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GENERALIZATION OF H. MINC AND L. SATHRE’S INEQUALITY

FENG QI AND QIU-MING LUO

Abstract. An inequality of H. Minc and L. Sathre (Proc. Edinburgh Math. Soc. 14(1964/65),

41-46) is generalized as follows: Let n and m be natural numbers, k a nonnegative integer, then

we have
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< 1.

From this, some corollaries are deduced. At last, an open problem is proposed.

It is known that, for n ∈ N, the following inequalities were given in [3];
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in [1], the left inequality in (1) was refined by
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for all positive real numbers r. Both bounds are best possible.
In this article, using analytic method, we obtain

Theorem. Let n and m be natural numbers, k a nonnegative integer. Then we have
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Proof. The upper bound is obtained immediately from
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The left inequality in (3) can be rearranged as
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,

this is equivalent to
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, (4)

When k = 0, inequality (4) follows from the left inequality in (1). When k ≥ 1, the

inequality (4) can be rewritten as

[
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]1/n

>
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. (5)

In [4, p. 184], the following inequalities were given for n ∈ N.
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By substituting the inequalities in (6) into the left term of inequality (5), we see that it

is sufficient to prove
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Simplifying (7) directly and standard arguments leads to
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)

+
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In [2, pp.367-368], [4, pp.273-274] and [8], we have for t > 0

ln

(
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t

)

>
2

2t + 1
.

Thus, to get inequality (8), it suffices to show
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But this is equivalent to

2(12k2 − 1)n2 + (12kn − 1)n + 4(6n − 1)k2 + 2(3n − 1)k > 0.

The proof is complete.
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Corollary 1. For any given nonnegative integer k, the sequences
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are strictly increasing with respect to n ∈ N.

Corollary 2. For any given n ∈ N, the sequences
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are strictly increasing with respect to the nonnegative integers k.

Remark. Recently, the first author in [5] and [7], among other things, generalized

the left inequality in (2) in new directions and got that, if n and m are natural numbers,

k is a nonnegative integer, then
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where r is any given positive real number. The lower bound is best possible.

In [6], the first author further presented that, let n and m be natural numbers, suppose

a = (a1, a2, . . .) is a positive and increasing sequence satisfying

a2
k+1 ≥ akak+2, (10)
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for k ∈ N, then the inequality
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holds for any given positive real number r ∈ R. The lower bound of (12) is best possible.

Using L’Hospital principle yields
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thus, we propose the following
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Open Problem. Let n and m be natural numbers, k a nonnegative integer. Then,

for all real numbers r > 0, we have
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The upper bound is best possible.
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