A NOTE ON COMPLETELY POSITIVE GRAPHS (II)

XU CHANGQIN

Abstract. A necessary and sufficient condition is given for a doubly nonnegative matrix realization of a cycle to be completely positive. Also some special non-CP graphs are investigated.

1. Introduction

Pioneered by M. Hall Jr. in 1958 [2] and investigated by A. Berman [3, 4, 5] and J. H. Drew, C. R. Johnson and Loewy [7] etc., completely positive matrices have been shown their importance not only in the study of block designs in combinatorial analysis [1], but also in establishing economic models [8].

Recall that an $n \times n$ matrix A is said to be completely positive, denoted by $A \in CP_n$, if there exist m (entrywise) nonnegative column vectors b_1, \ldots, b_m such that

$$A = b_1 b'_1 + \dots + b_m b'_m$$

where ' denotes transpose. The smallest such number m is called the factorization index of A and is denoted by $\phi(A)$. An $n \times n$ nonnegative matrix A is called doubly nonnegative, denoted by $A \in DP_n$, if it is positive semidefinite. It is known that $DP_n = CP_n$ for $n \leq 4$; but for n > 4, CP_n is a proper subset of DP_n (see [1, 3]).

Given an $n \times n$ real matrix A, let A(l) denote the submatrix of A obtained by deleting the *l*th row and column of A. Let E_{rs} be the square matrix (e_{ij}) given by

$$e_{ij} = \begin{cases} 1, & \text{if } (i,j) = (r,s) \\ 0, & \text{otherwise.} \end{cases}$$

For a real symmetric matrix A, the graph G(A) = (V, E) of A is defined by: $V = \{1, \ldots, n\}$ and

$$E = \{\{i, j\} : i \neq j, a_{ij} \neq 0, i, j = 1, \dots, n\}.$$

For any vertex $l \in V$, let N(l) denote the set of all neighbours of l in G, i.e.

$$N(l) = \{i : \{i, l\} \in E, i \neq l\}.$$

Received June 9, 1999; revised September 9, 1999.

Supported by Anhui educational Committee (No: LJ990007).

²⁰⁰⁰ Mathematics Subject Classification. 05C50, 05C75, 15A48.

Key words and phrases. Doubly nonnegative matrix, completely positive graph, cycle, factorization index.

¹⁵⁹

XU CHANGQIN

By a doubly nonnegative realization of a graph G, we mean a matrix $A \in DP_n$ for which G(A) = G. The set of all such matrices A is denoted by Λ_G . G is called completely positive (abbrev. CP) if $A \in CP_n$ for any $A \in \Lambda_G$. It is shown in [3, 4, 5] that a graph G is CP if and only if G does not contain an odd cycle of length greater than 4. The following known results will be needed in this paper.

Lemma 1 (Theorem 4.3. of [3]). Let A be an $n \times n$ nonzero doubly nonnegative matrix whose graph is acyclic (i.e., without a cycle). Then A is completely positive, and $\phi(A) = \operatorname{rank}(A) = n - m$, where m is the number of singular components of A.

Lemma 2 (Theorem 3.5 of [3]). Let $A = (a_{ij})$ be an $n \times n$ doubly nonnegative matrix whose graph is G. If G has a vertex l which does not lie on a triangle. Then A is completely positive if and only if there exist positive numbers d_j , $j \in N(l)$, such that $a_{ll} \geq \sum_{j \in N(l)} \frac{a_{lj}^2}{d_j}$ and the matrix

$$H = A(l) - \sum_{j \in N(l)} d_j E_{jj}$$

is completely positive, where the rows and columns of E_{jj} are indexed by $\{1, \ldots, n\} \setminus \{l\}$.

In section 2, we present a necessary and sufficient condition for $A \in \Lambda_G$ to be completely positive when G is an odd cycle of length greater than 4. We also prove that $\phi(A) = n$ for $A \in CP_n \bigcap \lambda_G$.

In section 3, we give the definition of nearly vertex(edge) CP graphs and present the structure characterizations of this type of graphs.

2. A Necessary and Sufficient Condition

Let G be C_{2k+1} , i.e., a cycle with length 2k + 1 where $k \geq 2$. We know from [3] that not every matrix in Λ_G is completely positive and we would like to determine which matrices are. It is obvious that when $A \in \Lambda_G$, A is permutationally similar to a matrix of the form

$$\begin{bmatrix} a_{11} & a_{12} & 0 & \cdots & 0 & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{n-1,n-1} & a_{n-1,n} \\ a_{n1} & 0 & 0 & \cdots & a_{n,n-1} & a_{nn} \end{bmatrix}$$
(1)

where $a_{ij} = a_{ji}$ for $1 \le i, j \le n$. Henceforth, we may assume that A is of this form.

Theorem 1. Let $A \in DP_n$ be of the form (1) where $a_{ij} \neq 0$ if and only if $j \equiv i-1, i, i+1 \pmod{n}$. Then A is in CP_n if and only if there exist two positive numbers a, b such that

(i) $ab = a_{1n}$.

(ii)
$$H = A - (a^2 E_{11} + b^2 E_{nn} + a_{1n} E_{1n} + a_{n1} E_{n1}) \in DP_n.$$

Proof. Suppose that there exist a, b > 0 satisfying (i) and (ii). Let

$$F = a^2 E_{11} + b^2 E_{nn} + a_{1n} E_{1n} + a_{n1} E_{n1}$$

Then $F = \beta\beta'$ where $\beta = (a, 0, ..., 0, b)'$ is a nonnegative column vector of dimension n. Since $H \in DP_n$ and the graph of H is acyclic, we have $H \in CP_n$ by Lemma 1. So $H = B_1B'_1$ for some $n \times m$ nonnegative matrix B_1 where $m = \phi(H)$. Put $B = [B_1, \beta]$. Then $BB' = B_1B'_1 + \beta\beta' = H + F = A$. Thus A is completely positive.

Conversely, let $A = (a_{ij}) \in CP_n$ be of the form (1). Then there exists an $n \times m$ nonnegative matrix B such that A = BB'. Let $B = (b_{ij}), \beta_i = (b_{i1}, \ldots, b_{im})', (b_{ij} \ge 0)$, and $S_i = \{k : b_{ik} > 0\}$. Then

$$a_{ij} = (\beta_i, \beta_j), \quad i, j \in \{1, \dots, n\}$$

$$\tag{2}$$

where we use (β_i, β_j) to denote the usual inner product of \mathbb{R}^m . From (2) and the form of A, we have

$$(\beta_i, \beta_j) = 0 \text{ if and only if } j \not\equiv i - 1, i, i + 1 \pmod{n}.$$
(3)

Then by (3),

$$S_i \bigcap S_j \neq \phi$$
 if and only if $j \equiv i - 1, i, i + 1 \pmod{n}$ (4)

Permuting the columns of B, if necessary, we may assume that $S_1 \cap S_n = \{1, 2, ..., p\}$, where $1 \le p < m$. Now we put

$$a = (\sum_{j=1}^{p} b_{1j}^2)^{\frac{1}{2}}, \qquad b_1 = (\sum_{j=1}^{p} b_{nj}^2)^{\frac{1}{2}}.$$

Since

$$ab_1 = [(\sum_{j=1}^p b_{1j}^2)(\sum_{j=1}^p b_{nj}^2)]^{\frac{1}{2}} \ge \sum_{j=1}^p b_{1j}b_{nj} = (\beta_1, \beta_n) = a_{1n} > 0,$$

there exists a real number $b, 0 < b \le b_1$ such that $ab = a_{1n}$. Next we set $y = \sqrt{b_1^2 - b^2}$, and define $\tilde{\beta}_i \in \mathbb{R}^{(m-p+2)}, i = 1, \dots, m$ by

$$\hat{\beta}_{1} = (0, a, b_{1,p+1}, b_{1,p+2}, \dots, b_{1m})'$$
$$\tilde{\beta}_{2} = (0, 0, b_{2,p+1}, \dots, b_{2m})'$$
$$\vdots$$
$$\tilde{\beta}_{n-1} = (0, 0, b_{n-1,p+1}, \dots, b_{n-1,m})'$$
$$\tilde{\beta}_{n} = (y, b, b_{n,p+1}, \dots, b_{nm})'$$

Also let $\tilde{B} = [\tilde{\beta}_1, \ldots, \tilde{\beta}_n]'$. Then we have $A = \tilde{B}\tilde{B}'$, and $H = \hat{B}\hat{B}'$, where \hat{B} is obtained from \tilde{B} by replacing the *a* in $\tilde{\beta}_1$ and the *b* in $\tilde{\beta}_n$ both by 0. This completes the proof of the theorem.

XU CHANGQIN

Corollary 2. Let $A \in CP_n$ and suppose that G(A) is an odd cycle of length greater than 4. Then $\phi(A) = n$.

Proof. We may assume that A is of the form (1). First we use the proof of the converse part of Theorem 1, but with $m = \phi(A)$, to prove $\phi(A) \ge n$: Condition (4) implies that for each $i = 1, 2, ..., n, S_i \cap S_{i-1} \ne \phi$ and $S_i \cap S_{i+1} \ne \phi$ (but $S_{i-1} \cap S_{i+1} = \phi$), from which inductively it follows that

$$|S_1 \bigcup S_2 \bigcup \cdots \bigcup S_i| \ge i+1$$

for all i = 1, ..., n - 1, where we use |S| to denote the cardinality of a set S; hence we have

$$\phi(A) = m \ge |S_1 \bigcup S_2 \bigcup \cdots \bigcup S_n| \ge n.$$

It suffices to prove $\phi(A) \leq n$. Without loss of generality, we may assume that $a_{11} = \cdots = a_{nn} = 1$. Moreover, denote $a_{i,i+1}$ by a_i , $i = 1, \ldots, n$, where $a_{n,n+1} = a_{n1}$. Since $A \in CP_n$, there exist a, b > 0 such that both of the following hold:

(I)
$$1 \ge \frac{a_n^2}{a} + \frac{a_{n-1}^2}{b};$$

(II) $H_1 = A(n) - (aE_{11} + bE_{n-1,n-1}) \in DP_{n-1}.$

If the inequality in (I) is strict, we decrease gradually the value of b while keeping the value of a until the equality occurs in (I). (Note that in doing so, condition (II) still holds.) If the remaining matrix H_1 is positive definite, we increase gradually the value of a while decreasing the value of b to keep the equality in (I) until the matrix H_1 becomes singular. (Note that the process must stop for some $0 < a \leq 1$ since $a_{ii} = 1$ by assumption.) So we may assume that the equality holds in (I), and also that the matrix H_1 is singular. By Lemma 1, $\phi(H_1) = n - 2$. Let $H_1 = B_2B'_2$ be a factorization of H_1 where B_2 is an $(n-1) \times (n-2)$ nonnegative matrix. Set

$$B_1 = \left[\sqrt{a}e_1, B_2, \sqrt{b}e_{n-1}\right]$$

where e_i is the i^{th} coordinate vector of \mathbb{R}^{n-1} . Then B_1 is a $(n-1) \times n$ nonnegative matrix. Putting

$$x = \left(\frac{a_n}{\sqrt{a}}, 0, \dots, 0, \frac{a_{n-1}}{\sqrt{b}}\right)$$

where $x \in \mathbb{R}^n_+$, and writing

$$B = \begin{bmatrix} B_1 \\ x \end{bmatrix},$$

we have A = BB', from which we can see easily that $\phi(A) \leq n$. The proof is completed.

The following interesting alternative argument for $\phi(A) \leq n$ is based on results in [3] (which is simpler than the above). Since $A \in CP_n$, by Theorem 3.5 of [3] (with l = 1), there exist positive numbers d_2 , d_n such that both of the following hold:

(a)
$$1 > \frac{a_{12}^2}{d_2} + \frac{a_{1n}^2}{d_n};$$

162

(b) $H = A(1) - (d_2 E_{22} + d_n E_{n,n}) \in CP_{n-1}.$

If the matrix H is not singular, we increase the value of d_2 gradually (but keeping the value of d_n) until the matrix H becomes singular. Note that in doing so the inequality (a) remains valid. So we may assume that H is singular. Then by Theorem 3.1 of [3] we have $\phi(A) \leq \phi(H) + 2 \leq (n-2) + 2 = n$ where $\phi(H) \leq n-2$ follows from the fact that G(H) is acyclic (and Lemma 1).

3. Nearly CP Graphs

A graph G is called nearly vertex (resp. edge) CP if G is not CP but $G - \{v\}$ (resp. G - e) is CP for any $v \in V(G)$ (resp. $e \in E(G)$).

The following facts are obvious.

Proposition 1. Every nearly vertex CP graph is connected and contains an odd cycle of length greater than 4.

Proposition 2. Every connected nearly edge CP graph is nearly vertex CP.

Proposition 3. A graph of order 5 is nearly vertex CP if and only if it contains a cycle of length 5.

For graphs of order greater than 5, we have the following result.

Theorem 3. Let G = (V, E) be a graph with n vertices where n > 5. Then G is nearly vertex CP if and only if it is one of the following graphs:

- 1. C_{2k+1} where $k \geq 3$ is an integer;
- 2. $C_{2k+1} + e$ where $k \geq 3$ and e is an edge and lies in a triangle
- 3. $C_{2k+1} + e_1 + e_2$ where $e_1 = \{x_1, x_3\}, e_2 = \{x_2, x_4\}, and \{x_1, x_2\}, \{x_2, x_3\}, \{x_3, x_4\}$ are edges of C_{2k+1} .

Proof. The "if" part can be verified readily. Now we consider the "only if" part. Since G is not CP, G contains an odd cycle C_{2k+1} where $k \ge 2$. If $V(C_{2k+1}) \ne V$, we choose $v \in V \setminus V(C_{2k+1})$. Then $G - \{v\}$ still contains the cycle C_{2k+1} , and so $G - \{v\}$ is not CP, a contradiction. Hence $V = V(C_{2k+1})$.

Since n = 2k + 1 > 5, we have $k \ge 3$. Suppose G is not the cycle C_{2k+1} . Choose an edge $e \in E \setminus E(C_{2k+1})$. Then the edge e, together with one part of C_{2k+1} , forms an odd cycle, say C_l , where $l \ge 3$ is odd, and e, with the one part of C_{2k+1} , forms an even cycle, say C_{2r} where 2r = 2k + 1 - l + 2 = 2k - 1 + 3. Choose a vertex $v \in V(C_{2r}) \setminus V(C_l)$. Since G is nearly vertex CP, $G - \{v\}$ is CP. But $G - \{v\}$ contains the odd cycle C_l , so we must have l = 3. In other words, e lies in a triangle. If G is an odd cycle plus an edge, then $G = G_{2k+1} + e_1$, and G is of type (2). Suppose G is an odd cycle plus more than one edge. Denote the above edge e by e_1 and let $T_1 = \{u, v, w\}$ be the triangle containing e_1 with $e_1 = \{u, v\}$. Choose an edge e_2 that lies outside $C_{2k+1} + e_1$. From the preceding proof, it is clear that e_2 also lies on a triangle T_2 for which two of its edges

XU CHANGQIN

belong to the cycle C_{2k+1} , say $T_2 = \{x, y, z\}$ with $e_2 = \{x, z\}$. If T_2 has no common edges with T_1 (but T_2 may have a common vertex with T_1), then the graph $G - \{w\}$ contains the cycle $C_{2k+1} - \{w, y\}$ as its subgraph. But the length of the latter cycle is $2k + 1 - 4 + 2 = 2(k - 1) + 1 \ge 5$. Hence $G - \{w\}$ is not CP, which contradicts the definition of G. Thus T_1 and T_2 must have an edge in common. By a similar argument, we can see that G cannot have any other edges. Therefore, G is type (3). The proof is completed.

We end our discussion by treating nearly edge CP graphs.

Corollary 4. A connected graph G is nearly edge CP if and only if G is an odd cycle with length greater than 4.

Proof. The sufficiency of the condition is obvious.

Since G is not CP, G contains an odd cycle C_{2k+1} , where $k \ge 2$. If G has an edge e that does not lie on the cycle C_{2k+1} , then clearly G - e is not CP, a contradiction. So all edges of G lie on C_{2k+1} . Furthermore, all vertices of G belong to C_{2k+1} as G is connected. So we have $G = C_{2k+1}$.

Acknowledgements

I wish to express my gratitude to Professor Abraham Berman for his inspiring series of lectures during his visit to The University of Science and Technology of China in September, 1996. I also thank the anonymous referee for his patient corrections which significantly improved the paper and for his presentation of the alternative argument for the inequality $\phi(A) \leq n$ in the proof of Corollary 2.

References

- [1] M. Hall Jr., Combinatorial Theory (2nd ed.), Wiley, New York, 1986.
- [2] M. Hall Jr., Surveys in Applied Mathematics, Wiley, New York, 4(1958), 35-104.
- [3] A. Berman and D. Hershkowitz, Combinatorial results on completely positive matrices, Linear Algebra Apple., 95(1987), 111-125.
- [4] A. Berman and R. Grone, *Bipartite completely positive graphs*, Proc. Cambridge Philos. Soc., 103(1988), 269-276.
- [5] A. Berman and N. Kogan, *Characterization of completely positive graphs*, Discrete Math., 114(1993), 297-304.
- [6] A. Berman and R. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979.
- [7] J. H. Drew, C. R.Johnson and R. Loewy, Completely positive matrices associated with Mmatrices, Linear and Multilinear Algebra, 37(1994), 303-310.
- [8] T. L. Markham, Factorizations of completely positive matrices, Proc. Cambirdge Philos. Soc., 69(1971), 53-58.
- [9] L. J. Gray and D. G. Wilson, Nonnegative factorization of positive semidefinite nonnegative matrices, Linear Algebra Appl., 31(1980), 119-127.

Department of Mathematics, Anhui University, Hefei, Anhui 230039 P. R. China. E-mail: cqxu@mars.ahu.edu.cn

164