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MULTIVARIATE HARDY-TYPE INEQUALITIES

Z. HANJS, C. E. M. PEARCE AND J. PECARIC

Abstract. We present transparent proofs for some multivariate versions of both continuous and
discrete Hardy-type inequalities. Our theorems subsume several known results and simplify the
proofs of existing results.

1. Introduction
In 1920, Hardy [2] proved the following theorem.

Theorem A. Ifp>1, f(z) >0 for 0 <z < oo and G(z) =x~* [ f(t)dt, then

/Ooo P (2)da < (ﬁ)p/om PP )de

unless f = 0. The multiplicative constant is best-possible.
In the same article, Hardy also established a discretized form of this result.

Theorem B. Ifp > 1, a, >0 and A, =Y, a;(n > 1), then

2 (%) < (%) 2

unless each a,, = 0. The constant is best-possible.

In the case of Theorem B, he was unable to fix the multiplicative constant. This was

rectified by Landau [6].

These relations have since been the object of sustained study and have undergone
extensive generalization and found numerous applications. For comprehensive reviews of
developments see the monograph of Opic and Kufner [9] and Chapter 4 of the monograph
of Mitrinovi¢, Pecari¢ and Fink [8]. An important early contribution was made by Copson

[1], who established the following generalization of Theorem B.
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Theorem C. Suppose p > 1, A\, >0, A, = Z?:l Ai, an > 0 and A, = 2?21 i@
(n>1). If Y07 | Apal, converges, then

o (2 < B
n=1 n=1

The constant is best-possible.

This reduces to Theorem B when the constants \,, assume a common value. In 1928
Hardy [3] provided a generalization of Theorem A.

Theorem D. Suppose p > 1, m # 1, f(z) > 0 and F(x) is defined by

[T fyat,  m>1,
F(z) = {fZ‘X’ Fft)dt, m<1,

00 i P p oS} i
/Oac Fp(ac)da:<{|m1|}/0 P fP(x)dx

unless f = 0. The constant is best-possible.

This reduces to Theorem A for m = p.

A recent extension of Hardy’s discrete inequality in the direction given by Copson in
Theorem C is the following result of Hwang and Yang [5].

Then

Theorem E. Suppose p > 1, 3, >0, A, >0, a, >0 (n > 1) and that >~ ; \,aP,
converges. Define Ay, =Y 1| Bidi and A, = Y1 Bidia; (n > 1). If there exists K > 0

such that
po 12 Pt = Bu)hn o p
6n+16n>\n K

then
oo A D oo
S () <X
n=1 n=1

This has led to generalizations by Hwang [4] to discrete inequalities of Hardy type
involving multiple variables. For earlier work on discrete Hardy-type inequalities see
Pachpatte [10]. The proofs involved are relatively complicated. Yang and Jean [14] and
Pachpatte [13] have given several two-variable versions and Pachpatte [11-12] multivariate
versions of the continuous Hardy inequality, again via fairly involved proofs.

Our aim in this paper is to provide transparent treatments of multivariate inequalities
of Hardy type both for the discrete and for the continuous case. In Section 2 we show that
several results for the continuous case may be derived directly from known univariate
results obtained by Lee and Yang [4]. Our results subsume those of [11] and [14]. In
section 3 we give a parallel analysis for the discrete case. Our results generalize [10,
Theorem 1] and provide a simpler proof for the main result of [4].
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2. Continuous Multivariate Inequalities
Our derivation is based on the following results derived by Lee and Yang.

Theorem 2.1. Suppose p > 1 and f(x) > 0 and that r(x) > 0 is absolutely con-
tinuous for x > 0. Define R(z) = fox r(t)dt. If m > 1 and there is a A > 0 such
that

R(z)r'(z)  (p—m)R(x)

R i > 8 (2.1)

for almost all x > 0, then

/OOO LP—m (R(lx) /Of r(s)f(s)d8>pdx < AP /OOO P fP (1) d. (2.2)

Theorem 2.2. Letp, f, r be as in Theorem 2.1 and define G(x)= #(x) Jo r@) f(t)dt.
If m > 1 and there is a A > 0 such that

m—1 ar'(z)

for almost all x > 0, then
/ PGP (x)dr < )\p/ P fP(x)da.
0 0

Theorem 2.3. Let p, f, r be as in Theorem 2.1, a > 1 and R(z) = f;o r(t)dt. If
m < 1 and there is a A > 0 such that
(m+ap—p)R(x) R(z)r'(z)

p—1- ar(x) B r2(x) =

for almost all x > 0, then

/000 ZP—op—m <R(1x) /:o to‘r(t)f(t)dt>pd:c < \P /Ooo 2P~ P (1) dx.

Theorem 2.4. Letp, o, f, r be as in Theorem 2.3 and G(z)= [ t*r(t)dt/{z*r(z)}.
If m <1 and there is a A > 0 such that

1—-m ar'(z)

for almost all > 0, then

/ :c_mGp(:c)dzvg)\p/ P P (x)d.
0 0
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We now proceed to multivariate versions of these four theorems. First we consider a
generalization of Theorem 2.1. This subsumes the main theorem of Pachpatte [11] under
the case m = p.

Theorem 2.5. Let p > 1 and f be a nonnegative integrable function defined on the

positive orthant {(x1,...,x,) :2; > 0,i=1,...,n}. Suppose ri(i =1,...,n) is positive
and absolutely continuous on (0,00) and define R;(x;) = [, ri(t)dt. If m; > 1 and there
exist constants A; >0 (i = 1,...,n) such that
Ri(zi)ri(w; —my) R (x
p—1 (3521)7“1(351) _ (p — mi)Ri(;) > ya (2.3)
’I“Z- (.ﬁl) €XT;r; (.ﬁl) )\i

for all z; € (0,00) (i =1,...,n), then
- / (Hac )Hpacl,...,xn)dxl---da:n
0
i 7" P (e, an)day - dag, (2.4)
0] [ (e e

H(zy,...,2p) = /01‘1 ---/O% {izl T]%(igzi}f(sl,...,sn)dsl---dsn

where

Proof. We proceed via mathematical induction. First note that the standing condi-
tion (2.3) for n = k + 1 subsumes that for n = k. A basis is provided by Theorem 2.1,
which provides the result for n = 1. For the inductive step, suppose (2.4) holds for n = k
and conditions (2.3) for n = k + 1. Since the integrand is nonnegative, Fubini’s theorem
applies and we may arrange the left-hand side of (2.4) for n =k + 1 as

[t [ (@)
[/ / { xzm _))}F(sl""’sk)dsl"'dsklpdm"'dxk}dmk“’ (2.5)

where x1 is regarded as a parameter in the function

Tr+41
F(s1,...,8) := / Tr1(Sk+1) (815 -, Sk, Skt1)dSk41-
0

By the inductive hypothesis, the expression inside the outer braces in (2.5) is bounded

above by
k 00 oo [ k
<H)\f>/ / <fo_ml> FP(xy,...,z)dxy - - - day,
i=1 0 0 i=1
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and so the left-hand side of (2.4) for n = k 4 1 is bounded above by

)\f / e / xf—mq, / xp—mk+1 {7
<£[1 ) 0 0 <£[1 ) o Riy1(zrs1)

Th41 p
X / Trt1(Sk+1) f (21, ... 2k, 5k+1)dsk+1} drgyi1dey -« - dxg.
0

By Theorem 2.1, this in turn is bounded above by

k LS o/ k .
<H>\z> / . / <H£Efml> )\£+1/ Zi;gnml P21, ..., 2, Ty 1) dzp 1 dey - - - day
i=1 0 0 =1 o
kt1 P oo oo [k+1
<H >\’L> / ~~~/ <H xfrn%) fp(l'l,...,l'kJrl)dxl...dkarl’
i=1 0 0 i

and the inductive step is established.
Exactly similar reasoning may be used to establish the three following theorems from
Theorems 2.2, 2.3 and 2.4.

Theorem 2.6. Letp, f,r; (i=1,...,n) be as in Theorem 2.5. If m; > 1 and there
exist \; >0 (i =1,...,n) such that

m; — 1 xirl(x;) 1 .
L > —, forallz; € (0,00) (¢t =1,...,n),
D ri(zs) TN f ( ) )
then
/ / H:Ei_ml HP(zy,...,2,)dxy -+ - dzy
0 0 \i=1
n p o0 o0 n
< H)" / / H p—m; fP(z1, ... zp)dey - - - day,
i=1 0 0 i=1
where

Theorem 2.7. Letp, f,r; (i=1,...,n) be as in Theorem 2.5, a; > 1 and R;(x;) =
f;o ri(si)ds; (i = 1,...,n). Suppose further that m; < 1 and there exist constants \;
(t=1,...,n) such that

) f(s1,...,8,)dsy - dsp.

o, (mitaip—p)Ri(zi)  Riwi)ri(z)
Pt ;7 (74) 73 () &
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for all x; € (0,00) (i=1,...,n). Then

where
e (L a5 Yy (s;)
H(:L',...,:L’n):/ / ST T ) f(s1y e, 8n)dsy - dsy.
! T Ty E RZ(:L'Z) ! '

Theorem 2.8. Let p, «;, f, 7 (i=1,...,n) be as in Theorem 2.7. Suppose m; < 1
and there exist N\; (i =1,...,n) such that

L—mi i (i 1 '
pm B xrjéfj)) —y > N for all x; € (0,00) (i=1,...,n).
Then
o0 o0 n
/ / Hx;Wh Hp(xl,...,l‘n)dxl...dmn
0 0 \i=1
n p 50 oo n
§ ]:[>\z / / fo7m1 fp(zla"'axn)dxl"'dl‘n7
i=1 0 0 i1
where

Lly-oyTp) = ” . - 1’?17"2(1'1) S1y...,8n)AS1 Sn-

7

For n = 2, Theorems 2.5-2.8 extend the two-variable results of Yang and Jean [14].

3. Discrete Multivariate Inequalities
For use in the sequel we define B, C Z'} by
B, :={z=(x1,...,2,) 1 € Z4}.
Similarly for € B,, we define
Co(z) ={y=(y1,- - Yn) ;Y E Bn, yi <zi(i=1,...,n)}

For a function u : B,, — R it is convenient to introduce the shorthand

Douly) =Y D> w(n,yas- 5 yn)

B, y1=1 Yn=1
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and
Z1 Tn
Z u(y) = Z T Z u(ylay27" 7yn)
Chn () y1i=1  yn=1
We are now in a position to state a discrete multivariate Hardy-type inequality given
by Pachpatte [10].

Theorem 3.1. Suppose p > 0 is a constant, f(x) > 0 for x € B,, and A,(x) =
>oc, () f(@) for x € By. Then

2 A[[—(? : (%);f@s)

Equality holds if f(x) =0 for all x; (i=1,2,...,n).

We provide a simple proof of the following extension of Theorem C. Theorem 3.1
occurs as the special case A;(z;) = 1.

Theorem 3.2. Let p > 1, a(x) > 0 and A\;(x;) >0 forz; > 1 (i=1,2,...,n). We
define Ni(z) = >0 Ni(y;) fori=1,2,...,n and

Ap(z) = Z {H)\i(yi)}a(y) r € B,.
Chp(z) \i=1
Suppose ZBn [Ti, Ni(zs)aP(x) converges for z € B,,. Then
T | { =A@V (2 NS (T ) ab(a
Bz(gn ») (=)= (5) ) (EM ») @ (6

Proof. We employ induction. Theorem C gives the result for n = 1, supplying a
basis. Let (3.1) be true for n = k, that is, let

p

k kp k
z(nw») b < () Z(_sz(xi))ap(:c). (32)

B, \i=1 T Ailas) By
i=1

For n = k + 1, the left-hand side of (3.1) is

b > Ak (2)
ST GE) ) D Aesa(@ria)

By \i= Tr1=1 Apy1(2py1)
i

Dt
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Th41 k P
K > 1>\k+1(yk+1) ch(x)(l_[ Ai(yi))aly)
= i{ N1 (1) § = —
>(Oatm) =, e
By Theorem C, the expression in braces is dominated by
P
» \?
(ﬁ) Z (HA Yi ) yla"'aykaszrl)
Cr(z)
Hence the left-hand side of (3.1) is dominated by

P

(pil)p i M1 (1) )

Tr41=1 By,

k ch(z)(_ﬁ Ni(yi))a(ys, -, Yk, Terr)
=

By the inductive hypothesis (3.2), this in turn is dominated by

(pil) Z Net1(Th1) (p—) Z(H)\ xl> (1, Thy Tht1)

Tr4+1= 1

» (k+1), k+1
(5) % (HA ) P )
p Bk+1 1=1

Hence we have the desired result for n = k + 1, as required.
To conclude, we give a simple proof of the following result of Hwang [4], which
generalizes Theorem E.

Theorem 3.3. Let p > 1, a(z) > 0, Bi(xz;) > 0, A\i(z;) > 0 for x;
1,2,...,n). Define Ai(x) = 320", Bi(yi)Ni(yi) fori = 1,2,...,n and A(z)
{ITizy Bi(wi)Mi(yi)Yaly) for @ € Bn. Further, suppose Y Ty Ai(wi)aP(x) converges
for x € B,,. If there exist constants K; > 0 such that

[Bi(zi + 1) — Bi(x:)] i) >

p
p-l+ Bi(xi + DBi(zNi(z)  — Ki (3:3)
forxz; > 1(i=1,2,...,n), then
By \i=1 IT Ai(z:) i=1 Bn \i=1
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Equality holds in (3.5) if a(x) =0 for all z;(i =1,2,...,n).

Proof. We give a proof by induction. A basis is supplied for n = 1 by Theorem E.
For the inductive step, suppose the theorem to be true for n = k while the conditions
hold for n =k + 1.

For n = k + 1, the left-hand side of (3.5) can be written as

Thk+1

> Brrr(Unt1) 2o (

b )\1(.%1) > Yr4+1=1 i
Z(H Af(xﬁ) Y Aesa(@i) A o)

By, \i=1 Tpp1=1

Bi(yi) i (yi))a(y)

D=

By Theorem E, the expression in braces is less than or equal to

k
ZKI€+1 Z (Hﬂz(%)&(%)) a(Y1s- - Yks Tht1)
By,

Ci(x) \i=1

Hence the left-hand side of (3.5) is less than or equal to

Cr(x) \i=1

00 k > (ﬁ ﬂi(yi))\i(yi)> a(yi,- s Yrs Thoy1)
Kiy Y )\k+1(fﬂk+1)z<n)\i($i)> :

Tpy1=1 By =1

)
D=t

By the inductive hypothesis, this is less than or equal to

00 k p k
K]I;Jrl Z )\k+1(xk+1) <H Kz) Z (H )\Z(I’L)> ap(xl, e ,xk,ka)

Try1=1 By, i=1
k41 p k41
= (H Kz) Z (H )\Z(Zz)> ap(:cl,...,karl)
i=1 Br41 \i=1

and the proof is complete.
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