] is integrally
closed by Proposition 14.

2. Von Neumann Regular Rings

Let R be a ring. If, for each element a of R, there exists an element b of R such
that a = a®b, then R is called a von Neumann regular ring. We confer [G1, §11] for von
Neumann regular rings. Every field is clearly a von Neumann regular ring.

Lemma 16. If R is a von Neumann regular ring, then R[X] and R[X,X!] are
integrally closed.

Proof. Let F be an element of ¢(R[X]) which is integral over R[X]. We have
F = f/g, where f is an element of R[X]| and g is a regular element of R[X]. R[X] is
a Bezout ring, that is, every finitely generated ideal is principal by [GP, Corollary 3.1].
Hence there exist elements h, f’, f1, g1 of R[X] such that f = hf’, g = hg', h = ffi+gg1,
where h and ¢’ are regular. Then we have 1/¢’ = F'f; + g1. Hence 1/¢’ is integral over
R[X]. The integral equation of 1/¢" over R[X] shows that ¢’ is a unit of R[X]. [G1,
Corollary 11.4] implies that ¢’ is a unit of R. Then we have F = f/g = f'/¢’ € R[X].
Therefore R[X] is integrally closed.

R[X, X 1] is integrally closed by Lemma 12.

Lemma 17. If R is von Neumann regular ring, then q¢(R[X;G]) is a von Neumann
reqular ring.

Proof. (1) Let f = X7a; X be an element of R[X]. Then there exists F € ¢(R[X])
such that f = f2F. For the proof, we rely on the induction on n. Thus suppose that
the assertion holds for fewer degrees. Assume that a,, # 0. There exists an idempotent
e of R such that Ra, = Re. Put ¢/ =1 — e. Since deg (fe’) < n, there exist elements f;
and g; of R[X] with gie’ regular in Re/[X] such that fe/ = f2fie’/(g1e’). Note that fe
is regular in Re[X]. We see that gie’ + fe is a regular element of R[X]. Further we have
f=f(fre' +e)/(gr€ + fe).

(2) ¢(R[X1,...,Xy]) is von Neumann regular. For the proof, we rely on the induction
onn. (1) implies that ¢(R[X;]) is von Neumann regular. Suppose that ¢(R[X1, ..., Xn—1])
is von Neumann regular. It follows that ¢(q(R[X1,...,Xn_1])[Xx]) is von Neumann
regular. That is, ¢(R[X7,...,X,]) is von Neumann regular.
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(3) Let f be an element of ¢(R[X; G]). There exists a finitely generated subgroup H
of G such that f € q(R[X; H]). Since R[X; H] is isomorphic to the ring R[X1, X; ...,
X, X, Y] for some n, q(R[X;H]) is von Neumann regular by (2). Hence there exists
F € q(R[X; H]) such that f = f2F. Therefore ¢(R[X;G]) is von Neumann regular.

[G1, §11, Exercise 13] states that if R is its own total quotient ring and if R is reduced,
then R is O-dimensional. If this is the case, then ¢(R[X;G]) is a von Neumann regular
ring for every reduced ring R. Now we have the following,

Example 18 (Gilmer and Matsuda). Let k be a field and let X1, X2, ... be indeter-
minates.

(1) Set R = k[[X1, Xo,...]]1/(XiX;|i # j), where k[[X1, X>,...]]1 is the union of the
ascending net of rings k[[X71,..., X,]] of all n. Then R is its own total quotient ring and
reduced. But R is not O-dimensional.

(2) Let R = k[X1,Xo,...]/(X:X;li # j) and M = (X1, Xs,...)R. Then Ry is its
own total quotient ring and reduced. But R, is not 0-dimensional.

Lemma 19. If R is a von Neumann regular ring, then R[X; G| is integrally closed.

Proof. (1) R[X, X 1] is integrally closed by Lemma 16.

(2) R[X1,X; Y ..., X, X,7'] is integrally closed. For the proof, we rely on
the induction on n. Suppose that R[X;, Xl_l, vy X1, X;_ll] is integrally closed.
q(R[X1,...,Xn-1]) is von Neumann regular by Lemma 17. (1) implies that ¢(R[X1,...,
X, 1])[Xn, X1 is integrally closed. Then Proposition 14 implies that R[X1, X', ...,
Xn-1, X, "] is integrally closed.

(3) Let F' by an element of ¢(R[X; G]) which is integral over R[X;G]. There exists
a finitely generated subgroup H of G such that F' € q(R[X; H]) and F' is integral over
R[X; H]. Since R[X; H] is isomorphic to the ring R[X1, X; ', ..., X, X;; 1] for some n,
(2) implies that F' € R[X; H]|. Therefore R[X; G] is integrally closed.

Theorem 20. Assume that ¢(R) is a von Neumann regular ring. Then R[X;S] is
integrally closed if and only if S is integrally closed and R is integrally closed.

Proof. The necessity is clear.

The sufficiency: Set G = ¢(S) and K = ¢(R). Then K[X; (] is integrally closed by
Lemma 19. Proposition 14 implies that R[X; S] is integrally closed.

If R is a domain, then ¢(R) is clearly a von Neumann regular ring.

3. A Theorem

Let G be a totally ordered abelian group. Let f be an element of R[X;G]. Put
f=a X + -+ a, X, where the a; are non-zero elements of R and a; < -+ < au,.
If a, = 1, then f is called monic in R[X;G].
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Lemma 21. Let G =Z & --- ® Z (the direct sum of n-copies of the additive group
Z) with the lexicographic order, and let X1 = X10:0) i« X = X000 Lt T
be a ring and R a subring of T which is integrally closed in T. Let g and h are elements
of T[X; G] with h monic and gh € R[X;G]. Then g € R[X;G].

Proof. We may assume that ¢ = ¢g(X1,...,X,) and h = h(Xy,...,X,) belong
to T[X1,...,Xn]. If n =1, the assertion holds by [G1, (10.4) Theorem]. We rely on
the induction on n. Suppose that the asertion holds for n — 1. There exists a natural
number m such that the coefficients of g(X1, ..., X,—1, X,) (resp. h(X1,..., Xn-1,X5))
and g(X1,...,Xn—1, X" 1) (vesp. h(X1,...,Xn—1,X]" 1)) are the same and h(Xq,...,
Xn—1,X™ ) is monic. Since g(X1,..., Xpn—1, X )h(X1,..., X1 X" ) € R[ X, ...,
n—1] by hypothesis. Hence g €

Xn—1], we have g(X1,..., X1, X™ ) € R[Xy,..., X
R[X;G).

Lemma 22. Let G be a finitely gnerated subgroup of the totally ordered abelian group
R. Let T be a ring and R a subring which is integrally closed in T'. If, for elements g
and h of T[X; G] with h monic, gh belongs to R[X;G], then g belongs to R[X;G].

Proof. There exist real numbers 7y,...,m, so that G = Zm; + --- + Zm, and
{m1,..., 7™} is independent over Z. We may assume that 0 < m < -+ < m,. Set
X; = X™ for each i. We may assume that g = g(X1,...,X,) and h = h(X4,...,X,)
are elements of T[X7, ..., X,]. Arrange the powers of g and h as follows: Ykym; < -+ <
Ykpmimi. It follows that Ekli’ﬂi/ﬂl <0< Ekmiﬂi/’ﬂl.

Since all of mo/my,...,m,/m are irrational, there exist positive rational numbers
a1 = 1,as,...,a, such that Yky;a; < --- < Ykn;a;. Hence there exist positive integers

P1,...,Pn such that Zky;p; < -+ < Zkpmipi. Note that, if (ki,...,k,) # (l1,-..,1n),
then Xk;m; # Xl;m;. Then the coefficients of g(X1,...,X,) (resp. h(X1,...,X,)) and
g(YPL ) YP") (resp. h(YPL,...)YP")) are the same and h(YP!,... YP?) is monic
(where Y is an anothr indeterminate). Since g(Y?!,...,YP")h(YP! ..., YP") € R[Y],
we have g(YP!,... Y?P") € R[Y]. Hence g € R[X;G].

Theorem 23. Let S be a sub-g-monoid of a totally ordered abelian group. Let R be
a subring of the ring T, and let A be the integral closure of R in T. If, for elements g
and h of T[X, S] with h monic, gh belongs to R[X, S], then g € A[X;S].

Proof. We may assume that G = S is a finitely generated group and R is integrally
closed in T. We may assume that G = Hy @ - - - ® H}, with the lexicographic order, where
the H; are non-zero subgroups of the totally ordered abelian group R. Since G is finitely
generated, we may use a similar argument to [ZS, VI, (A)]. We rely on the induction
on t.f.r.(G). Assume that t.f.r.(G) = r, and suppose that the assertion holds for fewer
torsion-free ranks. The powers of g and h are of the form (hq,..., hy) for the h; € H;.
Suppose that each k-component hy is zero for every power of g and h. Then we have
g € R[X;G] by induction. Suppose that hj is non-zero for some power of g or h. Let
H; = Zmj + -+ + ZTn(), where the set {m;1, ..., Tin(;)} is independent over Z for each
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i. We may assume that 0 < m;1 < -+ < Ty for each i. Put X;; = X (O--mi:00) for
each i and j. We may assume that g and h belong to T'[X11, ..., Xjnr)]-

The case of n(i) = 1 for each i: Then G is order-isomorphic to Z®- - -® Z (the didrect
sum of k-copies of Z) with the lexicographic order. By Lemma 21, we have g € R[X;G].

The case of n(i) > 1 for some i: For each [, arrange the [-components of g and h
as follows: Ykj1;m; < Ykigimy < -+ < Ekpnyimi- Then, as in the proof of Lemma 22,
there exist positive integers p;; such that Ykj1ipu < Lkiipi < -+ < Zkpnyipri- Let
Y1,..., Y, be another indeterminates. Then the coefficients of g = g(X11,..., Xpn(k))
(resp. h = h(Xi1,..., Xgaw)) and g(Y{, ..., Ylpl"(l), I 4 ,Ykp’”"(k)) (resp.
R(YF™, ..., Ylpl””(l), L YR ,Y,f""(k)))) are the same and h(Y" ..., Ylpl””(l), e
Yk:’“ L Y,f’“"(k)) is mo;lic(.k)Since gy . ,Ylpl"(l), I S ,Y,f’“"(k)()li)L(Ylp“, e
vy Yy e Ry, L., Y], we have g(YEU, L YL YR
Yy y ey Py e RIY; L. Y], Hence g(YPM,
. ,Ylpl"(l), I 0 ,Y,f""(k)) € R[Y1,...,Y:]. Therefore g € R[X;G].
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