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Refinements of some numerical radius inequalities

for Hilbert space operators

Mohammad H.M. Rashid

Abstract. Some power inequalities for the numerical radius based on the recent
Dragomir extension of Furuta’s inequality are established. Some particular cases are
also provided. Moreover, we get an improvement of the Holder-McCarthy operator
inequality in the case when r > 1 and refine generalized inequalities involving powers
of the numerical radius for sums and products of Hilbert space operators.
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1 Introduction

In what follows H denotes a complex Hilbert space equipped with the inner product (.,.) and
corresponding norm ||z|| = (z, x>1/ % and B(H) denote the algebra of all bounded linear operators
on H with identity I. An operator A € B(H) is called positive if (Az,z) > 0 for all € H, and
we then write A > 0. In addition, we write A > 0 if A is a positive invertible operator. For
A, BeB(H)wesay B> Aif B—A>0. For T € B(H), set |T| = (T*T)% as usual. By taking
U|T|x =Tz for x € H and Uz = 0 for = € ker |T|, T has a unique polar decomposition T'= U|T|
with ker U = ker |T'|.
If T is a positive self-adjoint on H, then the following inequality is a generalization of the Schwarz
inequality on H

|(Tw,y) > < (Tz,2) (Ty,y) (1.1)

for any z,y € H. In 1952, Kato [7] proved the following celebrated generalization of Schwarz
inequality for any operator T' € B(H):

[(Ta,y) 2 < (ITPw,2) (1T POy, ) (1.2)

for any z,y € Hand 0 < a < 1.
In order to generalize this result, in 1994 Furuta [5] obtained the following result:

(TIT* 7 ) [P < (1T, 2) (| TPy, y) (1.3)
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forany z,y € Hand 0 < o, 8 <1 with a4+ 3 > 1.
The inequality (1.3) was generalized for any «, § > with a4 8 > 1 by Dragomir in [4]. Indeed, as
noted by Dragomir the condition 0 < «, § < 1 was assumed by Furuta to fit with the Heinz-Kato

inequality, which reads:
(T, y) | < A [|B* ] (1.4)

for any z,y € H and 0 < o < 1, where A and B are positive operators such that | Tz| < ||Az||
and ||T*y|| < ||By|| for any z,y € H. In the same work [4], Dragomir provides a useful extension
of Furuta’s inequality, as follows:

| (DCBAz,y) |* < (A*|B? Az, z) (D|C*|*D*y, y) (1.5)

for any D,C, B, A € B(H) and any vectors x,y € H. The equality in (1.5) holds if and only if
the vectors BAxz and (DC)*y are linearly dependent in H.

For a bounded linear operator A € B(H) we use the operator norm || A|| and denote by W(A) its
numerical range :

[All = sup{[{Az,y)|: 2,y € H,[lz] = |yl = 1}
W(A) = {{(Az,z):z € H, || =1}

Recall that the numerical range is a convex subset of C and that its closure contains the spectrum
of A.
The numerical radius of A, denoted by w(A), is given by

w(A) = sup{| (Az,z) | : x € H,||z| = 1}.

It is well-known that w(A) defines a norm on B(H) which is equivalent to the usual operator
norm ||A]|. In fact for A € B(H), we have

2114l < w(4) < JA] (16)

Also if A € B(H) is self-adjoint, then w(A) = || 4]
An important inequality for w(A) is the power inequality stating that

w(A") < w"(A) for n=1,2,---.

Several numerical radius inequalities improving the inequalities in (1.6) have been recently given
in [1, 2,9, 18]. An interesting numerical radius inequality has been established by Rashid [18],
it has been shown that if 7,5, X € B(H) such that T" and S are positive, then for any r > 1,
p,q>1with%+%zlwehave

w (TP XS3) < || X|" . (1.7)
(r7xs7)

1 1
7T + 9T
p q

Recently, Shebrawi and Albadawi [19] proved that if A;,B; € B(H) (i = 1,---,n) and r > 1,
then

n

ST (4P + BT

i=1

n r—1

Very recently, Dragomir [4] showed that if A, B,C,D € B(H), then for any r > 1 we have

. (1.8)

w"(DCBA) < % 1BA[" + (DO || (1.9)
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Motivated by the above results, we establish in this paper some power inequalities for the
numerical radius based on the recent Dragomir extension of Furuta’s inequality are obtained.
Also, we get an improvement of the Holder-McCarthy operator inequality in the case when r > 1
In addition, we establish some improvements of norm and numerical radius inequalities for sums
and powers of operators acting on a Hilbert space.

2 Preliminaries
To prove our generalized numerical radius inequalities, we need several well-known lemmas. The

first lemma follows from the spectral theorem for positive operators and Jensen’s inequality.

Lemma 2.1. (Holder Mc-Carty inequality). Let A € B(H), A > 0 and let © € H be any unit
vector. Then we have

(i) (Az,z)" < (A"z,z) forr > 1.
(ii) (A"z,z) < (Az,z)" for 0 <r < 1.

The second lemma is a simple consequence of the classical Jensen’s inequality concerning the
convexity or concavity of certain power functions. It is a special case of Schlomilch’s inequality
for weighted means of nonnegative real numbers.

Lemma 2.2. Leta,b>0 and 0 < a < 1. Then

1
r

a®d' ™ <aa+ (1-a)h < (aa"+ (1 —a)")"  for r>1 (2.1)

The next lemma is an immediate consequence of the spectral theorem for self-adjoint oper-
ators concerning the convexity or concavity of certain function (see e.g., [9]).

Lemma 2.3. Let f be a convex function defined on a real interval I. Then for every self-adjoint
operator A € B(H) whose spectrum o(A) C I, we have

f{Az,z)) < (f(A)z,x) for all x € H. (2.2)

Moreover, if f is concave, then inequality (2.2) is reversed.

Kittaneh and Manasrah [13] obtained the following result which is a refinement of the scalar
Young inequality.

Lemma 2.4. Let a,b > 0, and p,q > 1 such that % + % =1. Then
ab+ro(a® —b3)? < — + —, (2.3)
where 1o = min{%, % .

Manasrah and Kittaneh have generalized (2.3) in [14], as follows:

Lemma 2.5. Let a,b> 0, and p,q > 1 such that % + % =1. Then form=1,2,---, we have

1, 1im m, 2 N2 a” b" 77
(avba)"™ +ri(a? —b2)* < ;—i—; , r>1 (2.4)
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where 1o = min{%, é} In particular, if p = q = 2, then

m m m

(Vab)™ + %(a? — b)Y <277 (a" b)) (2.5)

Form =1, and p = q = 2, we have
1 1 1
\/%+§(f—\/5)2 <277 (a" 4+ b")r. (2.6)
The following fact concerning convexifiable functions plays an important role in our discus-

sion (see [21, Corollary 2.8]): If f is twice continuously differentiable, then A = rtm}l f7(t) is a
€

convexifier of f.

Lemma 2.6 ([16]). Let f be a twice differentiable on [a,b]. If f is conver such that A\ :=

inf f"(z) >0. Then
z€la,b]

f(a;—b) - f(a);f(b) —é)\(b—a)Q. (2.7)

3 [Extensions of the Dragomir and Furuta inequality

In this section we provide some key lemmas which are play the main role in the proof of our main
results. First, we begain with the following result provides a simple however useful extension for
four operators of the Schwarz inequality was established by Dragomir [4].

Lemma 3.1. Let A,B,C,D € B(H). Then for x,y € B(H), we have the inequality
| (DCBAz,y) |* < (A*|B]*Az,x) (D|C*|*D*y, y) (3.1)
The equality case holds in (3.1) if and only if the vectors BAx and C*D*y are linearly dependent
in H.
The following results are an easy consequence of Lemma 3.1 and Cauchy-Schwarz inequality.

Corollary 3.1. Let S,T,X € B(H) such that S and T are positive. Then for all z,y € H and
0<a,B<1, we have

| <S"XTB:r,y> 2 < <T6|X|2Tﬁx7x> <52ay,y>
< IXIP (T2, ) (52, ). (3:2)

with equality in the first inequality if and only if the vectors XTPx and Sy are linearly dependent
n H.

Proof. Letting A=T# B=X,C =5 and D = I in Lemma 3.1,

| <S°‘XTﬁx,y> |2

IN

<Tﬁ|X|2Tﬁx,x> <Smy,y> = <XTﬁx,XT5$> <52°‘y,y>
X7 (5%y,y) < |X]° | TP2]" (529, )
X2 (T2, 2) (S*y,y) .

IN
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Corollary 3.2 ([4]). For any operator T € B(H) and x,y € H, we have the inequality
(TIT[ T, ) P < (TP, 2) (T %y, y) (33)
for any o, B > 1.
Corollary 3.3 ([4]). For any operator T € B(H) and x,y € H, we have the inequality
(T T 52T, ) 2 < (T[22, ) ([T %y, y) (3.4
for any o, 8 > 0 with o+ B > 2.
Lemma 3.2. Let T € B(H) and let f be a positive, increasing and convex functions on an

interval I C RY. If f is twice differentiable such that \ = %g f"(x), then

F(KTITITIT 2 y)]) <0 5 ((FUTPO)z,2) + (FIT )y, )

(
A (TP, z) — (1T PPy, ) (3.5)

Ol = N =

for every x,y € H and any o, 5 > 1.
Proof. Employing the monotonicity and convexity of f for the inequality (3.3), we have

F(KTIT1 = TIT) e y)))

IN

f <<|T|2ax,a:>% <|T*|25y,y>%) (f increasing)

f <<IT|2“%$> J; <|T*2ﬂy’y>> (by AM-GM)

FUT P, 2) + F{IT**y, y))
2

ATz, 2) — <|T*|2’8y,y>)2 (by Lemma 2.6)

IN

IA

IN

(FATPD)z, ) + (LT )y, v))

(T2, z) — <|T*|25y7y>)2 (by Lemma 2.3)

O = N = 0o =
> —

for all z,y € H and any «, 3 > 1. O

In a similar way, we can prove the following result:
Lemma 3.3. Let T € B(H) and let f be a positive, increasing and convex functions on an

interval I. If [ is twice differentiable such that \ = %ng f"(x), then
€

TP 2T, y) ) <0 5 ((FUTP) e, 2) + (FIT1)y, )

(
AT, 2) — (T y.5))° (3.6)

O = DN =

forall x,y € H and any o, 5 > 0 with a + B > 2.
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Recall that a function f: R* — R where RT = [0, 00) is said to be sub-multiplicative if
it satisfies the inequality
fts) < f(t)f(s) forall t,s € RT. (3.7)

Lemma 3.4. Let f : Rt — RT be a positive, increasing, convex and sub-multiplicative i.e.,
f(ts) < f(t)f(s) for allt,s € R and let T € B(H). Then

FUTITITIT ) P) <0~ (FPAT P 2) + = (FUT )y, y) (3-8)

| =

1
p
— o ((FTP)2.2)

ya
2

gy 2
(0T )y) " )
forallz,y e H, a, >0 witha+ 3 > 2 and%—i—%:l,

Lemma 3.5. Let f : RT — RT be a positive, increasing, convex and sub-multiplicative i.e.,
f(ts) < f(t)f(s) forallt,s € R and let T, S, X € B(H) such that T and S are positive. Then

F(TXSPa,y) 7)< 277 F(IXN) ((F7(S%)a, @) + <fr(T2“)y,y>)%
1
= JFUXD) (5?2, 2) = (F(T*)y,y))° (3.9)
forallz,ye H,0< a,B <1, and r > 1. In particular case if r =1 and m = 2, we have
F(TXSP2,0) P) < S FUXID ((F(S)z,2) + (F(T*)y,p))°

= HUXD (8P 2) = (F(T*)y)” (3.10)

[N S

Proof. Since f is increasing and convex, then by applying Corollary 3.1, with p = ¢ = 2, we get

FU(TOX8%,y) [?)

IN

f (||X||2 (S*z,z) <T2ay,y>) (f increasing)
f(||XH2) (f(<52ﬁx,fv>)f(<T2ay7y>)) (f sub-multiplicative)
f(||XH2) (<f(52B)x, 37> <f(T2a)y,y>) (by Lemma 2.3)

27 XD (S22, 2) "+ (F(T*)y)")
THOXI) (£, 2) — (F(T*)9,9))°  (by Lemma 25)

TERUXIP) (782, + (1 (T2, )
1

= JHUXIP) (F(5*)z ) = (F(T*)y.y))°

IN A

IN

2
r

IN

O

Lemma 3.6. Let f : Rt — RT be a positive, increasing, convexr and sub-multiplicative i.e.,
f(ts) < f(t)f(s) for allt,s € R and let T € B(H). Then

S

FUTITI TIT ) 1) < 2% (7T, 2) + (T )y, )
((FUTP*)z,2) = (ST )y, ) (3.11)

| =
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forallz,ye H, o, > 1, and r > 1. In particular case if r = 1, we have

F(KTITI T e y) ) <

(FUT)z, ) + (F(T)y,y))° (3.12)
(FATP)z,2) = (F(T* Py, )

g N

4 Numerical radius inequalities

In this section we provide some numerical radius inequalities. Let us begin with the following
result. The following theorem gives us a new bound for powers of the numerical radius.

Theorem 4.1. Let T, S, X € B(H) such that T and S are positive and let f : I C Rt — R be
an increasing, convex and sub-multiplicative, i.e., f(ts) < f(t)f(s) for all s,t € R. If [ is twice
differentiable such that A\ = %ng f"(x), then for every o, B € [0,1], we have

€

F(SXT?) < S FIX w (FT%) + £(5%) - int (o), (1)

where P(x) = 15 f(IXIDA([T? — %]z, z))*.

Proof. Employing the monotonicity and convexity of f for the inequality (3.2), we have

f (‘<SQXTﬂ$,y>|) < f (||XH <T2’8$,x>% <52ay7y>%) (f is increasing)
FaXxm f (<T2ﬁx,x>% <S2ay,y>%) ( by sub-multiplicativity of f)

(T?Pz,x) + (S%y,y)
2

IN

IN

f(XII)f<

) (by AM-GM)

IN

sy | L) 27 (5 20)

- %6)\(<T25:L',$> — (58%*y,y))?| (by Lemma 2.6)

1

5 @)z, ) + ((5*)y. )]

IN

FAXAD

- %/\(<T259E,x> — (5**y,y))?| (by Lemma 2.3)

for all x,y € H. Letting y = x, we have

FU(S“X TPz, z) )

SHOXD{[(FT)0,) + (5™ )a,2)] = g7 (T0,0) = (52.2))’ |

IN

1

= XD LG + 15 0)] - U - 590,0)7 |

Taking the supremum over all unit vector x € H, we get the required result. O
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Note that our inequality in the previous theorem is a generalization and refinement of an
inequality shown in [20, Theorem 3.3].

Theorem 4.2. Let T € B(H) and let f be a positive, increasing and convex functions on an
interval 1. If f is twice differentiable such that A = inf 1" (x), then for every o, 8 > 1, we have

fw(T|T|*~ 17| TP~ 1)) Hf (IT1>*) + F(T*1*%)| - HIIHIflf( ), (4.2)

where £(z) = A T)** — |T**]x, :17>)2 In particular case, if « = 8 =1, then

Fw(T?)) Hf )+ f(T*P)]| - inf &),

ll=l=1
where €(z) = (T2 - [T* ], 2))2.
Proof. The proof is similar to proof of Theorem 4.1, so we omit it. O

Theorem 4.3. Let T, S, X € B(H) such that T and S are positive. Let f : Rt — RT be an
increasing, convex and sub-multiplicative, i.e., f(ts) < f(t)f(s) for all s,t € R. Then for all
reEH,0<a,<,p,g>1 and%—&—%:l, we have

o — 2 1 P 1 q « — in x
f(Tx5%) = fUX|[F)w (pf (T2B)+qf ($? )) f ~(z),

llzll=1
where y(z) = ro f (|| X||*) <<f(5’25)36,3(;>g - <f(T2a)a?,w>%)2 and rg = min{%, %

Proof. From (3.2), we have

f(\(Taxs%,y>|2) < f((\|X|| ) (8%, ) (T, >) (f increasing)
< (HX|| ) FUS?Pa,2)) fF((T2y,y))  (f super-multiplicative)
< FUXIP) 8%z, z) (f(T*)y,y) (by Lemma 2.3)
< SOXI) {3 (5¥)ma) + ()"

o ((570.)F = @)?) ] Gy Lemma 20

< SO {; (F(52)a) 4 1 ((T*)y.0)

ya
2

- 1 (<f(52/3)x, Z‘> - <f(T2a)yay>g)2} (by Lemma 2.3).

Letting x = y, we get
f( <TO“XSﬁa:,x> 1)

SO {3 (87)m0) + 2 (1102)e.3) = o (105702, = (02001
1Py {{[Lsy+ L] ) < (579,005 e}

Taking the supremum over all unit vector x € H, we get the required result. O

IN
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Theorem 4.4. Let f : RT — R be a positive, increasing, convez and sub-multiplicative i.e.,
f(ts) < f(t)f(s) for allt,s € R and let T € B(H). Then for every o, f > 1, we have

2
T

P (TITTITEh) < 278 || (TP + (77 *7)

— inf p(x),
HﬂcH:lp( )

where p(z) := 1 ((f(IT[**) = f(|T*|*")) z, ). In particular, if o = B =1 and r = 1, we have

F@Aa) < 71707 + 7O )P = int i)

in
llzll=1

where py(z) ==+ ((F(TI2) - F(T*2)) 2,).

Theorem 4.5. Let T € B(H). Then for all z,y € H and every o, > 1, r > 1, p,q > 1 with
]%Jr%:l and m=1,2,---, we have

m 1 1
w?™ (T|T|*'T|T)P) < w™ [p|T|2m + 5|T*|2’"/3 -y Hhﬁﬁln(x),

2
where n(x) := {(\T|2O‘x,x> —{(|T**Pz,z) } , and rg = min{%,% .

Proof. From inequality (3.3), we have

[(TIT|* TIT P ) [P

m

m 1 1qm
< (rPowa) ¥ (T Pyy) T = (T2 (T Py ) ]
1 r 1 * r % m (e 5 * =2
< [p<|T|2a$7fC> +5<|T *y,y) } — 7y [(ITI2 z, ) —(|T \QBy,yV}
(by Lemma 2.5)
1 1 & m m12
< [LrPeaays L] - (0P - (7P )

(by Lemma 2.3).
Let x =y, we get
(T T|T)P ) P

m

1 1 r m mq2
< [Sarpeaey v Qe - [(rPeae) T - (e ]
p q
1 2ra 1 * 273 - m 2a = * |23 5 2
= 5\T| +5\T | T,T - {<|T| x,o:> —<|T | x,r> }
Taking the supremum over all unit vector x € H, we get the required result. O

Theorem 4.6. Let T € B(H). Then for all z,y € H and every o, > 0 with o + 8 > 2, r > 1,
p,qg>1 with%—i—%:l and m=1,2,---, we have

m |1 1
w2m (T*‘T*|a+’6—2T) < wr |:|T2roc + |T2r/3:| _ T(T)n | HHlf M($>7 where
p q z]=1

m
2

pa): = [(rEeea)® - <|T|2ﬁx,x>%r and ro — min{%%}.
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Proof. The proof is similar to the proof of Theorem 4.5, so we omit it. O

Theorem 4.7. Let T, S € B(H), o, 8,7,0 > 1. Then for all r > 1, we have

w (T|T|*'T|T)°~ + 5|5\7_13|5|5_1) (4.3)
< 27?1117 UT|2TQ + |T*‘2rﬁj| 4+ rw 1 [‘S|2r'y + |S*|2r5]
B 1 [<|T|2a1} $> <|T*|2ﬁ >%:|2 1 |:<|S|2fyx l‘>% _ <‘S*|25$ $>%}2
2 jjafj=1 pRb ’

Proof. For all z,y € H, we have
| (DI T~ + SIS SIS ) ) |

< KT|T|*'TIT)P w,y) |+ [ (S]S]7ESIS e, y) | (by Cauchy-Swartz inequality)
< (ITPow,2)? (T 2Py, 5)? + (1972, 2) (|S*[2%,5)®  (by inequality (3.3) )
< ot (TP + ()] - 5 [P - 2P ]
b2t [(8Paa) + (S )]
5 (81772, 2)F — (1570, 2)* 1" (by Lemma 2.5
< 2t [(TProw ) + (T Py )] - L (o)t - (7 )]
+ 27 g

2 [<|S|2r7$,1‘> + <|S*|2”$y,y ]
2

— H0seayt - st Pen)t] by Lomma 23

Let x = y, we get

| (7|7 >~ 7|7 )P~ + SIS SIS @ 2) |
2

IN

1 ) 1 1 1 " 1
27w [<|T|2mx,x> + <|T*|27ﬂx,x>] T 3 |:<|T|2(XLL‘,CC>2 — <\T |25x,x> }
1 - 120 % 1 % . % 2
+ 2T (ISP @) + (5T, y)] T - 5 (ISP )t = (15, 1) 7
< 2T (TP TP ) 27 (ISP + |8, 5)
1 2« % *|208 % 2 1 2y % * |20 % 2
- 3 [<|T\ ;v,x> — <|T | x7m> ] ~5 [<|S| x,x> — <\S | x7x> }

Taking the supremum over all unit vector x € H, we get the required result. O

If we take r = 1, we have

Corollary 4.8. LetT,S € B(H), «,3,7,0 > 1. Then

w (T\T1* T\ TP~1 + S[S|P~18|S1° ) (4.4)
S w [|T|2a + |T*|26 + |S‘2'y + ‘S*|26]
_ 1 inf [<|T|2a1' $>% _<|T*|2B£L',£L'>%:|2—1 [<|S|2’Y£L' £L'>% —<‘S*|26(E,$>%]2

2 |jzf=1 2 e H 1
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Remark 1. In Corollary 4.8, if we choose

(i) a=p8=~v=06=1, we have

w(T?+5%) < swl[[TP+ TP+ |5+ 5]
1 2 *)2 372
5 it [(TPea)® = (|7 o))
1 2 (2 312
5 0t (ISP, 2)* — (15" %2.2)*)

(i) a =p=v=9 =2, we have

1 " ¥
w((TIT + (SIS)F) < Gw [T+ + |S|* + |5*[*]

L % * |4 % 2
- 3, H X [<|T\ x x> —<\T | w,x> ]
1 4 5 Jiaxjd 12

5\%{1 [<|S| 7, ) {871, ) }

By the same of the proof of Theorem 4.7, we can prove the following result.

Theorem 4.9. Let T,S € B(H), o, 8,7,0 > 0 such that a + 5 > 2 and y+ 8§ > 2 . Then for all
r > 1, we have

w (T[T |07 4 ST 0S) (4.5)
< 27 rwr [|T\2’”°‘+|T|2m] + 2 rwr [|S)7 4 |S[2]
; . %50 - 2 315 20} (15200 2y} ]
~ gt NT' v, = (IT) “"” “o 1[<|S| v a)? = (|S] $v$>]

5 Refinements of the Holder-McCarthy Operator Inequal-
ity

In this section, we give some new refinements of the mixed Schwarz inequality and its general-
ization based on a new refinement of Holder-McCarty inequality. The next lemma plays a main
role in our main results.

Lemma 5.1 ([8]). Let A be a positive operator on H. If x € H is a unit vector, then
(Az,z)" < (A"z,2) — (|A — (Az,2) |"2,2) for 1 >2. (5.1)
The following result is a generalization of refinements of [6, Theorem 3.1] and [3, Theorem
2]
Theorem 5.1. Let A,B,C,D € B(H) and let 0 < a« <1 and r > 1. Then

T+ Q- a)lDo) s

— inf ¢(x), (5.2)

w? (DCBA) < H nf

where

o(z) = a <]\BA|% - <|BA|%:E,J:>’TI,I> Y (1-a) <’|(D0)*| =

— <\(DC’)*\ﬁx,x>

ks
m,z>
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Proof. For every unit vectors x,y € H, we have
|(DCBAz,y)|*> < (|BAPz, ) <\(DC’)*\2y,y> (by Lemma 3.1)
BA[*E2,0) ([(DC)* (=) Py, y )

{
<| Az x>a<|(DC)*|13ay,y>(l_“) (by Lemma 2.1)
o

IN

1
r

(1BA2 x> Y (1-a) <|(DC)*|ﬁy,y>r} (by Lemma 2.2)

IN

Now for every unit vector x € H and and r > 1, we have

| (DCBAz, ) |*"

< a <|BA|%3:,1;>T +(1-a) <|<D0)*|ﬁx,x>r
< « [<|BA|%x,m> — <’\BA|% - <|BA\%x,x>’rx,x>}
+ (1-a) [(i(DC) 52,2} — (|[(DO) |77 = ([(DO)* |7, 2) "o,
(by Lemma 5.1)
Taking the supremum over all unit vector x € H, we get the required result. O

Corollary 5.2. Let T € B(H) andlet 0 <v <1, a+ B >1 andr > 2. Then

W (LT TP ) < |l T) ™5 4+ (0= )75 = inf (o), (5.3)

llzll=1

where

() = v (|T1% = (1T 2,2)

:c,x> +(1-v) <‘|T*\%3 - <|T*|%x,:r>’ x,:c>

Proof. In Theorem 5.1, choose A = |T|*~',B = T,C = |T|* " and D = T, we get the desired
result. O

Corollary 5.3. Let T € B(H) and let 0 <v <1, o, >0 with o+ 3> 2 and r > 2. Then

W (T 4P72T) < ||| 7)™ + (1= w)| 7]

~Inf s(z), (5.4)

x,x> +(1-v) <‘|T\12—ﬂv — <|T|%x,m>’ ac,x>

Proof. In Theorem 5.1, choose A =T, B = |T*|~1,C = |T*|*~! and D = T*, we get the desired
result. O

where

¢(z) == 1/<‘|T|27a - <|T|270x,x>

Remark 2. If we choose D =T*,C=1,B=1,A =5 in Theorem 5.1, we have

w? (1) < [[alS|¥ + (1 = o) 7|

— inf 7(x),

llzll=1

where

T(x) := <{o¢ ’|S|% - <|S|£:E,x>’r +(1—a) ‘|T|ﬁ - <|T|ﬁx,x>‘r} x,x>
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The following lemma is very useful in the sequel.
Lemma 5.2. Ifa,b >0, then
(i) a* + b < (a+b)” <2*"Ya* + V"), for v>1, and
(ii) 27 1(a” +b") < (a+ b)Y < a” + b, for v<1.
Our next result is a generalization and refinements of inequality ( 1.9).
Theorem 5.4. Let A, B,C,D,Ay,B1,C1,D; € B(H) and r > 2. Then

w"(DCBA+ D1C1B1Ay) < 2772 |[[BA[Y + [(DC)*|* + | B1 A1 " + |(D1Cy)* ||

- Inf (), (5.5)
where
Ylx): = 2772 [<HBA|2 - <|BA\233,J:>‘T$,33> + <H(DC’)*|2 - <|(DC)*|2x,ac>|Tx,x>

+ <HBlA1|2 . <|BlA1|2x,x>|Tx7x> + <||(17101)*|2 . <|(D101)*\2y,y>y’“m,x>}

Proof. By Cauchy-Schwartz inequality, Lemma 3.1, Lemma 2.2 and Lemma 5.2. Then for every
unit vectors x,y € H, we have

|((DCBA + D1C1B1Ay) z,y)|

< |[(DCBAz,y)| + [(D1C1B1 Az, y)|

< (IBAP,2)* ((DO)Py,u)* + (B, 2 (|(DiCy)* Py )

< %<\BA|%,:E>+%<\<DO)*\2y,y>+%<lBlA1|2x,w>+%<I<D101>*\2y’y>

< [3UBAPaa) + 300y Pua) |+ [5UBiiPae) 4 g (i) Py |

< 2'7r B<|BA2937I>‘ 1<\(DC Py, y) + 5 <|BlA1|17x> ;<|(D101)*2y7y>r]r
Hence

(DCBA+ DiCiBiAY) xy)|

_ g1 % (BAPz, ) + % (DO Py, ) + % (IB1AsPw,2)" + % <I(D101>*|2y7y>r}

= 22 [(IBAPw,2) + (|(DO) Py,y) +(|BiiPa,z) + (D1 Py,y) |

< g2 :<|BA‘2TI,1;>*<|\BA|27<|BA\2x,x>|rz,x>

+ 10Oy ) - 100y~ (D) Py v.v)]

+ 272 _<|BlA1|2Tx,x>—<||31A1|2—<\31A1|290ax>’ x7x>

+ D) Py )~ (D1 = (D10 Py, 0)] 9.9)]  (by Lemma 5.1)
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Let x = y, we have

|<(DCBA + chlBlAl) Z, (E>|T
22 ([[BAPT +[(DC)* | + [Bi A" + [(D1C)* ] )

22 [(|IBAP ~ (1BAR2, )| 2,2) + {[(DC)" P ~ (|(DC)" P, 2)|" .

IN

+ <|\BlA1|2 _ <|BlA1|2x,x>|Tx,x> n <||(chl)*|2 - <\(D101)*|2x,x>|%,x>}
Taking the supremum over all unit vector x € H, we get the required result. O

Remark 3. In Theorem, if we choose D = T*C = B=I1,A=T and D, =T,Cy = By =
I,A; =T%, then
W (T*T +TT*) <27 |||T)* +|T*)*|| - ” nulf Y(z),
z||=1
where

Y(z) =21 [<’|T|2 - <|T|2x,x>lrﬁc,x> + <||T*\2 - <|T*|2x,x>}r:r7x>} .

Many mathematicians improved the Young inequality and its reverse. Kober [15], proved
that for a,b > 0

(I=Na+M<a' ™ +1-NWa—Vb? A>1 (5.6)
By using (5.6), we obtain a refinement of the Holder-McCarthy inequality.
Lemma 5.3 ([6]). Let A € B(H) be a positive operator. Then

A%x,x
(Az,2)* [ 14200 =1) [ 1= <1> < (Arz,z) (5.7)
(Az, z)*

for all X\ > 1 and x € H with ||z| = 1.

Alw,a:
Remark 4. If we denote p := (1 +2(X = 1) inf}j =1 (1 — < : >>> , we have

<Ax,x>>‘ < % <A)‘:17,x> , for A\>1. (5.8)

Theorem 5.5. Let A, B,C, D be invertible operators, 0 < A < 1 and r > 1. If for each unit

vector x € H < N >
|BA| x,
o= (1120 (1 A1)
(|BA|* z, )2

and
DC)* 1-X
o) = (1420 — 1) [1- NPT w2)
DO)*[20-N g 2?2
(I(DC)*|
then .
U)T(DCBA) < 27p H‘BA|2T>\ + ‘(DC)*|2’I‘(17/\) ‘7

where

= | iﬂfl §(x),n = | iI”1£1 n(z) and p = min{¢, n}.
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Proof. Let x € ‘H be a unit vector. Then

|(DCBAz,z)| < <|BA|2A;U,:C>%<|(DC)*|2<1—A>:E,:E>E (by Lemma 3.1)

1

<<|BA|%, )+ <|<DC>*|2<1-”x,w>r>

a 2
Applying Lemma 5.3 to the positive operators |[BA|?* and |(DC)* |~ we have
r BAPw,
(BAP 2y = (BAPwa) (1426 -1) (1- LPALTT)
(|BA[# 2, x)*?

= &) (|BAPz,z)"

= <|BA|2)‘x,x>T < %<|BA\2T’\:r,x> (by inequality (5.8),
and
- DO)* A ,
UDOY ey > (DO Py (1426 — 1) (1o P Tma) 1)
(I(DC)* Az, )
= (@) (I(DC)* Pz, z)"
r 1
= {|(DO)*|*z,z) < g<|(DC)*|2T’\x,x> (by inequality (5.8).
Hence
11 2r\ 1 *12r(1—=\) .
[(DCBAz2)| < 277 g (IBAP aw) + <|(DC) | xx>
r 1 2r\ *(2r(1—X)
<
[(DCBAz )" < o ((1BAP™ +1(DOY O 2, 0)
By taking supremum over x € H with ||z|| = 1, we get the desired relation. O

Corollary 5.6. Let T be an invertible operators, a, 5 > 1,0 < XA <1 andr > 1. If for each unit

vector x € H < " >
_ _ _ AT, 2)
e (l rey (l <|T|2mx7x>5>> |

and
T* 1-Na
p@) = (14020 -1 (1o ST ww) )
(70 )’
then )
w' (TITI TP < o H\T|2m + ‘T*|2r6(14)H 7
P
where

£= Hgicﬂilﬂx), n= Hiﬂiln(x) and p = min{¢,n}.

Proof. In Theorem 5.5, choose A = |T|*~1,B = T,C = |T|* ! and D = T, we get the desired
result. O
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Corollary 5.7. Let T be an invertible operators, a, 8 > 0 witha+ £ >2,0< A <1 andr > 1.
If for each unit vector x € H

B 3 B <|T|ﬁ’\x,x>
g(x)_<l+2(r K (1 <|T|wx,z>5>>’

and
<|T‘(17)\)o¢‘r’x>
nz)=11+2(r—1)1- -]
<‘T|2(17)\)ax’x>2
then )
w7-(T*|T*|a+B—2T) < 27 H|T|27'ak + |T|27',6(1—)\)H ,
P
where
£= ”illf‘lflf(wx n= Hirulfln(w) and p = min{¢, n}.

Proof. In Theorem 5.5, choose A =T, B = |T*|~1,C = |T*|*~! and D = T*, we get the desired
result. O

We are going to establish a refinement of a numerical inequality for Hilbert space operators.
We need the following lemma.

Lemma 5.4 ([19]). Let a;,i =1,--- ,n be positive real numbers. Then

(i a¢> <pt iaf forr>1. (5.9)
i=1 i=1

The next result is a generalization and refinements of inequality (1.8).

Theorem 5.8. Let A;,B;,C;, D; € B(H),i=1,--- ,n be invertible operators. Then for allr > 1

n r—1
Ju

i=1

it (1o (1 Ak
g_lm”51<1+2( 1)<1 <|Bz‘Ai|2va>é>>

= in r— _M
n—|z|£1<1+2( 1)(1 <|(DiC¢)*|x,x>§>>'

Proof. For every unit vector x € H, we have

((goens)

n

> B AP +(DiCi) ]

i=1

, (5.10)

where p = min{¢, n},

and

r
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< (Z |<DiCiBiAi$7$>|>

1 i=1

< (zn: }<|B APz, 2)? (|(DiC)* e, ) ) (by Lemma 3.1)
< e 1Z<|BA\ 2,2)% (|(DiCy)* P, 2)®  (by Lemma 5.4)
< ”M <an (1B, 2)" <|(DiCi)*|2m,x>T}> (AM-GM)
< < ; — (|BiAi|*"z, ) + 117<|(DZC¢)*|2T;E,$>]> (by inequality 5.8)
P
< 2; ;< By + |(DiCo)* ") ).
Taking the supremum over all unit vector ¢ € H, we obtain the desired result. O

Corollary 5.9. Let T; € B(H), i = 1,--- ,n be invertible operators, o + 8 > 1. Then for each

r>1
n nrfl
w' (Y TIT T < o

i=1

TP Ty (5.11)

i=1

§= inf <1+2(r—1) (1_W>>
lz]|=1 <‘Ti|2f3x’x>§

. oy AT
(e (HQ( ! (1 <|T;|2ax,:c>5>> '

Proof. In Theorem 5.8, choose A; = |T;|°~1,B; = T;,C; = |T;|*"! and D; = T;, we get the
desired result. O

where p = min{&,n},

and
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