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A new approach to Mannheim curve in Euclidean
3-space

Ali Uçum, Çetin Camcı and Kazım İlarslan

Abstract. In this article, a new approach is given for Mannheim curves in 3-
dimensional Euclidean space. Thanks to this approach, the necessary and suffi-
cient conditions including the known results have been obtained for a curve to be
Mannheim curve in E3. In addition, related examples and graphs are given by show-
ing that Salkowski and anti-Salkowski curves can be the examples of Mannheim
curves and their mates. Finally, the Mannheim partner curves are characterized in
E3.
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1 Introduction
In the Euclidean 3-space E3, a curve is called a general helix if its tangent vector makes a constant
angle with a fixed straight line (the axis of the general helix). According to well-known result
stated by M. A. Lancret in 1802 and first proved by B. de Saint Venant in 1845 (for details
see [4, 5] ) a regular curve is a general helix if and only if the ratio of curvature to torsion is
constant. Also it is known that a curve is called a circular helix if both curvatures k1 and k2 are
non-zero constant. Circular helices geometrically appear as geodesic in right cylinders shaped
on circle. The geodesics of a right cylinder, with arbitrary cross section, are called general or
Lancret helices. In addition, Izumiya and Takeuchi have introduced the concept of slant helix
having a property that the normal lines make a constant angle with a fixed straight line. They
characterize a slant helix by the necessary and the suffcient condition that the geodesic curvature

κg =

(
κ2

κ1

)′
κ2
1

(κ2
1 + κ2

2)
3/2

of spherical image of its principal normal indicatrix is a constant function [3]. A family of
curves with constant curvature but non-constant torsion is called Salkowski curves and a family
of curves with constant torsion but non-constant curvature is called anti-Salkowski curves ([1],
[9]). In [8], Monterde studied some of characterizations of these curves and he proved that their
principal normal vector makes a constant angle with fixed straight line. So that Salkowski and
anti-Salkowski curves are important examples of slant helices.
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On the other hand, there exist some kinds of associated curves whose the Frenet frame fields
satisfy certain geometric conditions in the Euclidean space E3. An example of such curves are
called Mannheim curves, which have a property that their principal normal lines coincide with
the binormal lines of the Mannheim mate (partner) curve at the corresponding points of the
curves. It is known that the curvature functions of Mannheim curve in E3 satisfy the equality
κ1 = a(κ2

1 + κ2
2) for some positive constant number a and its parametric equation is obtained in

[6] (see also [7],[11]). Some characterizations of Mannheim curves in E3 can be found in [4] and
[6].

Let β be a Mannheim curve and β∗ be the Mannheim partner curve of β in Euclidean 3-space
E3. In the literature, β∗ is given by

β∗(f(s)) = β(s) + λ (s)N(s) (1.1)

where N(s) is the principal normal vector field of β and f is a differentiable function [4]. With
respect to (1.1), the vector −−→

β∗β must be parallel to N .
In this paper, following [2], we claim that the vector −−→

β∗β does not have to be parallel to
N, which is a special case for choosing the Mannheim partner curve. So we consider that the
Mannheim partner curve of β∗ is given by

β∗(f(s)) = β(s) + u(s)T (s) + v (s)N(s) + w (s)B (s) (1.2)

where {T (s) , N (s) , B (s)} is Frenet frame of β. Here if we take u = w = 0, we obtain the case
is used in the literature. So we give the generalization of Mannheim curves in E3. In this paper,
we obtain the necessary and sufficient conditions for a curve in E3 to be Mannheim curve and
give the related examples with respect to this new approach to Mannheim curves. Finally, we
characterize the Mannheim partner curves in E3.

2 New approach to Mannheim curves in Euclidean 3-space
E3

In this section, we will reconsider the Mannheim curves in Euclidean 3-space E3. Also in this
paper, we will consider the case where κ2 ̸= 0 so that the curve can lie fully in E3.

Definition 1. A curve β : I → E3 with non-zero curvatures is a Mannheim curve if there is a
curve β∗ : I∗ → E3 such that the principal normal vectors of β(s) coincide with the binormal
vectors of β∗(s∗) at s ∈ I, s∗ ∈ I∗. In this case, β∗(s∗) is called the Mannheim partner curve of
β(s).

Let β : I → E3 be a Mannheim curve in E3 with the Frenet frame {T,N,B} and the non-zero
curvatures κ1, κ2, and β∗ : I∗ → E3 be a Mannheim partner curve of β with the Frenet frame
{T ∗, N∗, B∗} and the non-zero curvatures κ∗

1, κ
∗
2. Then β∗ can be written as

β∗(s∗) = β∗(f(s)) = β(s) + u(s)T (s) + v (s)N(s) + w (s)B (s)

where u(s), v (s) and w (s) are differentiable functions on I.

Theorem 2.1. Let β : I ⊂ R → E3 be a unit speed curve with the non-zero curvatures κ1, κ2.
Then the curve β is a Mannheim curve with Mannheim partner β∗ if and only if there exist
differentiable functions u, v, w satisfying

uκ1 + v′ = wκ2, w′ + vκ2 ̸= 0, (1 + u′ − vκ1)κ1 = (w′ + vκ2)κ2. (2.1)
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Proof. Assume that β is a Mannheim curve parametrized by arc-length s with non-zero curvatures
κ1, κ2 and the curve β∗ is the Mannheim partner curve of the curve β parametrized by with arc-
length or pseudo arc s∗. Then, we can write the curve β∗ as

β∗(s∗) = β∗(f(s)) = β(s) + u(s)T (s) + v (s)N(s) + w (s)B (s) (2.2)

for all s ∈ I where u(s), v (s) and w (s) are differentiable functions on I. Differentiating (2.2)
with respect to s, we get

T ∗f ′ = (1 + u′ − vκ1)T + (uκ1 + v′ − wκ2)N + (w′ + vκ2)B. (2.3)

By taking the scalar product of (2.3) with N , we have

uκ1 + v′ − wκ2 = 0. (2.4)

Substituting (2.4) in (2.3), we find

T ∗f ′ = (1 + u′ − vκ1)T + (w′ + vκ2)B. (2.5)

By taking the scalar product of (2.5) with itself, we obtain

(f ′)
2
= (1 + u′ − vκ1)

2 + (w′ + vκ2)
2 . (2.6)

If we denote
δ =

1 + u′ − vκ1

f ′ and γ =
w′ + vκ2

f ′ , (2.7)

we get
T ∗ = δT + γB. (2.8)

Differentiating (2.8) with respect to s, we find

f ′κ∗
1N

∗ = δ′T + (δκ1 − γκ2)N + γ′B. (2.9)

By taking the scalar product of (2.9) with N , we get δκ1 − γκ2 = 0, which implies that

(1 + u′ − vκ1)κ1 = (w′ + vκ2)κ2 (2.10)

where w′ + vκ2 ̸= 0.
Conversely, assume that β is a curve parametrized by arc-length s with non-zero curvatures

κ1, κ2 and the conditions of (2.1) hold for differentiable functions u, v, w. Then, we can define a
curve β∗ as

β∗(s∗) = β(s) + u(s)T (s) + v (s)N(s) + w (s)B (s) . (2.11)

Differentiating (2.11) with respect to s, we find

dβ∗

ds
= (1 + u′ − vκ1)T + (w′ + vκ2)B. (2.12)

which leads to that

f ′ =

√〈
dβ∗

ds
,
dβ∗

ds

〉
=

m1 (w
′ + vκ2)

√
κ2
1 + κ2

2

κ1
, (2.13)
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where m1 = sgn (w′ + vκ2). Rewriting (2.12) , we obtain

T ∗ =
m1√
κ2
1 + κ2

2

(κ2T + κ1B) , g (T ∗, T ∗) = 1. (2.14)

If we put
λ1 =

m1κ2√
κ2
1 + κ2

2

and λ2 =
m1κ1√
κ2
1 + κ2

2

,

we get
T ∗ = λ1T + λ2B. (2.15)

Differentiating (2.15) with respect to s, we find

dT ∗

ds∗
=

λ′
1

f ′ T +
λ′
2

f ′ B

which cause that

κ∗
1 =

∥∥∥∥dT ∗

ds∗

∥∥∥∥ =

√
(λ′

1)
2
+ (λ′

2)
2

f ′ =
m2 (κ2κ

′
1 − κ1κ

′
2)

f ′ (κ2
1 + κ2

2)
=

−m2κ
2
1

(
κ2

κ1

)′
f ′ (κ2

1 + κ2
2)

, (2.16)

where m2 = sgn (κ2κ
′
1 − κ1κ

′
2). Now, we can find N∗ as

N∗ =
m1m2√
κ2
1 + κ2

2

(−κ1T + κ2B) , g (N∗, N∗) = 1. (2.17)

Now, we define B∗ as
B∗ = T ∗ ×N∗ = −m2N , g (B∗, B∗) = 1.

Lastly we find

κ∗
2 = −

〈
dB∗

ds∗
, N∗

〉
=

m1

√
κ2
1 + κ2

2

f ′ ̸= 0. (2.18)

Then β∗ is a Mannheim partner curve of β. Thus β is a Mannheim curve.

If we take u = w = 0 in Theorem 2.1, we get the conditions of classical Mannheim curves in
the literature with the Mannheim partner curve β∗ given by

β∗(s) = β(s) + v (s)N(s).

Corollary 2.2. Let β : I ⊂ R → E3 be a unit speed curve with the non-zero curvatures κ1, κ2.
Then the curve β is a Mannheim curve with Mannheim partner β∗ given by

β∗(s) = β(s) + v (s)N(s)

if and only if there exist real number v satisfying κ1 = v
(
κ2
1 + κ2

2

)
.

Corollary 2.3. Let β : I ⊂ R → E3 be a general helix with the non-zero curvatures κ1, κ2. Then
β does not have the Mannheim partner curve liying fully in E3 (or the Mannheim partner curve
is a straight line).

Proof. Assume that β : I ⊂ R → E3 is a Mannheim general helix with the non-zero curvatures
κ1, κ2. Then the ratio κ2/κ1 is constant which implies from (2.16) that κ∗

1 = 0. Then β∗ is a
straight line.
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Corollary 2.4. Let β : I ⊂ R → E3 be a Mannheim curve with the curvatures κ1, κ2 and the
curve β∗ be a Mannheim partner curve of β with the curvatures κ∗

1, κ
∗
2. Then β∗ is a general

helix if and only if β is a slant helix.

Proof. Assume that β : I ⊂ R → E3 is a Mannheim curve with the curvatures κ1, κ2 and the
curve β∗ is a Mannheim partner curve of β. Then from (2.16) and (2.18), we have

κ∗
1

κ∗
2

= −m1m2

(
κ2

κ1

)′
κ2
1

(κ2
1 + κ2

2)
3/2

.

So β∗ is a general helix if and only if β is a slant helix.

In the following example, we give a Mannheim partner curve of a Mannheim curve in E3.

Example 1. Let β : I ⊂ R → E3 be a Mannheim curve with the curvatures κ1, κ2. Then the
conditions of Theorem 2.1 are satisfied. Assume that v = v0 ∈ R. Then we can find

uκ1 = wκ2 and (1 + u′ − v0κ1)κ1 = (w′ + v0κ2)κ2,

which implies that

w =
v0
(
κ2
1 + κ2

2

)
− κ1

κ1

(
κ2

κ1

)′ and u =
κ2

(
v0
(
κ2
1 + κ2

2

)
− κ1

)
κ2
1

(
κ2

κ1

)′ .

Thus we obtain the Mannheim partner curve β∗ as

β∗ = β +
κ2

(
v0
(
κ2
1 + κ2

2

)
− κ1

)
κ2
1

(
κ2

κ1

)′ T + v0N +
v0
(
κ2
1 + κ2

2

)
− κ1

κ1

(
κ2

κ1

)′ B.

In the following example, we give an example for a Salkowski curve which is Mannheim curve.
This example is new in the literature.

Example 2. Let us consider the Salkowski curve in E3 given by

β (s) =


78s

√
25−s2 cos(

√
26 arcsin( s

5 ))+
√
26(28s2−625) sin(

√
26 arcsin( s

5 ))
2860 ,√

26(625−28s2) cos(
√
26 arcsin( s

5 ))+78s
√
25−s2 sin(

√
26 arcsin( s

5 ))
2860 ,

25−2s2

4
√
26


with the curvatures κ1 = 1 and κ2 = s/

√
25− s2 and the Frenet frame as

T =


−
√
25−s2 cos(

√
26 arcsin( s

5 ))
5 − s sin(

√
26 arcsin( s

5 ))
5
√
26

,
s cos(

√
26 arcsin( s

5 ))
5
√
26

−
√
25−s2 sin(

√
26 arcsin( s

5 ))
5 ,

− 2√
26

 ,

N =

(
5 sin

(√
26 arcsin

(
s
5

))
√
26

,−
5 cos

(√
26 arcsin

(
s
5

))
√
26

,− 1√
26

)
,

B =


s cos(

√
26 arcsin( s

5 ))
5 −

√
25−s2 sin(

√
26 arcsin( s

5 ))
5
√
26

,
√
25−s2 cos(

√
26 arcsin( s

5 ))
5
√
26

+
s sin(

√
26 arcsin( s

5 ))
5 ,

−
√
25−s2√
26

 .
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If we take v0 = 0 in Example 1, we obtain the Mannheim partner curve β∗ as follows

β∗ (s) =


3(26s

√
25−s2 cos(

√
26 arcsin( s

5 ))+
√
26(2s2−25) sin(

√
26 arcsin( s

5 )))
2860 ,

3
√
26(25−2s2) cos(

√
26 arcsin( s

5 ))+78s
√
25−s2 sin(

√
26 arcsin( s

5 ))
2860 ,

125−6s2

4
√
26

 ,

with the curvatures
κ∗
1 =

5

3s
√
25− s2

and κ∗
2 =

25

3s
√
25− s2

the Frenet frame as

T ∗ =

(
−
sin
(√

26 arcsin
(
s
5

))
√
26

,
cos
(√

26 arcsin
(
s
5

))
√
26

,− 5√
26

)
,

N∗ =
(
− cos

(√
26 arcsin

(s
5

))
,− sin

(√
26 arcsin

(s
5

))
, 0
)
,

B∗ =

(
5 sin

(√
26 arcsin

(
s
5

))
√
26

,−
5 cos

(√
26 arcsin

(
s
5

))
√
26

,− 1√
26

)
.

It can be easily obtained N = B∗ which implies that β is a Mannheim curve whose Mannheim
partner curve is β∗. Here β∗ is a general helix.
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Figure 1: The figure contains same graphics from two different aspects. The red graphic
is β and the black graphic is β∗ in Example 2. (For interpretation of the references to color
in this figure legend, the reader is referred to the free web version of this article.)

In the following example, we give an example for an anti-Salkowski curve which is Mannheim
curve. This example is new in the literature.

Example 3. Let us consider the anti-Salkowski curve in E3 given by

β (s) =


(24−s2)

3/2
(−144−9s2+5s4)
37800 ,

s(7560+1260s2−189s4+5s6)
37800 ,

− 6
5

(
−2 arcsin

(√
24−s2

2
√
6

)
+ sin

(
2 arcsin

(√
24−s2

2
√
6

)))

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with the curvatures κ1 = s√
24−s2

and κ2 = 1 and the Frenet frame as

T =

(
−s3

√
24− s2

(
s2 − 15

)
1080

,
216 + 108s2 − 27s4 + s6

1080
,
−
√
24− s2

5

)
,

N =

(
s− s3

6
+

s5

180
,

√
24− s2

(
36− 18s2 + s4

)
180

,
1

5

)
,

B =

(
1−

s2
(
540− 45s2 + s4

)
1080

,
s
(
24− s2

)3/2 (
s2 − 9

)
1080

,−s

5

)
.

If we take v0 = 0 in Example 1, we obtain the Mannheim partner curve β∗ as follows

β∗ (s) =


√
24−s2(−4608+2004s2−178s4+5s6)

50400 ,
s(20160−3780s2+238s4−5s6)

50400 ,

− 3
10

(
s
√
24− s2 − 8cosec−1

(
2
√
6√

24−s2

))
 ,

with the curvatures
κ∗
1 =

2
√
6

3 (16− s2)
and κ∗

2 =
8

16− s2

the Frenet frame as

T ∗ =

(
s
(
180− 30s2 + s4

)
360

√
6

,

√
24− s2

(
36− 18s2 + s4

)
360

√
6

,−2
√
6

5

)
,

N∗ =

(√
24− s2

(
36− 18s2 + s4

)
72
√
6

,−
s
(
180− 30s2 + s4

)
72
√
6

, 0

)
,

B∗ =

(
−s+

s3

6
− s5

180
,−

√
24− s2

(
36− 18s2 + s4

)
180

,−1

5

)
.

It can be easily obtained N = −B∗ which implies that β is a Mannheim curve whose Mannheim
partner curve is β∗. Here β∗ is a general helix.

Example 4. Let us consider the curve in E3 given by

β (s) =


−3√
2
cos
(√

2s
)
sin s+ 2 cos s sin

(√
2s
)
,

−3√
2
sin
(√

2s
)
sin s− 2 cos s cos

(√
2s
)
,

1√
2
sin s


with the curvatures κ1 = sin s and κ2 = cos s and the Frenet frame as

T =


1√
2
cos
(√

2s
)
cos s+ sin

(√
2s
)
sin s,

1√
2
sin
(√

2s
)
cos s− cos

(√
2s
)
sin s,

1√
2
cos (s)

 ,

N =

(
cos
(√

2s
)

√
2

,
sin
(√

2s
)

√
2

,− 1√
2

)
,
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Figure 2: The figure contains same graphics from two different aspects. The red graphic
is β and the black graphic is β∗ in Example 3. (For interpretation of the references to color
in this figure legend, the reader is referred to the free web version of this article.)

B =


1√
2
cos
(√

2s
)
sin (s)− cos (s) sin

(√
2s
)
,

1√
2
sin
(√

2s
)
sin (s) + cos (s) cos

(√
2s
)
,

1√
2
sin (s)

 .

It can be easily obtained that

σ =

(
κ2

κ1

)′
κ2
1

(κ2
1 + κ2

2)
3/2

= 1.

So β is a slant helix. If we take v0 = 0 in Example 1, we obtain the Mannheim partner curve β∗

as follows

β∗ (s) =

 −
√
2 cos

(√
2s
)
sin s+ 2 sin

(√
2s
)
cos s,

−2 cos
(√

2s
)
cos s−

√
2 sin

(√
2s
)
sin s,√

2 sin s,


with the curvatures

κ∗
1 = κ∗

2 =
sec s

2

and the Frenet frame as

T ∗ =

(
cos
(√

2s
)

√
2

,
sin
(√

2s
)

√
2

,
1√
2

)
,

N∗ =
(
− sin

(√
2s
)
, cos

(√
2s
)
, 0
)
,

B∗ =

(
−
cos
(√

2s
)

√
2

,−
sin
(√

2s
)

√
2

,
1√
2

)
.
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It can be easily obtained that N = −B∗ which implies that β is a Mannheim curve whose
Mannheim partner curve is β∗. Here β∗ is a general helix.
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Figure 3: The figure contains same graphics from two different aspects. The red graphic
is β (lying on the hyperboloid x2 + y2 − z2 = 4) and the black graphic is β∗ (lying on
the sphere x2 + y2 + z2 = 4 ) in Example 4. (For interpretation of the references to color in
this figure legend, the reader is referred to the free web version of this article.)

Now we give a method to obtain anti-Salkowski curve in E3. Let β : I ⊂ R → E3 be a
Mannheim curve except slant helices with the curvatures κ1, κ2 and the curve β∗ be a Mannheim
partner curve of β with the curvatures κ∗

1, κ
∗
2. Assume that β∗ is a anti-Salkowski curve. Then

from (2.18), for a nonzero constant c, we have

κ∗
2 =

m1

√
κ2
1 + κ2

2

f ′ = c or cf ′ = m1

√
κ2
1 + κ2

2 =
cm1 (w

′ + vκ2)
√

κ2
1 + κ2

2

κ1

which implies with (2.4) and (2.10) for v = 0 that

u = −
κ2

κ1(
κ2

κ1

)′ and w = − 1(
κ2

κ1

)′ = 1

c

∫
κ1ds.

So we can give the following corollary.
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Corollary 2.5. Let β : I ⊂ R → E3 be a Mannheim curve except slant helices with the curvatures
κ1, κ2 and the curve β∗ be a Mannheim partner curve of β with the curvatures κ∗

1, κ
∗
2 as

β∗ = β −
κ2

κ1(
κ2

κ1

)′T − 1(
κ2

κ1

)′B
where

κ2 = −cκ1

∫
1∫
κ1ds

ds

Then β∗ is an anti-Salkowski curve with κ∗
2 = c where c ∈ R/ {0}.

Example 5. If we take κ1 = cos s, κ2 = cos s ln
(
cot
(
s
2

))
and c = 1, the condition of Corollary

2.5 is satisfied. So for the curve β with κ1 = cos s, κ2 = cos s ln
(
cot
(
s
2

))
, we obtain

β∗ = β − sin s ln
(
tan

(s
2

))
T + sin sB

which is an anti-Salkowski curve with κ∗
2 = 1.

Similarly, we give a method to obtain Salkowski curve in E3. Let β : I ⊂ R → E3 be a
Mannheim curve except slant helices with the curvatures κ1, κ2 and the curve β∗ be a Mannheim
partner curve of β with the curvatures κ∗

1, κ
∗
2. Assume that β∗ is a Salkowski curve. Then from

(2.18), for a nonzero constant c, we have

κ∗
1 =

−m2κ
2
1

(
κ2

κ1

)′
f ′ (κ2

1 + κ2
2)

= c or f ′ = −
m2κ

2
1

(
κ2

κ1

)′
c (κ2

1 + κ2
2)

=
m1 (w

′ + vκ2)
√
κ2
1 + κ2

2

κ1
.

Then we find

w′ + vκ2 = −m1m2

c

(
κ2

κ1

)′
κ3
1

(κ2
1 + κ2

2)
3/2

= −m1m2

c

(
κ2

κ1

)′
1(

1 +
(

κ2

κ1

)2)3/2

which implies with (2.4) and (2.10) for v = 0 that

w′ = −m1m2

c

(
κ2

κ1

)′
1(

1 +
(

κ2

κ1

)2)3/2
, u = w

κ2

κ1
and 1 + u′ = w′κ2

κ1
.

Then, we have

u′ = w′κ2

κ1
+ w

(
κ2

κ1

)′

and u′ = w′κ2

κ1
− 1,

which causes that

u = −
κ2

κ1(
κ2

κ1

)′ and w = − 1(
κ2

κ1

)′ = −m1m2

c

∫ (
κ2

κ1

)′
1(

1 +
(

κ2

κ1

)2)3/2
ds.

Here
− 1(

κ2

κ1

)′ = −
m1m2

κ2

κ1

c

√
1 +

(
κ2

κ1

)2 + c0
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or

1 =
m1m2

c

κ2

κ1

(
κ2

κ1

)′
√
1 +

(
κ2

κ1

)2 + c0

(
κ2

κ1

)′

.

Integrating both side with respect to s, we find

s+ c1 =
m1m2

c

√
1 +

(
κ2

κ1

)2

+ c0

(
κ2

κ1

)
.

So we can give the following corollary.

Corollary 2.6. Let β : I ⊂ R → E3 be a Mannheim curve except slant helices with the curvatures
κ1, κ2 and the curve β∗ be a Mannheim partner curve of β with the curvatures κ∗

1, κ
∗
2 as

β∗ = β −
κ2

κ1(
κ2

κ1

)′T − 1(
κ2

κ1

)′B.

Then β∗ is a Salkowski curve with κ∗
1 = c satisfying

s+ c1 =
m1m2

c

√
1 +

(
κ2

κ1

)2

+ c0

(
κ2

κ1

)
.

where c ∈ R/ {0} and c0, c1 ∈ R.

Example 6. If we take κ1 = s, κ2 = s
√
s2 − 1, c = m1 = m2 = 1 and c0 = c1 = 0, the condition

of Corollary 2.6 is satisfied. So for the curve β with κ1 = s and κ2 = s
√
s2 − 1, we obtain

β∗ = β − s2 − 1

s
T −

√
s2 − 1

s
B

which is a Salkowski curve with κ∗
1 = 1.

In the following theorem, we characterize the Mannheim partner curves in E3. So we will
give the necesarry and sufficient conditions for a curve to be a Mannheim partner curve.

Theorem 2.7. Let β∗ : I∗ → E3 be a curve with the Frenet frame {T ∗, N∗, B∗} and the non-zero
curvatures κ∗

1, κ
∗
2. Then β∗ is a Mannheim partner curve of a certain Mannheim curve if and

only if there exist differentiable functions a, b, c and λ satisfying

·
c+ bκ∗

2 = 0 1 +
·
a− bκ∗

1 ̸= 0
·
λ = −κ∗

1

(
1 + λ2

)
(2.19)

aκ∗
1 +

·
b− cκ∗

2 = λ
(
1 +

·
a− bκ∗

1

)
. (2.20)

Here ”·” means that derivative with respect to s∗.

Proof. Assume that β is a Mannheim curve parametrized by arc-length s with non-zero curvatures
κ1, κ2 and the curve β∗ is the Mannheim partner curve of the curve β parametrized by with arc-
length or pseudo arc s∗. Then, we can write the curve β as

β(s) = β(h(s∗)) = β∗(s∗) + a(s)T ∗ (s∗) + b (s)N∗(s∗) + c (s)B∗ (s∗) (2.21)
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for all s∗ ∈ I∗ where a(s), b (s) and c (s) are differentiable functions on I∗. Differentiating (2.21)
with respect to s∗, we get

Th′ =
(
1 +

·
a− bκ∗

1

)
T ∗ +

(
aκ∗

1 +
·
b− cκ∗

2

)
N∗ +

(
·
c+ bκ∗

2

)
B∗. (2.22)

By taking the scalar product of (2.22) with B∗, we have
·
c+ bκ∗

2 = 0. (2.23)

Substituting (2.23) in (2.22), we find

Th′ =
(
1 +

·
a− bκ∗

1

)
T ∗ +

(
aκ∗

1 +
·
b− cκ∗

2

)
N∗. (2.24)

By taking the scalar product of (2.24) with itself, we obtain

(h′)
2
=
(
1 +

·
a− bκ∗

1

)2
+

(
aκ∗

1 +
·
b− cκ∗

2

)2

. (2.25)

If we denote

δ =
1 +

·
a− bκ∗

1

h′ and γ =
aκ∗

1 +
·
b− cκ∗

2

h′ , (2.26)

we get
T = δT ∗ + γN∗. (2.27)

Assume that δ = 0. Then we have T = γN∗. Differentiating it with respect to s∗, we find

h′κ1N = −γκ∗
1T

∗ +
·
γN∗ + γκ∗

2B
∗,

which implies that κ∗
1 = 0. This is a contradiction. Thus δ ̸= 0. Similarly we can find γ ̸= 0. So

we obtain
1 +

·
a− bκ∗

1 ̸= 0

and
aκ∗

1 +
·
b− cκ∗

2 = λ
(
1 +

·
a− bκ∗

1

)
where λ = γ/δ. Differentiating (2.27) with respect to s∗, we find

h′κ1N =

(
·
δ − γκ∗

1

)
T ∗ +

(
δκ∗

1 +
·
γ
)
N∗ + γκ∗

2B
∗. (2.28)

By taking the scalar product of (2.28) with B∗, we get
·
δ − γκ∗

1 = 0 and δκ∗
1 +

·
γ = 0,

which implies that
·
λ = −κ∗

1

(
1 + λ2

)
.

Conversely, assume that β∗ is a curve parametrized by arc-length s∗ with non-zero curvatures
κ∗
1, κ

∗
2 and the conditions of (2.19) and (2.20) hold for differentiable functions a, b, c and λ. Then,

we can define a curve β as

β(s∗) = β∗(s∗) + a(s)T ∗ (s∗) + b (s)N∗(s∗) + c (s)B∗ (s∗) (2.29)
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Differentiating (2.29) with respect to s∗, we find

dβ

ds∗
=
(
1 +

·
a− bκ∗

1

)
T ∗ +

(
aκ∗

1 +
·
b− cκ∗

2

)
N∗. (2.30)

which leads to that

h′ =

√〈
dβ

ds∗
,
dβ

ds∗

〉
= m1

(
1 +

·
a− bκ∗

1

)√
1 + λ2, (2.31)

where m1 = sgn
(
1 +

·
a− bκ∗

1

)
. Rewriting (2.30) , we obtain

T =
m1√
1 + λ2

(T ∗ + λN∗) , g (T, T ) = 1. (2.32)

Differentiating (2.32) with respect to s∗, we find
dT

ds
=

m1λκ
∗
2

h′
√
1 + λ2

B∗

which cause that
κ1 =

∥∥∥∥dTds
∥∥∥∥ =

m2m3λκ
∗
2

h′
√
1 + λ2

, (2.33)

where m2 = sgn (λ) and m3 = sgn (κ∗
2). Now, we can find N as

N = m1m2m3B
∗, g (N,N) = 1. (2.34)

Now, we define B as

B = T ×N =
m2m3√
1 + λ2

(λT ∗ −N∗) , g (B,B) = 1.

Lastly we find
κ2 =

〈
dN

ds
,B

〉
=

m1κ
∗
2

h′
√
1 + λ2

̸= 0. (2.35)

Then β∗ is a Mannheim partner curve of β.

If we take a = b = 0 in Theorem 2.7, we have the conditions of classical Mannheim partner
curves in the literature with

β(s∗) = β∗(s∗) + c (s)B∗(s∗).

Also we have
·
c = 0,

·
λ = −κ∗

1

(
1 + λ2

)
, −cκ∗

2 = λ.

So we get
dκ∗

2

ds∗
=

κ∗
1

c

(
1 + c2 (κ∗

2)
2
)
.

Thus we can give the following corollary. The following corollary can be seen in [6].
Corollary 2.8. Let β∗ : I∗ → E3 be a curve with the Frenet frame {T ∗, N∗, B∗} and the non-zero
curvatures κ∗

1, κ
∗
2. Then β∗ is a Mannheim partner curve of a certain Mannheim curve given by

β(s∗) = β∗(s∗) + c (s)B∗(s∗)

if and only if there exist real number c satisfying
dκ∗

2

ds∗
=

κ∗
1

c

(
1 + c2 (κ∗

2)
2
)
.
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