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flow
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Abstract. The anisotropic-diffusion convection equation of spatially variable co-

efficients which is relevant for functionally graded media is discussed in this paper

to find numerical solutions by using a combined Laplace transform and boundary

element method. The variable coefficients equation is transformed to a constant co-

efficients equation. The constant coefficients equation is then Laplace-transformed so

that the time variable vanishes. The Laplace-transformed equation is consequently

written in a pure boundary integral equation which involves a time-free fundamental

solution. The boundary integral equation is therefore employed to find numerical

solutions using a standard boundary element method. Finally the results obtained

are inversely transformed numerically using the Stehfest formula to get solutions in

the time variable. The combined Laplace transform and boundary element method

is easy to be implemented and accurate for solving unsteady problems of anisotropic

functionally graded media governed by the diffusion convection equation.

Keywords. Functionally graded materials, variable coefficients, anisotropic, unsteady,
diffusion-convection

1 Introduction

In the last decade investigations on the diffusion-convection equation had been done for finding
its numerical solutions. The investigations can be classified according to the anisotropy and in-
homogeneity of the media under consideration. For example, Wu et al. [34], Hernandez-Martinez
et al. [12], Wang et al. [33] and Fendoğlu et al. [7] had been working on problems of isotropic
diffusion and homogeneous media, Yoshida and Nagaoka [35], Meenal and Eldho [19], Azis [3] (for
Helmholtz type governing equation) studied problems of anisotropic diffusion but homogeneous
media. Rap et al. [23], Ravnik and Škerget [25, 26], Li et al. [18] and Pettres and Lacerda
[22] considered the case of isotropic diffusion and variable coefficients (inhomogeneous media).
Recently Azis and co-workers had been working on steady state problems of anisotropic inho-
mogeneous media for several types of governing equations, for examples [5, 32] for the modified
Helmholtz equation, [4, 14, 24, 30, 27, 11, 17] for the diffusion convection reaction equation,
[29, 8, 13, 16] for the Laplace type equation, [10, 2, 20, 21, 15] for the Helmholtz equation.
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Referred to the Cartesian frame Ox1x2 we will consider initial boundary value problems
governed by an unsteady anisotropic-diffusion convection equation with incompressible flow and
variable coefficients of the form

∂

∂xi

[
dij (x)

∂c (x, t)

∂xj

]
− ∂

∂xi
[vi (x) c (x, t)] = α (x)

∂c (x, t)

∂t
(1.1)

The coefficient [dij ] (i, j = 1, 2) is a real positive definite symmetrical matrix. Also, in (1.1)
the summation convention for repeated indices holds, so that explicitly (1.1) can be respectively
written as

∂

∂x1

(
d11

∂c

∂x1

)
+

∂

∂x1

(
d12

∂c

∂x2

)
+

∂

∂x2

(
d12

∂c

∂x1

)
+

∂

∂x2

(
d22

∂c

∂x2

)
− ∂

∂x1
(v1c)−

∂

∂x2
(v2c) = α

∂c

∂t

Equation (1.1) is used to model unsteady diffusion convection process in anisotropic and inhomo-
geneous (functionally graded) materials. Among the physical phenomena of applications include
pollutant transport and heat transfer.

Nowadays functionally graded materials (FGMs) have become an important issue, and nu-
merous studies on this issue for a variety of applications have been reported. Authors commonly
define an FGM as an inhomogeneous material having a specific property such as thermal con-
ductivity, hardness, toughness, ductility, corrosion resistance, etc. that changes spatially in a
continuous fashion. Therefore equation (1.1) is relevant for FGMs.

Equation (1.1) applies for unsteady problems of anisotropic and inhomogeneous therefore
provides a wider class of problems. It covers problems of isotropic and homogeneous media as
special cases which occur respectively when d11 = d22, d12 = 0 and the coefficients dij , vi and α
are constant.

Zoppou and Knight [36] had been working on finding the analytical solution to the unsteady
orthotropic diffusion-convection equation with spatially variable coefficients. The equation con-
sidered is almost similar to equation (1.1) but with limitation d11 ̸= d22, d12 = 0. This paper
is intended to extend the recently published works on anisotropic diffusion convection equation
with variable coefficients [31, 6, 9, 28, 1] from the steady state to unsteady state equation.

2 The initial boundary value problem

Given the coefficients dij (x) , vi (x) , α (x) solutions c (x, t) and its derivatives to (1.1) are sought
which are valid for time interval t ≥ 0 and in a region Ω in R2 with boundary ∂Ω which consists
of a finite number of piecewise smooth curves. On ∂Ω1 the dependent variable c (x, t) is specified,
and

P (x, t) = dij (x)
∂c (x, t)

∂xi
nj (2.1)

is specified on ∂Ω2 where ∂Ω = ∂Ω1 ∪∂Ω2 and n =(n1, n2) denotes the outward pointing normal
to ∂Ω. The initial condition is taken to be

c (x, 0) = 0 (2.2)

The method of solution will be to transform the variable coefficient equation (1.1) to a constant
coefficient equation, and then taking a Laplace transform of the constant coefficient equation, and
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to obtain a boundary integral equation in the Laplace transform variable s. The boundary integral
equation is then solved using a standard boundary element method (BEM). An inverse Laplace
transform is applied to get the solution c and its derivatives for all (x, t) in the domains. The
inverse Laplace transform is implemented numerically using the Stehfest formula. The analysis
is specially relevant to an anisotropic medium but it equally applies to isotropic media. For
isotropy, the coefficients in (1.1) take the form d11 = d22 and d12 = 0 and use of these equations
in the following analysis immediately yields the corresponding results for an isotropic medium.

The analysis in this paper is purely mathematical, the main aim is to derive a BEM for
finding the numerical solutions to problems governed by equation (1.1).

3 The boundary integral equation

We restrict the coefficients dij , vi, α to be of the form

dij (x) = d̂ij g(x) (3.1)

vi (x) = v̂i g(x) (3.2)

α (x) = α̂ g(x) (3.3)

where g(x) is a differentiable function and d̂ij , v̂i, α̂ are constants. Further we assume that the
coefficients dij (x), vi (x) and α (x) are exponentially graded by taking g(x) as an exponential
function

g(x) = [exp (β0 + βixi)]
2

(3.4)

where β0 and βi are constants. Therefore if

d̂ijβiβj − λ = 0 (3.5)

then (3.4) satisfies

d̂ij
∂2g1/2

∂xi∂xj
− λg1/2 = 0 (3.6)

Substitution of (3.1)-(3.3) into (1.1) gives

d̂ij
∂

∂xi

(
g
∂c

∂xj

)
− v̂ig

∂c

∂xi
= α̂g

∂c

∂t
(3.7)

Assume
c (x, t) = g−1/2 (x)ψ (x, t) (3.8)

therefore substitution of (3.1) and (3.8) into (2.1) gives

P (x, t) = −Pg (x)ψ (x, t) + g1/2 (x)Pψ (x, t) (3.9)

where

Pg (x, t) = d̂ij
∂g1/2 (x)

∂xj
ni Pψ (x, t) = d̂ij

∂ψ (x, t)

∂xj
ni

And equation (3.7) can be written as
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d̂ij
∂

∂xi

[
g
∂
(
g−1/2ψ

)
∂xj

]
− v̂ig

∂
(
g−1/2ψ

)
∂xi

= α̂g
∂
(
g−1/2ψ

)
∂t

d̂ij
∂

∂xi

[
g

(
g−1/2 ∂ψ

∂xj
+ ψ

∂g−1/2

∂xj

)]
− v̂ig

(
g−1/2 ∂ψ

∂xi
+ ψ

∂g−1/2

∂xi

)
= α̂g

(
g−1/2 ∂ψ

∂t

)

d̂ij
∂

∂xi

(
g1/2

∂ψ

∂xj
+ gψ

∂g−1/2

∂xj

)
− v̂i

(
g1/2

∂ψ

∂xi
+ gψ

∂g−1/2

∂xi

)
= α̂g1/2

∂ψ

∂t

Use of the identity

∂g−1/2

∂xi
= −g−1 ∂g

1/2

∂xi

implies

d̂ij
∂

∂xi

(
g1/2

∂ψ

∂xj
− ψ

∂g1/2

∂xj

)
− v̂i

(
g1/2

∂ψ

∂xi
− ψ

∂g1/2

∂xi

)
= α̂g1/2

∂ψ

∂t

g1/2
(
d̂ij

∂2ψ

∂xi∂xj
− v̂i

∂ψ

∂xj

)
− ψ

(
d̂ij

∂2g1/2

∂xi∂xj
− v̂i

∂g1/2

∂xi

)
+

(
d̂ij

∂ψ

∂xj

∂g1/2

∂xi
− d̂ij

∂ψ

∂xj

∂g1/2

∂xi

)
= α̂g1/2

∂ψ

∂t
(3.10)

For incompressible flow

∂vi (x)

∂xi
= 2g1/2(x)v̂i

∂g1/2(x)

∂xi
= 0

that is

v̂i
∂g1/2(x)

∂xi
= 0

Thus (3.10) becomes

g1/2
(
d̂ij

∂2ψ

∂xi∂xj
− v̂i

∂ψ

∂xi

)
− ψd̂ij

∂2g1/2

∂xi∂xj
= α̂g1/2

∂ψ

∂t

Equation (3.6) then implies

d̂ij
∂2ψ

∂xi∂xj
− v̂i

∂ψ

∂xi
− λψ = α̂

∂ψ

∂t
(3.11)

Taking a Laplace transform of (3.8), (3.9), (3.11) and applying the initial condition (2.2) we
obtain

ψ∗ (x, s) = g1/2 (x) c∗ (x, s) (3.12)
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Pψ∗ (x, s) = [P ∗ (x, s) + Pg (x)ψ
∗ (x, s)] g−1/2 (x) (3.13)

d̂ij
∂2ψ∗

∂xi∂xj
− v̂i

∂ψ∗

∂xi
− (λ+ sα̂)ψ∗ = 0 (3.14)

where s is the variable of the Laplace-transformed domain.

By using Gauss divergence theorem, equation (3.14) can be transformed into a boundary
integral equation

η (ξ) ψ∗ (ξ, s) =

∫
∂Ω

{Pψ∗ (x, s) Φ (x, ξ)− [Pv (x) Φ (x, ξ)

+Γ (x, ξ)]ψ∗ (x, s)} dS (x) (3.15)

where
Pv (x) = v̂i ni (x)

For 2-D problems the fundamental solutions Φ(x, ξ) and Γ(x, ξ) are given as

Φ (x, ξ) =
ρi

2πD
exp

(
− v̇. Ṙ

2D

)
K0

(
µ̇Ṙ
)

(3.16)

Γ (x, ξ) = d̂ij
∂Φ (x, ξ)

∂xj
ni (3.17)

where

µ̇ =

√
(v̇/2D)

2
+ [(λ+ sα̂) /D]

D =
[
d̂11 + 2d̂12ρr + d̂22

(
ρ2r + ρ2i

)]
/2

Ṙ = ẋ− ξ̇

ẋ = (x1 + ρrx2, ρix2)

ξ̇ = (ξ1 + ρrξ2, ρiξ2)

v̇ = (v̂1 + ρrv̂2, ρiv̂2)

Ṙ =

√
(x1 + ρrx2 − ξ1 − ρrξ2)

2
+ (ρix2 − ρiξ2)

2

v̇ =

√
(v̂1 + ρrv̂2)

2
+ (ρiv̂2)

2

where ρr and ρi are respectively the real and the positive imaginary parts of the complex root ρ
of the quadratic equation

d̂11 + 2d̂12ρ+ d̂22ρ
2 = 0

and K0 is the modified Bessel function. Use of (3.12) and (3.13) in (3.15) yields

ηg1/2c∗ =

∫
∂Ω

{(
g−1/2Φ

)
P ∗ +

[(
Pg − Pvg

1/2
)
Φ− g1/2Γ

]
c∗
}
dS (3.18)

Equation (3.18) provides a boundary integral equation for determining the numerical solutions
of c∗ and its derivatives ∂c∗/∂x1 and ∂c∗/∂x2 at all points of Ω.

Knowing the solutions c∗ (x, s) and its derivatives ∂c∗/∂x1 and ∂c∗/∂x2 which are obtained
from (3.18), the numerical Laplace transform inversion technique using the Stehfest formula is
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Table 1: Values of Vm of the Stehfest formula for N = 4, 6, 8, 10
Vm N = 4 N = 6 N = 8 N = 10

V1 −2 1 −1/3 0.083333333333333

V2 26 −49 145/3 -32.083333333333336

V3 −48 366 −906 1279

V4 24 −858 16394/3 -15623.666666666666

V5 810 −43130/3 84244.1666666666

V6 −270 18730 -236957.5

V7 −35840/3 375911.6666666666

V8 8960/3 -340071.6666666666

V9 164062.5

V10 -32812.5

then employed to find the values of c (x, t) and its derivatives ∂c/∂x1 and ∂c/∂x2. The Stehfest
formula is

c (x, t) ≃ ln 2

t

N∑
m=1

Vmc
∗ (x, sm)

∂c (x, t)

∂x1
≃ ln 2

t

N∑
m=1

Vm
∂c∗ (x, sm)

∂x1
(3.19)

∂c (x, t)

∂x2
≃ ln 2

t

N∑
m=1

Vm
∂c∗ (x, sm)

∂x2

where

sm =
ln 2

t
m

Vm = (−1)
N
2 +m

min(m,N2 )∑
k=[m+1

2 ]

kN/2 (2k)!(
N
2 − k

)
!k! (k − 1)! (m− k)! (2k −m)!

A simple script has been developed to calculate the values of the coefficients Vm,m = 1, 2, . . . , N
for any number N . Table (1) shows the values of Vm for N = 4, 6, 8, 10.

4 Numerical results

In order to justify the analysis derived in the previous sections, we will consider several problems
either as test examples of analytical solutions or problems without simple analytical solutions.
We assume each problem belongs to a system which is valid in given spatial and time domains
and governed by equation (1.1) and satisfying the initial condition (2.2) and some boundary
conditions as defined in Section 2. The characteristics of the system which are represented
by the coefficients dij (x) , vi (x) , α (x) in equation (1.1) are assumed to be of the form (3.1),
(3.2) and (3.3) in which g(x) is an exponential function of the form (3.4). The coefficients
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dij (x) , vi (x) , α (x) represents respectively the diffusivity or conductivity, the velocity of flow
existing in the system and the change rate of the unknown or dependent variable c (x, t). As the
flow is assumed to be incompressible, the velocity vi (x) must satisfy ∂vi (x) /∂xi = 0.

A standard BEM is derived by discretizing the boundary integral equation (3.18). The
boundary is discretized into a number of elements and the dependent variables c and P are
assumed to be constant on each element (constant element), taking their values on the mid-point
of each element. For the contour integrals, we use the 10-nodal-point Bode quadrature of error
of order O(h11) where 9h is equal to the length of the element. To some extent, this quadrature
provides avoidance of the computation of the values of the fundamental solutions (3.16) and
(3.17) on their singularities (if available), as the sink points never coincide with the source points
(mid-point of elements). It also will guarantee the convergence of the solution as the number of
boundary elements is increased.

The value of N in (3.19) for the Stehfest formula is chosen to be N = 10. For each time t,
a number of N = 10 solutions of Laplace transform frame c∗ and its derivatives are calculated.
Then, we use the values of these solutions to find the solutions of the original frame c and its
derivatives by utilizing the Stehfest formula (3.19).

For a simplicity, a unit square (depicted in Figure 1) will be taken as the geometrical domain
for all problems. A number of 320 elements of equal length, namely 80 elements on each side of
the unit square, are used. A FORTRAN script is developed to compute the solutions.

-

6

x1

x2

D(0, 1)

A(0, 0) B(1, 0)

C(1, 1)

Figure 1: The domain Ω

4.1 Test problems

Other aspects that will be justified are the accuracy and consistency (between the scattering and
flow) of the numerical solutions. The errors of the numerical solutions are computed using the
formula

√
(µ2
a − µ2

n) where µa, µn are the analytical and numerical solutions, respectively. The
analytical solutions are assumed to take a separable variables form

c (x, t) = g−1/2 (x)h (x) f (t)
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 1.4

g1/2(x1,x2) = 0.357 exp(1-0.25x1+0.35x2)

x1x2

g1/2

Figure 2: Function g (x)

where

h (x) = 2.7 exp [− (1 + 0.1x1 + 0.15x2)]

The function g1/2 (x) is

g1/2 (x) = 0.357 exp (1− 0.25x1 + 0.35x2)

and depicted in Figure 2.

We will consider three forms of time variation functions f (t) of time domain t = [0 : 5] which are

f (t) = 1− exp (−1.5t)

f (t) = 0.2t

f (t) = t (5− t) /6.25

We take mutual coefficients d̂ij and v̂i for the problems

d̂ij =

[
1 0.15

0.15 0.45

]
v̂i = (0.7, 0.5)

so that from (3.5) we have

λ = 0.091375

For h (x) to be a solution to (3.14), the value of α̂ has to be

α̂ = 0.07825/s

We also take a set of boundary conditions (see Figure 1)

P is given on side AB, BC, CD
c is given on side AD
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f

t

f(t) = 1-exp(-1.5t)

Figure 3: Function f (t) for Problem 1

Figure 4: The errors of solutions c (left), ∂c/∂x1 (middle), ∂c/∂x2 (right) at t = 2.5 for
Problem 1

Problem 1: First, we suppose that the time variation function is

f (t) = 1− exp (−1.5t)

Function f (t) is depicted in Figure 3.

Figure 4 and Table 2 show the accuracy of the BEM solutions. The errors occur in the
fourth decimal place for the c and the derivatives ∂c/∂x1 and ∂c/∂x2 solutions. Figure 5 shows
the consistency between the scattering and the flow solutions which verifies that the solutions
for the derivatives had also been computed correctly. Figure 6 shows that the solution c changes
with time t in a similar way the function f (t) = 1− exp (−1.5t) does (see Figure 3) and tends to
approach a steady state solution as the time goes to infinity, as expected.
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Figure 5: Solutions c and (∂c/∂x1, ∂c/∂x2) at t = 2.5 for Problem 1
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Table 2: A comparison between numerical and analytical solutions at the centre point
(0.5, 0.5) for Problem 1

t
Numerical solution Analytical solution

c ∂c
∂x1

∂c
∂x2

c ∂c
∂x1

∂c
∂x2

0.0005 0.0006 0.0001 -0.0003 0.0006 0.0001 -0.0003

0.5 0.4535 0.0680 -0.2267 0.4534 0.0680 -0.2267

1.0 0.6676 0.1001 -0.3337 0.6675 0.1001 -0.3338

1.5 0.7685 0.1153 -0.3841 0.7687 0.1153 -0.3843

2.0 0.8162 0.1224 -0.4080 0.8164 0.1225 -0.4082

2.5 0.8390 0.1258 -0.4194 0.8390 0.1259 -0.4195

3.0 0.8499 0.1275 -0.4248 0.8497 0.1275 -0.4248

3.5 0.8552 0.1283 -0.4275 0.8547 0.1282 -0.4274

4.0 0.8577 0.1286 -0.4287 0.8571 0.1286 -0.4285

4.5 0.8588 0.1288 -0.4293 0.8582 0.1287 -0.4291

5.0 0.8593 0.1289 -0.4295 0.8587 0.1288 -0.4294

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

c

t

BEM at (0.3,0.3)
BEM at (0.5,0.5)
BEM at (0.7,0.7)

Figure 6: Solutions c for Problem 1
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f(t) = 0.2t

Figure 7: Function f (t) for Problem 2

Figure 8: The errors of solutions c (left), ∂c/∂x1 (middle), ∂c/∂x2 (right) at t = 2.5 for
Problem 2

Problem 2: Next, we suppose that the time variation function is (see Figure 7)

f (t) = 0.2t

Figure 8 and Table 3 show the accuracy of the BEM solutions. The errors occur in the
fourth decimal place for the c and the derivatives ∂c/∂x1 and ∂c/∂x2 solutions. Figure 9 shows
the consistency between the scattering and the flow solutions. Figure 10 shows that the solution
c changes with time t in a manner which is almost similar to as the function f (t) = 0.2t does
(see Figure 7), as expected.

Problem 3: Now, we suppose that the time variation function is (see Figure 11)
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Figure 9: Solutions c and (∂c/∂x1, ∂c/∂x2) at t = 2.5 for Problem 2
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Table 3: A comparison between numerical and analytical solutions at the centre point
(0.5, 0.5) for Problem 2

t
Numerical solution Analytical solution

c ∂c
∂x1

∂c
∂x2

c ∂c
∂x1

∂c
∂x2

0.0005 0.0001 0.0000 -0.0000 0.0001 0.0000 -0.0000

0.5 0.0859 0.0129 -0.0430 0.0859 0.0129 -0.0430

1.0 0.1719 0.0258 -0.0859 0.1718 0.0258 -0.0859

1.5 0.2578 0.0387 -0.1289 0.2578 0.0387 -0.1289

2.0 0.3438 0.0516 -0.1718 0.3437 0.0516 -0.1718

2.5 0.4297 0.0645 -0.2148 0.4296 0.0644 -0.2148

3.0 0.5157 0.0773 -0.2578 0.5155 0.0773 -0.2578

3.5 0.6016 0.0902 -0.3007 0.6015 0.0902 -0.3007

4.0 0.6875 0.1031 -0.3437 0.6874 0.1031 -0.3437

4.5 0.7735 0.1160 -0.3866 0.7733 0.1160 -0.3866

5.0 0.8594 0.1289 -0.4296 0.8592 0.1289 -0.4296

 0
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 0.5

 0.6

 0.7
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BEM at (0.3,0.3)
BEM at (0.5,0.5)
BEM at (0.7,0.7)

Figure 10: Solutions c for Problem 2



DC equation of variable coefficients 13

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5

f

t
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Figure 11: Function f (t) for Problem 3

Figure 12: The errors of solutions c (left), ∂c/∂x1 (middle), ∂c/∂x2 (right) at t = 2.5 for
Problem 3

f (t) = t (5− t) /6.25

Figure 12 and Table 4 show the accuracy of the BEM solutions. Again, the errors occur in
the fourth decimal place for the c and the derivatives ∂c/∂x1 and ∂c/∂x2 solutions. Figure 13
shows the consistency between the scattering and the flow solutions which again verifies that the
solutions for the derivatives had also been computed correctly. Figure 14 shows that the solution
c changes with time t in a similar way the function f (t) = t (5− t) /6.25 does.
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Figure 13: Solutions c and (∂c/∂x1, ∂c/∂x2) at t = 2.5 for Problem 3
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Table 4: A comparison between numerical and analytical solutions at the centre point
(0.5, 0.5) for Problem 3

t
Numerical solution Analytical solution

c ∂c
∂x1

∂c
∂x2

c ∂c
∂x1

∂c
∂x2

0.0005 0.0003 0.0001 -0.0002 0.0003 0.0001 -0.0002

0.5 0.3094 0.0464 -0.1547 0.3093 0.0464 -0.1547

1.0 0.5500 0.0825 -0.2749 0.5499 0.0825 -0.2750

1.5 0.7219 0.1083 -0.3609 0.7217 0.1083 -0.3609

2.0 0.8251 0.1238 -0.4124 0.8249 0.1237 -0.4124

2.5 0.8595 0.1289 -0.4296 0.8592 0.1289 -0.4296

3.0 0.8252 0.1238 -0.4124 0.8249 0.1237 -0.4124

3.5 0.7221 0.1083 -0.3609 0.7217 0.1083 -0.3609

4.0 0.5502 0.0825 -0.2750 0.5499 0.0825 -0.2750

4.5 0.3096 0.0464 -0.1548 0.3093 0.0464 -0.1547

5.0 0.0003 0.0000 -0.0002 0.0000 0.0000 -0.0000
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Figure 14: Solutions c for Problem 3
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4.2 Examples without analytical solutions

Furthermore, we will show the impact of the anisotropy and the inhomogeneity of the material
under consideration on the solutions. We choose

v̂i = (0.7, 0.5) α̂ = 1

Problem 4: For this problem the medium is supposed to be inhomogeneous or homogeneous,
anisotropic or isotropic with grading function g(x), constant coefficients d̂ij and corresponding λ
satisfying (3.5) and (3.6) as respectively follows:

• inhomogeneous and anisotropic case

g1/2(x) = 0.357 exp (1− 0.25x1 + 0.35x2)

d̂ij =

[
1 0.15

0.15 0.45

]
λ = 0.091375

• inhomogeneous and isotropic case

g1/2(x) = 0.357 exp (1− 0.25x1 + 0.35x2)

d̂ij =

[
1 0
0 1

]
λ = 0.185

• homogeneous and isotropic case

g1/2(x) = 1

d̂ij =

[
1 0
0 1

]
λ = 0

• homogeneous and anisotropic case

g1/2(x) = 1

d̂ij =

[
1 0.15

0.15 0.45

]
λ = 0

The boundary conditions are that (see Figure 1)

P = 0 on side AB
c = 0 on side BC
P = 0 on side CD
P = 1 on side AD

There is no simple analytical solution for the problem. The results in Figure 15 show that the
solutions c at point (0.5, 0.1) coincide with the solutions at (0.5, 0.9) only when the material is
isotropic homogeneous. This is to be expected as the system is in fact geometrically symmetric
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Figure 15: Symmetry of solutions c about x2 = 0.5 for Problem 4
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Figure 16: Solutions c at (x1, x2) = (0.5, 0.5) for Problem 4

about the axis x2 = 0.5 if the material is isotropic homogeneous. Otherwise, if the material
is anisotropic or inhomogeneous, the solutions c at point (0.5, 0.1) do not coincide with the
solutions at (0.5, 0.9). This indicates that anisotropy and inhomogeneity give impact to the
values of solution c for being asymmetric about x2 = 0.5. Furthermore, the results in Figure 16
also indicate the impact of the anisotropy and inhomogeneity of the material. The values of c
differ for each type of anisotropy and inhomogeneity.

Problem 5: We consider the inhomogeneous and anisotropic case of Problem 4 again. But
we change slightly the set of the boundary conditions of Problem 4 especially on the side AD.
Now we use three cases of the boundary condition on the side AD, namely

P = 1− exp (−1.5t) on side AD
P = 0.2t on side AD
P = t (5− t) /6.25 on side AD

The results in Figure 17 are expected. The trends of the solutions c mimics the trends of
the exponential function 1 − exp (−1.5t), the linear function 0.2t and the quadratic function
t (5− t) /6.25 of the boundary condition on side AD. Specifically, for the exponential function
1 − exp (−1.5t), as time t goes to infinity, values of this function go to 1. So for big value of t,
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Figure 17: Solutions c at (x1, x2) = (0.5, 0.5) for Problem 5

Problem 5 is similar to Problem 4 of the anisotropic inhomogeneous case. And the two plots of
solutions c for Problem 4 and Problem 5 in Figure 17 verifies this, they approach a same steady
state solution as t gets bigger.

5 Conclusion

A mixed Laplace transform and standard BEM has been used to find numerical solutions to initial
boundary value problems for anisotropic functionally graded materials which are governed by the
diffusion-convection equation (1.1) of incompressible flow. The method is easy to be implemented
and involves a time variable free fundamental solution therefore it gives more accurate solutions.
It does not generate round errors as it solves the boundary integral equation (3.18) independently
for each specific value of t at which the solution is computed. Unlikely, the methods with time
variable fundamental solution may produce less accurate solutions as the fundamental solution
sometimes contain time singular points and also solution for the next time step is based on the
solution of the previous time step so that the round error may propagate.

The numerical method has been applied to exponentially graded materials. As the coeffi-
cients dij (x) , vi (x) , α (x) do depend on the spatial variable x only and on the same inhomo-
geneity or grading function g(x), it will be good to extend the study in the future to the case
when the coefficients depend on different grading functions varying also with the time variable t.

In order to use the boundary integral equation (3.18), the values c (x, t) or P (x, t) of the
boundary conditions as stated in Section (2) of the original system in time variable t have to be
Laplace transformed first. This means that from the beginning when we set up a problem, we
actually put a set of approximating boundary conditions. Therefore it is really important to find
a very accurate technique of numerical Laplace transform inversion.
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