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Abstract. The present research article is concerned about a couple of optimal in-

equalities for submanifolds of δ-Lorentzian trans-Sasakian manifolds endowed with

semi-symmetric metric connection (briefly says SSM). Some examples of δ-Lorentzian

trans-Sasakiam manifolds are also discussed here. This paper ends with some open

problems.
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1 Introduction

The theory of differentiable manifolds with Lorentzian metric is an interesting topic in differential
geometry. Matsumoto [17] popularized the knowledge of Lorentzian para-contact manifolds. In
[8] CR-Submanifolds of trans Lorentzian para Sasakian manifolds have been investigated by Gill
and Dubey. In [23], Pujar and Khairnar have discussed some axioms of the Lorentzian trans-
Sasakian manifolds and studied the some basic results. In fact, if M̄ has a Lorentzian metric g,
that is a symmetric non-degenerate (0, 2) tensor field of index 1, then M̄ is known as a Lorentzian
manifold. Since the Lorentzian metric is of index 1, Lorentzian manifold M̄ has exhibits three
kind of vector fields

1. spacelike vector fields,

2. timelike vector fields, and

3. lightlike vector fields.

This is the major difference with the Riemannian case gives interesting properties on the
Lorentzian manifold. A differentiable manifold M̄ has a Lorentzian metric if and only if M̄
has a 1- dimensional distribution. Both odd and even dimensional manifolds are able to have
a Lorentzian metric. Motivated by the above researches and remarks Bhati [1] developed the
conception of δ-Lorentzian trans-Sasakian manifolds. Follow by Siddiqi et al. [12] who studied
the contact CR-submanifold of a δ-Lorentzian trans-Sasakian manifold.
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Friedmann and Schouten [7] came up with the central idea of semi-symmetric linear connec-
tion on a differentiable manifold in 1924. Later on, Bartolotti [2] gave a geometrical meaning of
such a connection and then Hayden [10] devolved the discourse of semi-symmetric metric con-
nection. In [29], Yano further enhanced the systematic study of this connection on a Riemannian
manifold. Therefore, several geometers studied this connection on different manifolds and ob-
tained very interesting results (for example, [11], [13], [22], [24], [25]).

Let ∇ be a linear connection in an m-dimensional differentiable manifold M̄. The torsion
tensor T and the curvature tensor R of ∇ are given respectively by

T (E,F ) = ∇EF −∇FE − [E,F ],

and

R(E,F )G = ∇E∇FG−∇F∇EG−∇[E,F ]G,

for any E,F,G ∈ TxM̄, x ∈ M̄.

1. The connection ∇ is said to be symmetric if its torsion tensor T vanishes, otherwise it is
non-symmetric.

2. The connection ∇ is said to be metric connection if there is a Riemannian metric g in M̄
such that ∇g = 0, otherwise it is non-metric.

3. A linear connection ∇ is said to be semi-symmetric connection if its torsion tensor T is of
the form:

T (E,F ) = u(F )E − u(E)F,

where u is a 1-form.

Remark 1. It is well known that a linear connection is symmetric and metric if it is the Levi-
Civita connection.

The Casorati curvature C of an n-dimensional submanifold M of a Riemannian manifold M̄
is an extrinsic invariant defined as the normalized square of the length of the second fundamental
form h of the submanifold M. In the spirit of δ-invariants, Decu et al. [6] introduced the

normalized δ
′
-Casorati curvatures δ

′

C(n− 1) and δ̂
′

C(n− 1) in 2007 by

[δ
′

C(n− 1)]x =
1

2
Cx +

n+ 1

2n
inf{C(L)|L a hyperplane of TxM}, (1.1)

and

[δ̂
′

C(n− 1)]x = 2Cx −
2n− 1

2n
sup{C(L)|L a hyperplane of TxM}, (1.2)

where x ∈ M, and proved some inequalities involving these δ
′
-invariants for submanifolds in

real space forms endowed with semi-symmetric metric connections. Since then many researchers
obtained such inequalities for different submanifolds in different ambient spaces (for more details,
see [5] and references therein). In this article, we will establish the inequalities in terms of
δ
′

C(n−1) for submanifolds of δ-Lorentzian trans-Sasakian manifold with a semi-symmetric metric
connection.
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2 Preliminaries

Let M̄ be a δ-almost contact metric manifold equipped with δ-almost contact metric structure
(φ, ξ, η, g, δ) consisting of a (1, 1) tensor field φ, a vector field ξ, a 1-form η and an indefinite
metric g such that

φ2 = E + η(E)ξ, η ◦ φ = 0, φξ = 0, (2.1)

η(ξ) = −1, (2.2)

g(ξ, ξ) = −δ, (2.3)

η(E) = δg(E, ξ), (2.4)

and
g(φE, φF ) = g(E,F ) + δη(E)η(F ), (2.5)

for any E,F ∈ TxM̄, x ∈ M̄, where δ is such that δ2 = 1 so that δ = ±1. The above structure
(φ, ξ, η, g, δ) on M̄ is called the δ Lorentzian structure on M̄. If δ = 1 and this is usual Lorentzian
structure [1] on M̄, the vector field ξ is the time like [17], that is M̄ contains a time like vector
field. If δ = −1, then M̄ is NOT a Lorentzian manifold but a Riemannian one.

Tanno gave the complete classification of connected almost contact metric manifold in [28].
For such a manifold, the sectional curvature of the plane section containing ξ is constant, say
c. Then Tanno proved that they can be divided into three classes: homogeneous normal contact
Riemannian manifolds with c > 0 and other two classes can be observed in [28].

On the other hand, in the classification of almost Hermitian manifolds, there develop a class
W4 of Hermitian manifolds which is merely related to the conformal Kaehler manifolds [9]. The
class C6 ⊕C5 consist the structure namely trans-Sasakian of type (α, β) (see [16]) and this class
completely explains the characteristics of trans-Sasakian structures.

Now, suppose an almost contact metric structure [4] on M̄ and a product manifold M =
M̄ × R with the product metric G on M. Then M̄ is called a trans-Sasakian [21] if (M, J,G)
belongs to the class W4, where J is the almost complex structure on M defined by

J

(
E,ψ

d

dt

)
=

(
φ(E)− ψξ, η(E)

d

dt

)
,

for any E ∈ TxM̄, x ∈ M̄ and smooth functions ψ on M.

This may be expressed by the following condition:

(∇Eφ)F = α(g(E,F )ξ − η(F )E) + β(g(φE,F )ξ − η(F )φE), (2.6)

for any E,F ∈ TxM̄, ∇ denotes the Levi-Civita connection with respect to g, α and β are smooth
functions on M̄.

With the above literature, we recall the δ-Lorentzian trans-Sasakian manifolds [1] as follows.
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Definition 1. A δ-Lorentzian manifold with structure (φ, ξ, η, g, δ) is said to be δ-Lorentzian
trans-Sasakian manifold of type (α, β) if it satisfies the condition

(∇Eφ)F = α(g(E,F )ξ − δη(F )E) + β(g(φE,F )ξ − δη(F )φE), (2.7)

for any E,F ∈ TxM̄.

1. If δ = 1, then the δ-Lorentzian trans-Sasakian manifold is the usual Lorentzian trans-
Sasakian manifold of type (α, β) [21].

2. δ-Lorentzian trans-Sasakian manifold of type (0, 0), (0, β) (α, 0) are respectively known
as Lorentzian cosymplectic manifold, Lorentzian β-Kenmotsu manifold and Lorentzian α-
Sasakian manifold.

3. If α = 1, β = 0 and α = 0, β = 1, the δ-Lorentzian trans-Sasakian manifold become
δ-Lorentzian Sasakian and δ-Lorentzian Kenmotsu manifolds respectively.

Also, we have

∇Eξ = δ {−αφ(E)− β(E + η(E)ξ} , (2.8)

and

(∇Eη)F = αg(φE,F ) + β[g(E,F ) + δη(E)η(F )]. (2.9)

In a δ-Lorentzian trans-Sasakian manifold M̄, we have the following relations:

R(E,F )ξ = (α2 + β2)[η(F )E − η(E)F ] + 2αβ[η(F )φE − η(E)φF ] (2.10)

+δ[(Fα)φE − (Eα)φF + (Y β)φ2E − (Eβ)φ2F ],

R(ξ, F )E = (α2 + β2)[δg(E,F )ξ − η(E)F ] (2.11)

+δ(Eα)φF + δg(φE,F )(gradα)

+δ(Eβ)(F + η(F )ξ)− δg(φF, φE))(gradβ)

+2αβ[δg(φE,F )ξ + η(E)φF ],

η(R(E,F )G) = δ(α2 + β2)[η(E)g(F,G)− η(F )g(E,G) (2.12)

+2δαβ[−η(E)g(φF,G) + η(F )g(φE,G)]

−[(Fα)g(φE,G) + (Eα)g(F, φG)]

−(Fβ)g(φ2E,G) + (Eβ)g(φ2F,G)], (2.13)

Ric(E, ξ) = [(m− 1)(α2 + β2)− (ξβ)]η(E) (2.14)

+δ((φE)α) + (m− 2)δ(Eβ),

Ric(ξ, ξ) = (m− 1)(α2 + β2)− δ(m− 1)(ξβ), (2.15)
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where R is Riemannian curvature tensor and Ric is the Ricci curvature tensor with respect to ∇.

Furthermore in an δ-Lorentzian trans-Sasakian manifold, we have

δφ(gradα) = δ(m− 2)(gradβ), (2.16)

and
2αβ − δ(ξα) = 0. (2.17)

The ξ-sectional curvature Kξ of M̄ is the sectional curvature of the plane spanned by ξ and
a unit vector field E. From (2.11), we have

Kξ = g(R(ξ, E), ξ, E) = (α2 + β2)− δ(ξβ). (2.18)

It follows from (2.17) that ξ-sectional curvature does not depend on E. From (2.11), we have

g(R(ξ, F )G, ξ) = [(α2 + β2)− δ(ξβ)]g(F,G) (2.19)

+[(ξβ)− δ(α2 + β2)]η(F )η(G)

+[2αβ + δ(δα)]g(φF,G).

Semi-symmetric metric connections (SSM) play an important role in the study of Rieman-
nian manifolds. There are various physical problems involving the SSM connection. For example,
during the mathematical congress in Moscow in 1934, one evening mathematicians invented the
Moscow displacement. The streets of Moscow are approximately straight lines through the Krem-
lin and concentric circles around it. If a person walks in the street always facing the Kremlin,
then this displacement is semi-symmetric and metric [7].

An affine connection ∇̄ on Riemannian manifold M̄ is called semi-symmetric connection [7],
if torsion tensor T̄ satisfies

T̄ (E,F ) = ∇̄EF − ∇̄EF − [E,F ], (2.20)

and
T̄ (E,F ) = η(E)F − η(F )E. (2.21)

Moreover, a semi-symmetric connection is called semi-symmetric metric connection (SSM)
if

(∇̄g)(E,F ) = 0. (2.22)

If ∇ is Levi-Civita connection and ∇̄ is the semi-symmetric metric connection with non-
vanishing torsion tensor T in M̄, then we have

T (E,F ) = η(F )E − η(E)F, (2.23)

∇̄EF −∇EF =
1

2
[T (E,F ) + T

′
(E,F ) + T

′
(E,F )], (2.24)

where
g(T (G,E), F ) = g(T

′
(E,F ), G). (2.25)

By using (2.4), (2.22) and (2.23), we get

g(T
′
(E,F ), G) = g(η(E)G− η(G)E,F ),



390 A. N. Siddiqui, M. D. Siddiqi and M. H. Shahid

g(T
′
(E,F ), G) = η(E)g(G,F )− δg(E,F )g(ξ,G),

T
′
(E,F ) = η(E)F − δg(E,F )ξ,

T
′
(F,E) = η(F )E − δg(E,F )ξ. (2.26)

From (2.21), (2.22),(2.24) and (2.25), we get

∇̄EF = ∇EF + η(F )E − δg(E,F )ξ. (2.27)

Let M̄ be an m-dimensional δ-Lorentzian trans-Sasakian manifold and ∇ be the metric
connection on M̄. The relation between the semi-symmetric metric connection ∇̄ and the metric
connection ∇ on M̄ is given by (2.27).

3 Estimation of curvatures on δ-Lorentzian trans-Sasakian
manifold with a SSM connection

Let M̄ be an m-dimensional δ-Lorentzian trans-Sasakian manifold. The curvature tensor R̄ of
M̄ with respect to the SSM connection ∇̄ is defined by

R̄(E,F )G = ∇̄E∇̄FG− ∇̄F ∇̄EG− ∇̄[E,F ]G. (3.1)

By using (2.1), (2.4), (2.27) and (3.1), we get

R̄(E,F )G = R(E,F )G+ (δ)[g(E,G)F − g(F,G)E] (3.2)

+(β + δ)[g(F,G)η(E)− g(E,G)η(F )]ξ

−(βδ − 1)[η(F )E − η(E)F ]η(G),

+α[g(φE,G)F − g(φF,G)φE − g(E,G)φF + g(F,G)φE].

Lemma 3.1. Let M̄ be an m-dimensional δ-Lorentzian trans-Sasakian manifold with a SSM
connection, then

(∇̄Eφ)(F ) = αg(φE,F )ξ − δη(F )E + β(g(φE,F )ξ − (δβ + δ)η(F )φE, (3.3)

∇̄Eξ = −(1 + δβ)E − (1 + δβ)η(E)ξ − δαφE, (3.4)

(∇̄Eη)F = αg(φE,F )ξ + (β + δ)g(E,F )− (1 + βδ)η(E)η(F ). (3.5)
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Proof. By the covariant differentiation of φF with respect to E, we have

∇̄EφF = (∇̄Eφ) + φ(∇̄EF ).

By using (2.1) and (2.26), we have

(∇̄Eφ)F = (∇Eφ)F − η(F )φE.

In view of (2.8), the last equation gives

(∇̄Eφ)(F ) = α(g(φE,F )ξ − δη(F )E + β(g(φE,F )ξ − (δβ + δ)η(F )φE.

To prove (3.4), we replace F = ξ in (2.26) and we have

∇̄Eξ = ∇Eξ + η(ξ)E − δg(E, ξ)ξ.

By using (2.2), (2.4) and (2.9), the above equation gives

∇̄Eξ = −(1 + δβ)E − (1 + δβ)η(E)ξ − δαφE.

In order to prove (3.5), we differentiate η(F ) covariantly with respect to E and using (2.26),
we have

∇̄Eη(Y ) = (∇Eη)F + g(E,F )− η(E)η(F ).

Using (2.10) in above equation, we get

(∇̄Eη)F = αg(φE,F )ξ + (β + δ)g(E,F )− (1 + βδ)η(E)η(F ).

Lemma 3.2. Let M̄ be an m-dimensional δ-Lorentzian trans-Sasakian manifold with a SSM
connection, then

R̄(E,F )ξ = (α2 + β2 − δβ)[η(E)F − η(F )E]. (3.6)

+(2αβ + δα)[η(F )φE − η(E)φF ]

+δ[(Fα)φE − (Eα)φF − (Eβ)φ2F + (Fβ)φ2E].

Proof. By replacing G = ξ in (3.2), we have

R̄(E,F )ξ = R(E,F )ξ + (δ)[g(E, ξ)F − g(F, ξ)E]

+(β + δ)[g(F, ξ)η(E)− g(E, ξ)η(F )]ξ

−(βδ − 1)[η(F )E − η(E)F ]η(ξ)

+α[g(φE, ξ)F − g(φF, ξ)φE − g(E, ξ)φF + g(F, ξ)φE]

In view of (2.2), (2.4) and (2.10), the above equation reduces to

R̄(E,F )ξ = (α2 + β2 − δβ)[η(E)F − η(F )E]
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+(2αβ + δα)[η(F )φE − η(E)φF ]

+δ[(Fα)φE − (Eα)φF − (Eβ)φ2F + (Fβ)φ2E].

Remark 2. Replace F = ξ and using (3.2), (2.11), (2.2) and (2.4), we find

R̄(E, ξ)ξ = (α2 + β2 − δβ)[−E − η(E)F ] (3.7)

+(2αβ + δα+ δ(ξα))[φE + δ(ξβ)φ2F ].

Remark 3. Now, again replace E = ξ in (3.6), using (2.1), (2.2) and (2.4), we find

R̄(ξ, F )ξ = (α2 + β2 − δβ)[−η(F )ξ − F ] (3.8)

−(2αβ + δα+ δ(ξα))[φF − δ(ξβ)φ2F ].

Remark 4. Replace F = E in (3.8), we get

R̄(ξ, E)ξ = −(α2 + β2 − δβ)[−E − η(E)ξ]. (3.9)

−(2αβ + δα+ δ(ξα))[φE − δ(ξβ)φ2E]. (3.10)

From (3.8) and (3.9), we obtain

R̄(E, ξ)ξ = −R̄(ξ, E)ξ. (3.11)

Now, using contraction on E in (3.2), we get

R̄ic(F,G) = Ric(E,G)− [(δ)(m− 2) + β]g(F,G) (3.12)

−(βδ − 1)(m− 2)η(Z)η(Y )− α(m− 2)g(φF,G),

where R̄ic and Ric are the Ricci tensors of the connections ∇̄ and ∇, respectively on M̄.

Putting F = G = ei and taking summation over i, 1 ≤ i ≤ m− 1 in (3.12), using (2.15) and
also the relations τ = Ric(ei, ei) =

∑m
i=1 δiR(ei, ei, ei, ei), we get

τ̄ = τ − (m− 1)[(δ)(m− 2) + 2β], (3.13)

where τ̄ and τ are the scalar curvatures of the connections ∇̄ and ∇, respectively on M̄.

Now, we have the following lemmas:

Lemma 3.3. Let M̄ be an m-dimensional δ-Lorentzian trans-Sasakian manifold with the SSM
connection, then the scalar curvature is constant.
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4 Examples of δ-Lorentzian trans-Sasakiam manifolds

In [13], we found a non trivial example of δ-Lorentzian trans-Sasakian manifold with a SSM
connection.

Example 1. The three dimensional manifold M̄ = {(x, y, z) ∈ R3 | z 6= 0}, where (x, y, z) are
the Cartesian coordinates in R3, is a δ-Lorentzian trans-Sasakian of type (0, 1) manifold. Here
the Riemannian metric g is given by

g(v1, v3) = g(v2, v3) = g(v2, v2) = 0, g(v1, v1) = g(v2, v2) = g(v3, v3) = δ,

where δ = ±1 and v1, v2, v3 are vector fields. And the 1-form η is defined by η(G) = δg(G, v3),
for any G ∈ TxM̄. The (1, 1) tensor field φ is defined by φ(v1) = −v2, φ(v2) = e1, φ(v3) = 0.

From Koszul’s formula, we have

∇v1v3 = δv1, ∇v2v3 = δv2, ∇v3v3 = 0,

∇v1v2 = 0, ∇v2v2 = −δv3, ∇v3v2 = 0,

∇v1v1 = −δv3, ∇v2v1 = 0, ∇v3v1 = 0.

Also, for any vector field E on M̄, we have

∇Eξ = δ(E + η(X)ξ),

for ξ ∈ v3, α = 0 and β = 1.

The semi-symmetric metric connection on M̄ is given below:

∇̄v1v3 = (1 + δ)v1, ∇̄v2v3 = (1 + δ)v2, ∇̄v3v3 = 0,

∇̄v1v2 = 0, ∇̄v2v2 = −(1 + δ)v3, ∇̄v3v2 = 0,

∇̄v1v1 = −(1 + δ)v3, ∇̄v2v1 = 0, ∇̄v3v1 = 0.

Example 2. We consider the three dimensional manifold M̄ = {(x, y, z) ∈ R3 | z 6= 0}, where
(x, y, z) are the Cartesian coordinates in R3. Choosing the vector fields

v1 = z

(
∂

∂x
+ y

∂

∂z

)
, v2 = z

∂

∂y
, v3 =

∂

∂z
,

which are linearly independent vector fields at each point x of M̄. The Lorentzian metric g is
defined by

g(v1, v3) = g(v1, v2) = g(v2, v3) = 0, g(v1, v1) = g(v2, v2) = 1, g(v3, v3) = −1 (δ = 1).

For any U ∈ TxM̄, the 1-form η is given as η(U) = δg(U, v3). The (1, 1) tensor field φ is defined
by φ(v1) = −v2, φ(v2) = −v1, φ(v3) = 0. Then, by the linearity property of φ and g, we have

φ2U = U + η(U)v3, η(v3) = −1, g(φU, φV ) = g(U, V ) + δη(U)η(V ),

for any U, V ∈ TxM̄, x ∈ M̄. Then for a timelike vector field ξ = v3, the structure (φ, ξ, η, g, δ = 1)
defines a Lorentzian structure on M̄.
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Let ∇ be the Levi-Civita connection with respect to the metric g. Then, we have

[v1, v2] = yv2 − z2v3, [v1, v3] = −1

z
v1, [v2, v3] = −1

z
v2.

The Riemannian connection ∇ with respect to the metric g is given by

2g(∇EF,G) = Eg(F,G) + Fg(G,E)−Gg(E,F ) + g([E,F ], G)

−g([F,G], E) + g([G,E], F ).

From above equation which is known as Koszul’s formula, we have

∇v1v1 = −1

z
v3, ∇v1v3 = −1

z
v1 +

1

z2
v2, ∇v1v2 = −1

2
z2v3, (4.1)

∇v2v3 = −1

z
v1 +

1

2
z2v1, ∇v2v2 = yv3 −

1

z
v3, ∇v2v1 =

1

2
z2v3 − yv2,

∇v3v3 = 0, ∇v3v2 =
1

2
z2v1, ∇v3v1 = −1

2
z2v3.

From the above it can be easily observe that (φ, ξ, η, g, δ = 1) is a Lorentzian trans-Sasakian
structure on M̄. Therefore M̄ is a Lorentzian trans-Sasakian manifolds with α = 1

2z
2 6= 0 and

β = 1
z 6= 0. Hence the manifold M̄ under consideration is an δ-Lorentzian trans-Sasakian of type

(α, β) manifold of dimension three.

Example 3. We consider the 3-dimensional manifold M̄ = {(x, y, z) ∈ R3 | z 6= 0}, where
(x, y, z) are the Cartesian coordinates in R3. Choosing the vector fields

v1 =
∂

∂x
+

∂

∂y
, v2 = − ∂

∂x
+

∂

∂y
, v3 =

∂

∂z
,

which are linearly independent vector fields at each point x of M̄. The Lorentzian metric g is
defined as

g(v1, v2) = g(v1, v3) = g(v3, v2) = 0, g(v1, v1) = g(v2, v2) = 1, g(v3, v3) = −δ,

where δ = ±1. Then δ-Lorentzian infinite metric g on M̄ is in the following form:

g = (dx)2 + (dy)2 − δ(dz)2.

Let v3 = ξ be a timelike vector filed and η be the 1-form defined by η(U) = δg(U, v3), for any
U ∈ TxM̄. The (1, 1) tensor field φ is defined by φ(v1) = −v1, φ(v2) = −v2, φ(v3) = 0. Then by
the linearity property of φ and g, and taking v3 = ξ, we have

φ2U = U + η(U)v3, η(v3) = −1,

g(φU, φV ) = g(U, V ) + δη(U)η(V ) (4.2)

for any vector fields U, V ∈ TxM̄, x ∈ M̄.
Now putting V = ξ in (4.2), we turn up

η(U) = δg(U, ξ). (4.3)

Putting V = U = ξ in (4.2) and (4.3) respectively, we get

g(ξ, ξ) = −δ, η(ξ) = −1. (4.4)

Since M̄ satisfies all conditions (2.1)-(2.6) of δ-Lorentzian trans-Sasakian manifolds, M̄ is a three
dimensional δ-Lorentzian trans-Sasakian manifolds.
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Example 4. We consider the 3-dimensional manifold M̄ = {(x, y, z) ∈ R3 | z 6= 0}, where
(x, y, z) are the Cartesian coordinates in R3. Choosing the vector fields

v1 = cosh z
∂

∂x
+ sinh z

∂

∂y
, v2 = sinh z

∂

∂x
+ cosh z

∂

∂y
, v3 =

∂

∂z
,

which are linearly independent vector fields at each point x of M̄.
Let g be the Lorentzian metric define by

g(v1, v2) = g(v1, v3) = g(v3, v2) = 0, g(v1, v1) = g(v2, v2) = 1, g(v3, v3) = −δ,

where δ = ±1.

Let v3 = ξ is a timelike vector filed and η be the 1-form defined by η(U) = δg(U, v3), for any
U ∈ TxM̄. The (1, 1) tensor field φ is defined by φ(v1) = −v1, φ(v2) = −v2, φ(v3) = 0. Then by
the linearity property of φ and g, and taking v3 = ξ, we have

φ2U = U + η(U)v3, η(v3) = −1,

g(φU, φV ) = g(U, V ) + δη(U)η(V ), (4.5)

for any vector fields U, V ∈ TxM̄, x ∈ M̄.
Now, putting V = ξ in (4.2), we turn up

η(U) = δg(U, ξ). (4.6)

Putting V = U = ξ in (4.5) and (4.6) respectively we get

g(ξ, ξ) = −δ, η(ξ) = −1. (4.7)

Since M̄ satisfies all conditions (2.1)-(2.6) of δ-Lorentzian trans-Sasakian manifolds, M̄ is a three
dimensional δ-Lorentzian trans-Sasakian manifolds.

Let ∇ be the Levi-Civita connection with respect to the metric g. Then, we have

[v1, v2] = 0, [v3, v1] = v2, [v2, v3] = −v1.

Using Koszul’s formula, we can easily calculate

∇v1v1 = 0, ∇v1v3 = −v2, ∇v1v2 = −v3, (4.8)

∇v2v3 = −v1, ∇v2v2 = 0, ∇v2v1 = −v3,

∇v3v3 = 0, ∇v3v2 = 0, ∇v3v1 = 0.

From the above it can be easily observe that (φ, ξ, η, g, δ = 1) is a Lorentzian trans-Sasakian
structure on M̄ with α = −1 and β = 0. Hence the manifold M̄ under consideration is an
δ-Lorentzian trans-Sasakian of type (α, 0) manifold of dimension three.

Example 5. We consider the 3-dimensional manifold M̄ = {(x, y, z) ∈ R3 | z 6= 0}, where
(x, y, z) are the Cartesian coordinates in R3. Choosing the vector fields

v1 = ez
∂

∂y
, v2 = ez

(
∂

∂x
+

∂

∂y

)
, v3 =

∂

∂z
,
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which are linearly independent vector fields at each point x of M̄.

Let g be the Lorentzian metric define by

g(v1, v2) = g(v1, v3) = g(v3, v2) = 0, g(v1, v1) = g(v2, v2) = 1, g(v3, v3) = −δ,

where δ = ±1. Then δ-Lorentzian infinite metric g on M̄ is in the following form:

g = e−2z[2(dx)2 + (dy)2 − 2dxdy]− δ(dz)2

Let v3 = ξ is a timelike vector filed, and η be the 1-form defined by η(U) = δg(U, v3) for any
U ∈ TxM̄.

Let φ be the (1, 1) tensor field defined by φ(v1) = −v1, φ(v2) = −v2, φ(v3) = 0. Then by the
linearity property of φ and g, and taking v3 = ξ, we have

φ2U = U + η(U)v3, η(v3) = −1,

g(φU, φV ) = g(U, V ) + δη(U)η(V ), (4.9)

for any vector fields U, V ∈ TxM̄, x ∈ M̄.
Now putting V = ξ in (4.9), we turn up

η(U) = δg(U, ξ). (4.10)

Putting V = U = ξ in (4.9) and (4.10) respectively, we get

g(ξ, ξ) = −δ, η(ξ) = −1. (4.11)

Since M̄ satisfies all conditions (2.1)-(2.6) of δ-Lorentzian trans-Sasakian manifolds, M̄ is a three
dimensional δ-Lorentzian trans-Sasakian manifolds.

Let ∇ be the Levi-Civita connection with respect to the metric g. Then, we have

[v1, v2] = 0, [v2, v3] = −v2, [v1, v3] = −v1.

The Riemannian connection ∇ with respect to the metric g is given by

2g(∇EF,G) = Eg(F,G) + Fg(G,E)−Gg(E,F ) + g([E,F ], G)

−g([F,G], E) + g([G,E], F ).

From above equation which is known as Koszul’s formula, we have

∇v1v1 = −v1, ∇v1v3 = −v1 +
1

z2
v2, ∇v1v2 = 0, (4.12)

∇v2v3 = −v2, ∇v2v2 = −v3−, ∇v2v1 = 0,

∇v3v3 = 0, ∇v3v2 = 0, ∇v3v1 = 0.

From the above it can be easily observe that (φ, ξ, η, g, δ = 1) is a Lorentzian trans-Sasakian
structure on M̄. Therefore M̄ is a Lorentzian trans-Sasakian manifolds with α = 1 and β = 0.

Now, we provide a non trivial example of δ-Lorentzian trans-Sasakian manifold with a SSM
connection.
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Example 6. We consider the three dimensional manifold M̄ = {(x, y, z) ∈ R3 | z 6= 0}, where
(x, y, z) are the Cartesian coordinates in R3. Choosing the vector fields

v1 = z
∂

∂x
, v2 = z

∂

∂y
, v3 = −z ∂

∂z
,

which are linearly independent at each point x of M̄.

Let g be the Lorentzian metric define by

g(v1, v3) = g(v2, v3) = g(v2, v2) = 0, g(v1, v1) = g(v2, v2) = 1, g(v3, v3) = −δ,

where δ = ±1. Let η be the 1-form defined by η(G) = δg(G, v3), for any G ∈ TxM̄.

Let φ be the (1, 1) tensor field defined by φ(v1) = −v1, φ(v2) = −v2, φ(v3) = 0. Then by the
linearity property of φ and g, we have

φ2G = G+ η(G)v3, η(v3) = −1 and g(φG, φH) = g(G,H) + δη(G)η(H),

for any G,H ∈ TxM̄, x ∈ M̄.

Let ∇ be the Levi-Civita connection with respect to the metric g. Then, we have

[v1, v2] = 0, [v1, v3] = δv1, [v2, v3] = δv2.

The Riemannian connection ∇ with respect to the metric g is given by

2g(∇EF,G) = Eg(F,G) + Fg(G,E)−Gg(E,F ) + g([E,F ], G)

−g([F,G], E) + g([G,E], F ).

From above equation which is known as Koszul’s formula, we have

∇v1v3 = δv1, ∇v2v3 = δv2, ∇v3v3 = 0, (4.13)

∇v1v2 = 0, ∇v2v2 = −δv3, ∇v3v2 = 0,

∇v1v1 = −δv3, ∇v2v1 = 0, ∇v3v1 = 0.

Using the above relations, for any vector field E on M̄, we have

∇Eξ = δ(E + η(X)ξ),

for ξ ∈ v3, α = 0 and β = 1. Hence the manifold M̄ under consideration is an δ-Lorentzian
trans-Sasakian of type (0, 1) manifold of dimension three.

Now, we consider this structure for semi-symmetric metric connection, we obtain

∇̄v1v3 = (1 + δ)v1, ∇̄v2v3 = (1 + δ)v2, ∇̄v3v3 = 0, (4.14)

∇̄v1v2 = 0, ∇̄v2v2 = −(1 + δ)v3, ∇̄v3v2 = 0,

∇̄v1v1 = −(1 + δ)v3, ∇̄v2v1 = 0, ∇̄v3v1 = 0.
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Then the Riemannian curvature, Ricci curvature, and scalar curvature tensors with respect
to SSM connection ∇̄ are given by

R̄(v1, v2)v2 = −(1 + δ)2v1, R̄(v1, v3)v3 = −δ(1 + δ)v2, R̄(v2, v1)v1 = −(1 + δ)2v2,

R̄(v2, v3)v3 = −δ(1 + δ)v2, R̄(v3, v1)v1 = δ(1 + δ)v3, R̄(v3, v2)v2 = −δ(1 + δ)v3,

R̄ic(v1, v1) = R̄ic(v2, v2) = −(1 + δ)(1 + 2δ), R̄ic(v3, v3,) = 2δ(1 + δ)

and τ̄ = −2(1 + δ)2.

5 Casorati curvatures

Let M be an n-dimensional submanifold of an m-dimensional δ-Lorentzian trans-Sasakian man-
ifold M̄ with a SSM connection and induced metric g. We represent the induced connections

on the tangent bundle TM and TM⊥ of M by ∇M and ∇M⊥
, respectively and denote by h the

second fundamental form of M. For any E,F ∈ TxM, and N ∈ TxM⊥, x ∈ M, we recall the
Gauss and Weingarten formulas by

∇EF = ∇M
E F + h(E,F ),

and

∇⊥EN = −ANE +∇M⊥

E N,

where AN is used for notation of the shape operator of M with respect to N . The following
equation is well-known:

g(ANE,F ) = g(h(E,F ), N).

We also recall the equation of Gauss by

R(E,F,G,H) = RM(E,F,G,H)− g(h(E,H), h(F,G))

+g(h(E,G), h(F,H)),

for any E,F,G,H ∈ TxM, x ∈M. Here RM is the Riemannian curvature tensor with respect to
∇M.

For a surface in E3 the Casorati curvature is defined as the normalized sum of the squared
principal curvatures. This curvature was preferred by Casorati over the traditional Gauss curva-
ture because the Casorati curvature vanishes if and only if both principal curvatures are zero at
the same time and thus corresponds better with the common intuition of curvature.

In [15], Lee, et al. obtained Optimal inequalities for the Casorati curvatures of subman-
ifolds of real space forms endowed with semi-symmetric metric connections. With the help of
this reference, we find such relations for an n-dimensional submanifold M of an m-dimensional
δ-Lorentzian trans-Sasakian manifold M̄ with a SSM connection. Therefore, we choose an or-
thonormal tangent frame {e1, . . . , en} and an orthonormal normal frame {en+1, . . . , em} of M in
an δ-Lorentzian trans-Sasakian manifold M̄. Then the scalar curvature τ at x ∈M is defined by

τ(x) =
∑
i<j

K(ei ∧ ej),
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where K(ei ∧ ej), 1 ≤ i < j ≤ n, denotes the sectional curvature of M associated with a plane
section spanned by ei and ej .

The normalized scalar curvature ρ of M is defined as

ρ =
2τ

n(n− 1)
.

Let L be a subspace of TxM, x ∈ M of dimension p ≥ 2 and {e1, . . . , en} an orthonormal
basis of L. The scalar curvature τ(L) of the p-plane section L is given by

τ(L) =
∑

1≤r<s≤p

K(er ∧ es).

The squared norm of h over the dimension n is called the Casorati curvature C of n-
dimensional submanifold M in M̄ of dimension m, that is,

nC =

m∑
a=n+1

( n∑
i,j=1

(haij)
2

)
,

whereby haij = g(h(ei, ej), ea) are the components of the second fundamental form with respect
to given orthonormal bases. And the Casorati curvature C(L) of the subspace L is defined as

pC(L) =

m∑
a=n+1

( p∑
i,j=1

(haij)
2

)
.

Also, the squared mean curvature of the submanifold M in M̄ is given by

n2||H||2 =

m∑
a=n+1

( n∑
i=1

haii

)2

.

6 Upper bounds for δ
′
-Casorati curvature

From the Gauss equation, the following relation between the scalar curvature, the squared mean
curvature and the Casorati curvature hold:

2τ = n(n− 1)(α2 + β2 − δξβ)− (n− 1)[(δ)(n− 2) + 2β]

+n2||H||2 − nC. (6.1)

Next, we define the following function F as a quadratic polynomial in terms of the compo-
nents of the second fundamental form:

F =
1

2
(n− 1)[nC + (n+ 1)C(L)]− 2τ + n(n− 1)(α2 + β2 − δξβ)

−(n− 1)[(δ)(n− 2) + 2β].

By saying that L is spanned by {e1, . . . , en−1} (without loss of generality), one can easily
deduce

F =
1

2
(n− 1)

m∑
a=n+1

[ n∑
i,j=1

(haij)
2

]
+

1

2
(n+ 1)

m∑
a=n+1

[ n−1∑
i,j=1

(haij)
2

]
− 2τ
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+n(n− 1)(α2 + β2 − δξβ)− (n− 1)[(δ)(n− 2) + 2β].

By substituting equation (6.1) in the last equation, we have

F =
1

2
(n− 1)

m∑
a=n+1

[ n∑
i,j=1

(haij)
2

]
+

1

2
(n+ 1)

m∑
a=n+1

[ n−1∑
i,j=1

(haij)
2

]
+n2||H||2 − nC. (6.2)

The simple modification in (6.2) gives us the following:

F =
1

2
(n+ 1)

{ m∑
a=n+1

[ n∑
i,j=1

(haij)
2

]
+

m∑
a=n+1

[ n−1∑
i,j=1

(haij)
2

]}

−
m∑

a=n+1

( n∑
i=1

haii

)2

. (6.3)

We rewrite the equation (6.3) as follows:

F =

m∑
a=n+1

n−1∑
i=1

[
n(haii)

2 + (n+ 1)(hain)2
]

+

m∑
a=n+1

[
2(n+ 1)

∑
1≤i<j≤n−1

(haij)
2

−2
∑

1≤i<j≤n

haiih
a
jj +

1

2
(n− 1)(hann)2

]
.

The critical points hc = (hn+1
11 , hn+1

12 , . . . , hn+1
nn , . . . , hm11, h

m
12, . . . , h

m
nn) of F are the solutions

of the following partial derivatives of F with respect to ha11, . . . , h
a
nn, a ∈ {n+ 1, . . . ,m}:

∂F

∂haii
= 2(n+ 1)haii − 2

n∑
k=1

hakk = 0, (6.4)

∂F

∂hann
= (n− 1)hann − 2

n−1∑
k=1

hakk = 0, (6.5)

∂F

∂haij
= 4(n+ 1)haij = 0, (6.6)

∂F

∂hain
= 2(n+ 1)hain = 0, (6.7)

where i, j ∈ {1, 2, . . . , n− 1}. Thus, every solution hc has haij = 0 for i 6= j, and the determinant
which corresponds to the equations (6.4) and (6.5) is zero (there exist solutions for non-totally
geodesic submanifolds). Moreover, the Hessian matrix H of F is given by

H(F) =

 H1 0 0
0 H2 0
0 0 H3

 , (6.8)
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where

H1 =


2n −2 . . . −2 −2
−2 2n . . . −2 −2
...

...
. . .

...
...

−2 −2 . . . 2n −2
−2 −2 . . . −2 n− 1

 ,

0 are the null matrices and H2 and H3 are the diagonal matrices of the respective dimensions.

H2 = diag
(
4(n+ 1), 4(n+ 1), . . . , 4(n+ 1)

)
,

H3 = diag
(
2(n+ 1), 2(n+ 1), . . . , 2(n+ 1)

)
.

Hence, we find that H(F) has the following eigenvalues λ11 = 0, λ22 = n + 3, λ33 = · · · =
λnn = 2(n + 1), λij = 4(n + 1), λin = 2(n + 1), ∀i, j ∈ {1, 2, . . . , n − 1}, i 6= j. Therefore, we
deduce that F is parabolic and reaches a minimum F(hc) for the solution hc of (6.4-6.7). In fact,
because of the convexity, the critical point hc is a global minimum. But we obtain F(hc) = 0.
Thus, we deduce F ≥ 0. It is easy to derive the following inequality:

ρ ≤ δ
′

C(n− 1) + (α2 + β2 − δξβ)− 1

n
[(δ)(n− 2) + 2β]. (6.9)

The equality case of (6.9) holds if and only if we have the equality in all the previous inequalities
and we find

haij = 0, i 6= j, ∀a,
hann = 2ha11 = 2ha22 = · · · = 2han−1,n−1, ∀a.

Thus, we state the following main theorem for the normalized δ
′
-Casorati curvature δ

′

C(n−1)
(6.2):

Theorem 6.1. Let M be an n-dimensional, n > 2, submanifold of an m-dimensional δ-Lorentzian
trans-Sasakian manifold M̄ with a SSM connection and whose curvature tensor is of the form
(3.2). Then the normalized δ

′
-Casorati curvature δ

′

C(n− 1) satisfies

ρ ≤ δ
′

C(n− 1) + (α2 + β2 − δξβ)− 1

n
[(δ)(n− 2) + 2β].

Moreover, the equality case holds if and only if Mn is an invariantly quasi-umbilical submanifold
with trivial normal connection in M̄m, such that with respect to suitable orthonormal tangent
frame {e1, . . . , en} and normal orthonormal frame {en+1, . . . , em}, the shape operators Aa = Aea,
a ∈ {n+ 1, . . . ,m}, take the following forms:

An+1 =



t1 0 0 . . . 0 0
0 t1 0 . . . 0 0
0 0 t1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . t1 0
0 0 0 . . . 0 2t1


, An+2 = · · · = Am = 0. (6.10)



402 A. N. Siddiqui, M. D. Siddiqi and M. H. Shahid

Similarly, for the normalized δ
′
-Casorati curvature δ̂

′

C(n− 1) (6.3), we have

Theorem 6.2. Let M be an n-dimensional, n > 2, submanifold of an m-dimensional δ-Lorentzian
trans-Sasakian manifold M̄ with a SSM connection and whose curvature tensor is of the form
(3.2). Then the normalized δ

′
-Casorati curvature δ̂

′

C(n− 1) satisfies

ρ ≤ δ̂
′

C(n− 1) + (α2 + β2 − δξβ)− 1

n
[(δ)(n− 2) + 2β].

Moreover, the equality case holds if and only if Mn is an invariantly quasi-umbilical submanifold
with trivial normal connection in M̄m, such that with respect to suitable orthonormal tangent
frame {e1, . . . , en} and normal orthonormal frame {en+1, . . . , em}, the shape operators Aa = Aea,
a ∈ {n+ 1, . . . ,m}, take the following forms:

An+1 = 2



t1 0 0 . . . 0 0
0 t1 0 . . . 0 0
0 0 t1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . t1 0
0 0 0 . . . 0 t1

2


, An+2 = · · · = Am = 0. (6.11)

As a consequence of Theorem 6.1, we give the following results:

Corollary 6.3. Let M be an n-dimensional, n > 2, submanifold of an m-dimensional of a
Lorentzian cosymplectic manifold M̄ of type (0, 0) with a SSM connection and whose curvature
tensor is of the form (3.2). Then

ρ ≤ δ
′

C(n− 1)− n− 2

n
(δ).

Corollary 6.4. Let M be an n-dimensional, n > 2, submanifold of an m-dimensional of a
Lorentzian β-Kenmotsu manifold M̄ of type (0, β) with a SSM connection and whose curvature
tensor is of the form (3.2). Then

ρ ≤ δ
′

C(n− 1) + (β2 − δξβ)− 1

n
[(δ)(n− 2) + 2β].

Corollary 6.5. Let M be an n-dimensional, n > 2, submanifold of an m-dimensional of a
Lorentzian α-Sasakina manifold M̄ of type (α, 0) with a SSM connection and whose curvature
tensor is of the form (3.2). Then

ρ ≤ δ
′

C(n− 1) + α2 − n− 2

n
(δ).

The equality case holds in Corollaries 6.3-6.5 if and only if Mn is an invariantly quasi-
umbilical submanifold with trivial normal connection in M̄m, such that with respect to suitable
orthonormal tangent frame {e1, . . . , en} and normal orthonormal frame {en+1, . . . , em}, the shape
operators Ab = Aeb, b ∈ {n+ 1, . . . ,m}, take forms as in 6.11.
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Similar consequences of Theorem 6.2 can be discussed.

The results, in this section, are given for submanifolds with dimensions higher than 2. There-
fore, we give an example of δ-Lorentzian trans-Sasakiam manifold with dimension 5.

Example 7. Let us consider a 5-dimensional manifold M̄ =
{

(x1, x2, x3, x4, z) ∈ R5 : z 6= 0
}

,
where (x1, x2, x3, x4, z) are standard coordinates in R5. We choose the vector fields.
v1 = e−z ∂

∂x1
, v2 = e−z ∂

∂x2
, v3 = e−z ∂

∂x3
, v4 = e−z ∂

∂x4
, v5 = e−z ∂

∂x1
, which are linearly indepen-

dent at each point of M̄ . We define g by

g = e2zg,

where g is the Lorentzian metric on R5 same as in Example 5

g(vi, vj) = 0, i 6= j, i, j = 1, . . . 5 g(vi, vj) = 1, i = j, i, j = 1 . . . 4, g(v5, v5) = −δ,

Hence, {v1, v2, v3, v4, v5} is an orthonormal basis of M̄. We consider an 1-form η defined by

η = ezdz, η(X) = δg(X, v5), ∀X ∈ TM̄.

Let φ be a (1, 1) tensor field. Thus, we have

φ(v1) = v3, φ(v2) = v4, φ(v3) = −v1, φ(v4) = −E2, φ(v5) = 0.

The linear property of g and φ yields that

η(v5) = −1, φ2(X) = X + η(X)v5

and

g(φX, φY ) = g(X,Y ) + δη(X)η(Y ),

for any vector fields X,Y on M̄. Thus, M̄(φ, ξ, η, g) define s a Lorentzian manifold with timelike
vector field ξ = E5. Moreover, let ∇ be the Levi-Civita connection with respect to metric g.
Then, we have [v1, v2] = 0. Similarly [v1, ξ] = e−zv1, [v2, ξ] = e−zv2, [v3, ξ] = e−zv3 [v4, ξ] =
e−zv4, [vi, vj ] = 0, 1 ≤ i 6= j ≤ 4.
The Riemannian connection ∇ of the metric g is given by

2g(∇XY, Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X,Y )− g(X, [Y, Z])

−g(Y, [X,Z]) + g(Z, [X,Y ]). (6.12)

By Koszul’s formula, we obtain the following equations:

∇v1v1 = −e−zξ, ∇v2v2 = −e−zξ, ∇v3v3 = −e−zξ, ∇v4v4 = −e−zξ,

∇ξξ = 0, ∇ξvi = 0, ∇viξ = e−zvi, 1 ≤ i ≤ 4,

and ∇vivi = 0 for all 1 ≤ i, j ≤ 4. Thus, we see that M̄ is a δ-Lorentzian trans-Sasakian manifold
of type (0, e−z), where α = 0 and β = e−z.
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7 Open Problems

1. In [16] J.C. Marrero proved that, at the Riemannian case, for dimensions greater or equal
to 5 the only existing trans-Sasakian manifolds are Sasakian and Kenmotsu ones. Maybe
it is different in the semi-Riemannian case, this would be a really interesting open problem
for the geometers.

2. The optimization techniques have a pivotal role in improving inequalities involving Chen
invariants. T. Oprea [18, 19, 20] applied the constrained extremum problem to prove
Chen-Ricci inequalities for Lagrangian submanifolds of complex space forms. In the char-
acterization of our main result, is it possible to apply the following lemma to derive such
inequalities (Theorems 6.1 and 6.2)?

Let (B̄, ḡ) be a Riemannian manifold, B be a Riemannian submanifold of it, g be the metric
induced on B by ḡ and f : (B̄, ḡ) −→ (R, < ·, · >) be a differentiable function. Consider
the constrained extremum problem min

x∈B
f(x), then we have the following:

Lemma 7.1. If x0 ∈ B is the solution of the above problem, then

(a) (gradf)(x0) ∈ T⊥x0
B,

(b) the bilinear form

A : Tx0
B × Tx0

B −→ R, A(X,Y ) = Hessf (X,Y ) + ḡ(h(X,Y ), (gradf)(x0))

is positive semi-definite, where h is the second fundamental form of B in B̄ and gradf
denotes gradient of f .

If (B̄, ḡ) is a semi-Riemannian manifold (or particulary a Lorentzian manifold) in Lemma
7.1, is A(X,Y ) positive semi-definite?
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