NOTE ON INTEGRAL CLOSURES OF SEMIGROUP RINGS

RYÛKI MATSUDA

Abstract. Let S be a subsemigroup which contains 0 of a torsion-free abelian (additive) group. Then S is called a grading monoid (or a g-monoid). The group $\{s - s' | s, s' \in S\}$ is called the quotient group of S, and is denored by q(S). Let R be a commutative ring. The total quotient ring of R is denoted by q(R). Throught the paper, we assume that a g-monoid properly contains $\{0\}$. A commutative ring is called a ring, and a non-zero-divisor of a ring is called a regular element of the ring.

We consider integral elements over the semigroup ring R[X; S] of S over R. Let S be a g-monoid with quotient group G. If $n\alpha \in S$ for an element α of G and a natural number n implies $\alpha \in S$, then S is called an integrally closed semigroup. We know the following fact:

Theorem 1 ([G2, Corollary 12.11]). Let D be an integral domain and S a g-monoid. Then D[X;S] is integrally closed if and only if D is an integrally closed domain and S is an integrally closed semigroup.

Let R be a ring. In this paper, we show that conditions for R[X; S] to be integrally closed reduce to conditions for the polynomial ring of an indeterminate over a reduced total quotient ring to be integrally closed (Theorem 15). Clearly the quotient field of an integral domain is a von Neumann regular ring. Assume that q(R) is a von Neumann regular ring. We show that R[X; S] is integrally closed if and only if R is integrally closed and S is integrally closed (Theorem 20). Let G be a g-monoid which is a group. If R is a subring of the ring T which is integrally closed in T, we show that R[X; G] is integrally closed in T[X; S] (Theorem 13). Finally, let Sbe sub-g-monoid of a totally ordered abelian group. Let R be a subring of the ring T which is integrally closed in T. If g and h are elements of T[X; S] with h monic and $gh \in R[X; S]$, we show that $g \in R[X; S]$ (Theorem 24).

1. General Rings

Let G be an abelian group. Then a maximal number n so that there exist a set of n-elements in G which is independent over \mathbf{Z} is called the torsion-free rank of G, and is denoted by t.f.r.(G).

Lemma 2. Let G be a g-monoid which is finitely generated and with t.f.r.(G) = n. Then R[X;G] is isomorphic to the ring $R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$ over R (where X_1, \ldots, X_n are indeterminates).

Received April 21, 1999.

2000 Mathematics Subject Classification. Primary 13B22; secondary 20M25.

Key words and phrases. Semigroup ring, integral closure, von Neumann regular ring.

137

RYÛKI MATSUDA

Proof. Since G is torsion-free, G is the direct sum $\mathbf{Z}u_1 \oplus \cdots \oplus \mathbf{Z}u_n$ for some elements u_i of G. Set $\sigma(X_i) = X^{u_i}$ for each *i*. Then we have an isomorphism σ of $R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$ onto R[X; G].

Lemma 3. Let f be an element of R[X; S]. Then f is a zero-divisor of R[X; S] if and only if there exists a non-zero element a of R such that $aa_i = 0$ for every coefficient a_i of f.

Proof. (1) Let f be a zero-divisor in $R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$, then there exists a non-zero element a of R such that af = 0. For, there exists a natural number m such that $X^m f$ is a zero-divisor in $R[X_1, \ldots, X_n]$. By [G1, (28.7) Proposition], there exists a non-zero element a of R such that $aX^m f = 0$, and hence af = 0.

(2) Let f be a zero-divisor in R[X; S]. Then f is a zero-divisor in R[X; G], where G = q(S). There exists a finitely generated subgroup H of G such that f is a zero-divisor in R[X; H]. R[X; H] is isomorphic to the ring $R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$ for some n by Lemma 2. By (1), there exists a non-zero element a of R such that af = 0.

Let S be a g-monoid with quotient group G, and T a sub-g-monoid of S with quotient group $H \subset G$. Let R be a ring with total quotient ring K. Then all of R, R[X;T], K[X;T] and q(R[X;T]) are canonically regarded as subrings of q(R[X;S]) by Lemma 3.

Lemma 4([G1, (10.2) Proposition]). Let R be a subring of the ring T, and A be the integral closure of R in T. If N is a multiplicative system in R, then the quotient ring A_N is the integral closure of R_N in T_N .

Lemma 5. If R[X; S] is integrally closed, then R is integrally closed.

Proof. Let x be an element of K = q(R) which is integral over R. Since x is an element of q(R[X;S]) which is integral over R[X;S], x belongs to R[X;S], and hence $x \in R$. Therefore R is integrally closed.

Lemma 6. If R[X; S] is integrally closed, then S is integrally closed.

Proof. Let α be an element of q(S) which is integral over S. Since $n\alpha \in S$ for some natural number n, we have an integral equation of the element X^{α} of q(R[X;S]) over R[X;S]. It follows that $X^{\alpha} \in R[X;S]$, and hence $\alpha \in S$. Therefore S is integrally closed.

Lemma 7. If R[X; S] is integrally closed, then R is a reduced ring.

Proof. Suppose that R has a non-zero nilpotent a. Take non-zero α of S. Then $1 + X^{\alpha}$ is a regular element of R[X; S] by Lemma 3. Then $a/(1 + X^{\alpha})$ is a nilpotent of q(R[X; S]), and $a/(1 + X^{\alpha}) \notin R[X; S]$; a contradiction. Hence R is reduced.

Lemma 8. Let G be a g-monoid which is a group. Let $\{H_{\lambda}|\lambda\}$ be the set of finitely generated non-zero subgroups of G. Let A_{λ} be the integral closure of $R[X; H_{\lambda}]$. Then $\cup A_{\lambda}$ is the integral closure of R[X; G].

Proof. Let F be an element of q(R[X;G]) which is integral over R[X;G]. There exists a finitely generated subgroup H of G such that F is an element of q(R[X;H]) and F is integral over R[X;H]. Then we have $H = H_{\lambda}$ for some λ , and $F \in A_{\lambda}$. Hence the integral closure of R[X;G] is $\cap A_{\lambda}$.

Lemma 9([BCL, Lemma 1]). Let G be a g-monoid which is a group, and H a nonzero subgroup of G. Then R[X;G] is a free R[X;H]-module. Let $\{\alpha_{\lambda}|\lambda\}$ be a system of complete representatives of G modulo H. Then $\{X^{\alpha_{\lambda}}|\lambda\}$ is a free basis of R[X;G] over R[X;H].

Proposition 10. Let G be a g-monoid which is a group. Then R[X;G] is integrally closed if and only if, for every finitely generated non-zero subgroup H of G, R[X;H] is integrally closed.

Proof. The sufficiency follows from Lemma 8.

The necessity: Let F be an element of q(R[X; H]) which is integral over R[X; H]. Since R[X; G] is integrally closed, we have $F \in R[X; G]$. Lemma 9 implies that $F \in R[X; H]$. Hence R[X; H] is integrally closed.

Lemma 11. Let X_1, X_2, \ldots be indeterminates. Let R_1 be the integral closure of $R[X_1, X_1^{-1}]$, let R_2 be the integral closure of $R_1[X_2, X_2^{-1}]$, R_3 be the integral closure of $R_2[X_3, X_3^{-1}], \ldots$ Then R_n is the integral closure of $R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$.

Proof. We rely on the induction on n. Assume that R_{n-1} is the integral closure of $R[X_1, X_1^{-1}, \ldots, X_{n-1}^{-1}, X_{n-1}^{-1}]$. Clearly $R_{n-1}[X_n, X_n^{-1}]$ is integral over $R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$. Hence R_n is integral over $R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$. Let F be an element of $q(R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}])$ which is integral over $R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$. Then F is integral over $R_{n-1}[X_n, X_n^{-1}]$. Hence $F \in R_n$. Therefore R_n is the integral closure of $R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$.

Lemmas 8 and 11 show that to determine the integral closure of R[X;G] reduces to determine the integral closures of $R'[X, X^{-1}]$ for some ring R'.

Lemma 12. $R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$ is integrally closed if and only if $R[X_1, \ldots, X_n]$ is integrally closed.

Proof. The sufficiency follows from Lemma 4.

The necessity: Let F be an element of $q(R[X_1, \ldots, X_n])$ which is integral over $R[X_1, \ldots, X_n]$. We have $F \in R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$ by assumption. If $F \notin R[X_1, \ldots, X_n]$, we may assume that $F = f_d X_n^d + f_{d+1} X_n^{d+1} + \cdots$, where each $f_i \in R[X_1, X_1^{-1}, \ldots, X_{n-1}, X_{n-1}^{-1}]$, $f_d \neq 0$ and d < 0. R is reduced by Lemma 7. Hence there exists a prime ideal P of R such that $f_d \neq 0 \mod PR[X_1, X_1^{-1}, \ldots, X_{n-1}, X_{n-1}^{-1}]$. Set q(R/P) = k. Then there arises an element of $k[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}] - k[X_1, \ldots, X_n]$ which is integral over $k[X_1, \ldots, X_n]$; a contradiction. Therefore $R[X_1, \ldots, X_n]$ is integrally closed.

Theorem 13. Let G be a g-monoid which is a group. Let T be an extension ring of the ring R and let A be the integral closure of R in T. Then A[X;G] is the integral closure of R[X;G] in T[X;G].

Proof. (1) Let X_1, \ldots, X_n be a finite number of indeterminates. Then $A[X_1, \ldots, X_n]$ is the integral closure of $R[X_1, \ldots, X_n]$ in $T[X_1, \ldots, X_n]$ (cf. [G1, (10.7) Theorem]).

(2) In (1), $A[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$ is the integral closure of $R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$ in $T[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$. For, let N be the multiplicative system in $R[X_1, \ldots, X_n]$ generated by X_1, \ldots, X_n . Since $A[X_1, \ldots, X_n]$ is the integral closure of $R[X_1, \ldots, X_n]$ in $T[X_1, \ldots, X_n]$ by (1), we see that the quotient ring $A[X_1, \ldots, X_n]_N$ is the integral closure of $R[X_1, \ldots, X_n]_N$ in $T[X_1, \ldots, X_n]_N$ by Lemma 4. Hence $A[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$ is the integral closure of $R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$ in $T[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$ is the integral closure of $R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$ is the integral closure of $R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$ in $T[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$ is the integral closure of $R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$ in $T[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$. (3) Assume that G is finitely generated. Then A[X;G] is the integral closure of

(3) Assume that G is finitely generated. Then A[X;G] is the integral closure of R[X;G] in T[X;G]. For, R[X;G] (resp. A[X;G] and T[X;G]) is isomorphic to $R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$ (resp. $A[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$ and $T[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$) for some n by Lemma 2. (2) implies that A[X;G] is the integral closure of R[X;G] in T[X;G].

(4) Assume that G is a g-monoid which is a group. Let $F = \sum a_i X^{\alpha_i}$ be an element of T[X;G] which is integral over R[X;G]. We have $F_m + F_{m-1}f_{m-1} + \cdots + f_0 = 0$ for the elements f_i of R[X;G]. There exists a finitely generated subgroup H of G such that F is integral over R[X;H] and belongs to T[X;H]. (3) implies that $F \in A[X;H]$. Hence A[X;G] is the integral closure of R[X;G] in T[X;G].

Proposition 14. R[X;S] is integrally closed if and only if S is integrally closed, R is integrally closed and K[X;G] is integrally closed, where K = q(R).

Proof. The necessity: S is integrally closed by Lemma 6. R is integrally closed by Lemma 5. K[X;G] is integrally closed by Lemma 4.

The sufficiency: Suppose that R[X;S] is not integrally closed. There exists $F \in q(R[X;S])-R[X;S]$ which is integral over R[X;S]. We have $F \in K[X;G]$ by assumption. Then we have $F \in R[X;G]$ by Theorem 13. Put $F = \sum a_i X^{\alpha_i}$. There exists k such that $a_k X^{\alpha_k} \notin R[X;S]$. R is reduced by assumption and by Lemma 7. Hence there exists a prime ideal P of R which does not contain a_k . Set D = R/P and $\bar{a}_i = a_i + P \in D$ for each i. Then $\bar{F} = \sum \bar{a}_i X^{\alpha_i}$ is an element of D[X;G] - D[X;S] which is integral over D[X;S]. Then \bar{F} is an element of k[X;G] - k[X;S] which is integral over k[X;S], where k = q(D). This contradicts to Theorem 1.

Let K be total quotient ring. We will denote the total quotient ring $q(K[X_1, \ldots, X_n])$ of $K[X_1, \ldots, X_n]$ by $K(X_1, \ldots, X_n)$.

Theorem 15. R[X; S] is integrally closed if and only if S is integrally closed, R is integrally closed, $K[X_1]$ is integrally closed and $K(X_1, \ldots, X_{n-1})[X_n]$ is integrally closed for every n with $n \leq t.f.r.(q(S))$, where K = q(R).

Proof. The necessity: S is integrally closed, R is integrally closed and K[X;G] is integrally closed by Proposition 14. There exists a finitely generated subgroup H of G such that t.f.r.(H) = n. K[X;H] is integrally closed by Proposition 10. Hence $(K[X_1, X_1^{-1}, \ldots, X_{n-1}, X_{n-1}^{-1}])[X_n, X_n^{-1}]$ is integrally closed. Then $K(X_1, \ldots, X_{n-1})[X_n]$ is integrally closed by Lemma 12.

The sufficiency: We will show that $K[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$ is integrally closed for every n with $n \leq t.f.r(G)$. Suppose that $K[X_1, X_1^{-1}, \ldots, X_k, X_k^{-1}]$ is integrally closed for k < t.f.r.(G). Then $K[X_1^{-1}, \ldots, X_{k+1}, X_{k+1}^{-1}]$ is integrally closed by Proposition 14. Therefore K[X;G] is integrally closed by Proposition 10. Then R[X;S] is integrally closed by Proposition 14.

2. Von Neumann Regular Rings

Let R be a ring. If, for each element a of R, there exists an element b of R such that $a = a^2b$, then R is called a von Neumann regular ring. We confer [G1, §11] for von Neumann regular rings. Every field is clearly a von Neumann regular ring.

Lemma 16. If R is a von Neumann regular ring, then R[X] and $R[X, X^{-1}]$ are integrally closed.

Proof. Let F be an element of q(R[X]) which is integral over R[X]. We have F = f/g, where f is an element of R[X] and g is a regular element of R[X]. R[X] is a Bezout ring, that is, every finitely generated ideal is principal by [GP, Corollary 3.1]. Hence there exist elements h, f', f_1 , g_1 of R[X] such that f = hf', g = hg', $h = ff_1+gg_1$, where h and g' are regular. Then we have $1/g' = Ff_1 + g_1$. Hence 1/g' is integral over R[X]. The integral equation of 1/g' over R[X] shows that g' is a unit of R[X]. [G1, Corollary 11.4] implies that g' is a unit of R. Then we have $F = f/g = f'/g' \in R[X]$. Therefore R[X] is integrally closed.

 $R[X, X^{-1}]$ is integrally closed by Lemma 12.

Lemma 17. If R is von Neumann regular ring, then q(R[X;G]) is a von Neumann regular ring.

Proof. (1) Let $f = \sum_{0}^{n} a_i X^i$ be an element of R[X]. Then there exists $F \in q(R[X])$ such that $f = f^2 F$. For the proof, we rely on the induction on n. Thus suppose that the assertion holds for fewer degrees. Assume that $a_n \neq 0$. There exists an idempotent e of R such that $Ra_n = Re$. Put e' = 1 - e. Since deg (fe') < n, there exist elements f_1 and g_1 of R[X] with g_1e' regular in Re'[X] such that $fe' = f^2 f_1 e'/(g_1 e')$. Note that fe is regular in Re[X]. We see that $g_1e' + fe$ is a regular element of R[X]. Further we have $f = f^2(f_1e' + e)/(g_1e' + fe)$.

(2) $q(R[X_1, \ldots, X_n])$ is von Neumann regular. For the proof, we rely on the induction on n. (1) implies that $q(R[X_1])$ is von Neumann regular. Suppose that $q(R[X_1, \ldots, X_{n-1}])$ is von Neumann regular. It follows that $q(q(R[X_1, \ldots, X_{n-1}])[X_n])$ is von Neumann regular. That is, $q(R[X_1, \ldots, X_n])$ is von Neumann regular.

RYÛKI MATSUDA

(3) Let f be an element of q(R[X;G]). There exists a finitely generated subgroup H of G such that $f \in q(R[X;H])$. Since R[X;H] is isomorphic to the ring $R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$ for some n, q(R[X;H]) is von Neumann regular by (2). Hence there exists $F \in q(R[X;H])$ such that $f = f^2 F$. Therefore q(R[X;G]) is von Neumann regular.

[G1, §11, Exercise 13] states that if R is its own total quotient ring and if R is reduced, then R is 0-dimensional. If this is the case, then q(R[X;G]) is a von Neumann regular ring for every reduced ring R. Now we have the following,

Example 18 (Gilmer and Matsuda). Let k be a field and let X_1, X_2, \ldots be indeterminates.

(1) Set $R = k[[X_1, X_2, \ldots]]_1/(X_i X_j | i \neq j)$, where $k[[X_1, X_2, \ldots]]_1$ is the union of the ascending net of rings $k[[X_1, \ldots, X_n]]$ of all n. Then R is its own total quotient ring and reduced. But R is not 0-dimensional.

(2) Let $R = k[X_1, X_2, \ldots]/(X_i X_j | i \neq j)$ and $M = (X_1, X_2, \ldots)R$. Then R_M is its own total quotient ring and reduced. But R_M is not 0-dimensional.

Lemma 19. If R is a von Neumann regular ring, then R[X;G] is integrally closed.

Proof. (1) $R[X, X^{-1}]$ is integrally closed by Lemma 16.

(2) $R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$ is integrally closed. For the proof, we rely on the induction on n. Suppose that $R[X_1, X_1^{-1}, \ldots, X_{n-1}, X_{n-1}^{-1}]$ is integrally closed. $q(R[X_1, \ldots, X_{n-1}])$ is von Neumann regular by Lemma 17. (1) implies that $q(R[X_1, \ldots, X_{n-1}])[X_n, X_n^{-1}]$ is integrally closed. Then Proposition 14 implies that $R[X_1, X_1^{-1}, \ldots, X_{n-1}, X_{n-1}^{-1}]$ is integrally closed.

(3) Let F by an element of q(R[X;G]) which is integral over R[X;G]. There exists a finitely generated subgroup H of G such that $F \in q(R[X;H])$ and F is integral over R[X;H]. Since R[X;H] is isomorphic to the ring $R[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$ for some n, (2) implies that $F \in R[X;H]$. Therefore R[X;G] is integrally closed.

Theorem 20. Assume that q(R) is a von Neumann regular ring. Then R[X; S] is integrally closed if and only if S is integrally closed and R is integrally closed.

Proof. The necessity is clear.

The sufficiency: Set G = q(S) and K = q(R). Then K[X;G] is integrally closed by Lemma 19. Proposition 14 implies that R[X;S] is integrally closed.

If R is a domain, then q(R) is clearly a von Neumann regular ring.

3. A Theorem

Let G be a totally ordered abelian group. Let f be an element of R[X;G]. Put $f = a_1 X^{\alpha_1} + \cdots + a_n X^{\alpha_n}$, where the a_i are non-zero elements of R and $\alpha_1 < \cdots < \alpha_n$. If $a_n = 1$, then f is called monic in R[X;G].

Lemma 21. Let $G = \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}$ (the direct sum of n-copies of the additive group \mathbb{Z}) with the lexicographic order, and let $X_1 = X^{(1,0,\ldots,0)} < \cdots < X_n = X^{(0,\ldots,0,1)}$. Let T be a ring and R a subring of T which is integrally closed in T. Let g and h are elements of T[X;G] with h monic and $gh \in R[X;G]$. Then $g \in R[X;G]$.

Proof. We may assume that $g = g(X_1, \ldots, X_n)$ and $h = h(X_1, \ldots, X_n)$ belong to $T[X_1, \ldots, X_n]$. If n = 1, the assertion holds by [G1, (10.4) Theorem]. We rely on the induction on n. Suppose that the asertion holds for n - 1. There exists a natural number m such that the coefficients of $g(X_1, \ldots, X_{n-1}, X_n)$ (resp. $h(X_1, \ldots, X_{n-1}, X_n)$) and $g(X_1, \ldots, X_{n-1}, X_{n-1}^m)$ (resp. $h(X_1, \ldots, X_{n-1}, X_{n-1}^m)$) are the same and $h(X_1, \ldots, X_{n-1}, X_{n-1}^m)$) is monic. Since $g(X_1, \ldots, X_{n-1}, X_{n-1}^m)h(X_1, \ldots, X_{n-1}X_{n-1}^m) \in R[X_1, \ldots, X_{n-1}]$, we have $g(X_1, \ldots, X_{n-1}, X_{n-1}^m) \in R[X_1, \ldots, X_{n-1}]$ by hypothesis. Hence $g \in R[X; G]$.

Lemma 22. Let G be a finitely gnerated subgroup of the totally ordered abelian group **R**. Let T be a ring and R a subring which is integrally closed in T. If, for elements g and h of T[X;G] with h monic, gh belongs to R[X;G], then g belongs to R[X;G].

Proof. There exist real numbers π_1, \ldots, π_n so that $G = Z\pi_i + \cdots + Z\pi_n$ and $\{\pi_1, \ldots, \pi_n\}$ is independent over **Z**. We may assume that $0 < \pi_1 < \cdots < \pi_n$. Set $X_i = X^{\pi_i}$ for each *i*. We may assume that $g = g(X_1, \ldots, X_n)$ and $h = h(X_1, \ldots, X_n)$ are elements of $T[X_1, \ldots, X_n]$. Arrange the powers of *g* and *h* as follows: $\Sigma k_{1i}\pi_i < \cdots < \Sigma k_{mi}\pi_i$. It follows that $\Sigma k_{1i}\pi_i/\pi_1 < \cdots < \Sigma k_{mi}\pi_i/\pi_1$.

Since all of $\pi_2/\pi_1, \ldots, \pi_n/\pi_1$ are irrational, there exist positive rational numbers $a_1 = 1, a_2, \ldots, a_n$ such that $\Sigma k_{1i}a_i < \cdots < \Sigma k_{mi}a_i$. Hence there exist positive integers p_1, \ldots, p_n such that $\Sigma k_{1i}p_i < \cdots < \Sigma k_{mi}p_i$. Note that, if $(k_1, \ldots, k_n) \neq (l_1, \ldots, l_n)$, then $\Sigma k_i \pi_i \neq \Sigma l_i \pi_i$. Then the coefficients of $g(X_1, \ldots, X_n)$ (resp. $h(X_1, \ldots, X_n)$) and $g(Y^{p_1}, \ldots, Y^{p_n})$ (resp. $h(Y^{p_1}, \ldots, Y^{p_n})$) are the same and $h(Y^{p_1}, \ldots, Y^{p_n})$ is monic (where Y is an anothr indeterminate). Since $g(Y^{p_1}, \ldots, Y^{p_n})h(Y^{p_1}, \ldots, Y^{p_n}) \in R[Y]$, we have $g(Y^{p_1}, \ldots, Y^{p_n}) \in R[Y]$. Hence $g \in R[X; G]$.

Theorem 23. Let S be a sub-g-monoid of a totally ordered abelian group. Let R be a subring of the ring T, and let A be the integral closure of R in T. If, for elements g and h of T[X, S] with h monic, gh belongs to R[X, S], then $g \in A[X; S]$.

Proof. We may assume that G = S is a finitely generated group and R is integrally closed in T. We may assume that $G = H_1 \oplus \cdots \oplus H_k$ with the lexicographic order, where the H_i are non-zero subgroups of the totally ordered abelian group \mathbf{R} . Since G is finitely generated, we may use a similar argument to [ZS, VI, (A)]. We rely on the induction on t.f.r.(G). Assume that t.f.r.(G) = r, and suppose that the assertion holds for fewer torsion-free ranks. The powers of g and h are of the form (h_1, \ldots, h_k) for the $h_i \in H_i$. Suppose that each k-component h_k is zero for every power of g and h. Then we have $g \in R[X;G]$ by induction. Suppose that h_k is non-zero for some power of g or h. Let $H_i = Z\pi_{i1} + \cdots + Z\pi_{in(i)}$, where the set $\{\pi_{i1}, \ldots, \pi_{in(i)}\}$ is independent over \mathbf{Z} for each

RYÛKI MATSUDA

i. We may assume that $0 < \pi_{i1} < \cdots < \pi_{in(i)}$ for each *i*. Put $X_{ij} = X^{(0,\dots,\pi_{ij},0,\dots)}$ for each *i* and *j*. We may assume that *g* and *h* belong to $T[X_{11},\dots,X_{kn(k)}]$.

The case of n(i) = 1 for each *i*: Then *G* is order-isomorphic to $Z \oplus \cdots \oplus Z$ (the didrect sum of *k*-copies of **Z**) with the lexicographic order. By Lemma 21, we have $g \in R[X;G]$.

The case of n(i) > 1 for some *i*: For each *l*, arrange the *l*-components of *g* and *h* as follows: $\Sigma k_{l1i} \pi_{li} < \Sigma k_{l2i} \pi_{li} < \cdots < \Sigma k_{lm(l)i} \pi_{li}$. Then, as in the proof of Lemma 22, there exist positive integers p_{ij} such that $\Sigma k_{l1i} p_{li} < \Sigma k_{l2i} p_{li} < \cdots < \Sigma k_{lm(l)i} p_{li}$. Let Y_1, \ldots, Y_k be another indeterminates. Then the coefficients of $g = g(X_{11}, \ldots, X_{kn(k)})$ (resp. $h = h(X_{11}, \ldots, X_{kn(k)})$ and $g(Y_1^{p_{11}}, \ldots, Y_1^{p_{1n}(1)}, \ldots, Y_k^{p_{k1}}, \ldots, Y_k^{p_{kn(k)}})$ (resp. $h = h(X_{11}, \ldots, X_{kn(k)})$ and $g(Y_1^{p_{11}}, \ldots, Y_1^{p_{1n}(1)}, \ldots, Y_k^{p_{k1}}, \ldots, Y_k^{p_{kn(k)}})$ (resp. $h(Y_1^{p_{11}}, \ldots, Y_1^{p_{1n}(1)}, \ldots, Y_k^{p_{k1}}, \ldots, Y_k^{p_{kn(k)}})$ is monic. Since $g(Y_1^{p_{11}}, \ldots, Y_1^{p_{1n}(1)}, \ldots, Y_k^{p_{k1}}, \ldots, Y_k^{p_{kn(k)}}) h(Y_1^{p_{11}}, \ldots, Y_k^{p_{kn(k)}}) \in R[Y_1, \ldots, Y_k]$, we have $g(Y_1^{p_{11}}, \ldots, Y_1^{p_{1n}(1)}, \ldots, Y_k^{p_{k1}}, \ldots, Y_k^{p_{kn(k)}}) h(Y_1^{p_{11}}, \ldots, Y_k^{p_{kn(k)}}) \in R[Y_1, \ldots, Y_k]$. Hence $g(Y_1^{p_{11}}, \ldots, Y_1^{p_{1n}(1)}, \ldots, Y_k^{p_{kn(k)}}) \in R[Y_1, \ldots, Y_k]$. Therefore $g \in R[X; G]$.

References

- [1] [BCL] J. Brewer, D. Costa and E. Lady, Prime ideals and localization in commutative group rings, J. Algebra, 34(1975), 300-308.
- [2] [G1] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, 1972.
- [3] [G2] R. Gilmer, Commutative Semigroup Rings, The Univ. Chicago Press, 1984.
- [4] [GP] R. Gilmer and T. Parker, Semigroup rings as Prüfer rings, Duke Math. J., 41(1974), 219-230.
- [5] [ZS] O. Zariski and P. Samuel, Commutative Algebra II, Van Nostrand, 1960.

Department of Mathematics, Ibaraki University, Mito, Ibaraki 310, Japan.