
TAMKANG JOURNAL OF MATHEMATICS

Volume 31, Number 1, Spring 2000

ON CHARACTERIZATIONS OF WEIGHTED COMPOSITION

OPEARTORS ON NON-LOCALLY CONVEX WEIGHTED

SPACES OF CONTINUOUS FUNCTIONS

S. D. SHARMA, KAMALJEET KOUR AND BHOPINDER SINGH

Abstract. For a system V of weights on a completely regular Hausdorff space X and a Hausdorff

topological vector space E, let CVb(X, E) and CV0(X, E) respectively denote the weighted spaces

of continuouse E-valued functions f on X for which (vf)(X) is bounded in E and vf vanishes

at infinity on X all v ∈ V . On CVb(X, E)(CV0(X, E)), consider the weighted topology, which

is Hausdorff, linear and has a base of neighbourhoods of 0 consising of all sets of the form:

N(v, G) = {f : (vf)(X) ⊆ G}, where v ∈ V and G is a neighbourhood of 0 in E. In this

paper, we characterize weighted composition operators on weighted spaces for the case when V

consists of those weights which are bounded and vanishing at infinity on X. These results, in

turn, improve and extend some of the recent works of Singh and Singh [10, 12] and Manhas [6]

to a non-locally convex setting as well as that of Singh and Manhas [14] and Khan and Thaheem

[4] to a larger class of operators.

Introduction

The contents of this paper are in relation with the theory of weighted composition

operators on weighted spaces which are studied by Jamison and Rajagopalan [1], Singh

and Summers [17], Singh and Manhas [14], Singh and one of the authors in [10, 12],

Khan and Thaheem [3, 4], Manhas [6], and two of the authors in [8, 9]. In [17], Singh

and Summers have made a detailed study of composition operators on locally convex

weighted spaces where as multiplication operators on such spaces have been studied by

Singh and Manhas [14] and their results have been generalized by Singh and Singh [10]

to a larger class of operators, known as weighted composition operators. Khan and

Thaheem, in a very recent work [4], have extended the work of [14] to a non-locally

convex setting and their work have been further extended by Singh and Kour [8]. This

paper is a continuation of earlier paper [12] in which a characterization of weighted

composition operators on locally convex weighted space CVb(X, E) is presented and also

it is a continuation to earlier paper [9] where we have studied weighted composition
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operators Wπ,T (Wθ,T ) on non-locally convex weighted spaces CVb(X, E) and CV0(X, E)
induced by π : X → E(θ : X → C) and T : X → X .

The purpose of this paper is to characterize those weighted composition operators
on non-locally convex weighted spaces which are induced by mappings π : X → B(E)
and T : X → X . These results improve and extend, in particular, some of the results
contained in [4, 6, 9, 10, 12, 14].

Preliminaries

Throughout this paper we shall assume, unless stated otherwise, that X is a com-
pletely regular Hausdorff space and E is a non-trivial Hausdorff topological vector space
over K ∈ {R, C}. Then by C(X, E) we denote the vector space of all continuous functions
from X into E. A function f : X → E is said to vanish at infinity if for each neighbour-
hood N of origin in E there exists a compact subset K of X such that f(x) ∈ N for all
x in X\K, the complement of the set K in X . A subset B of E is said to be bounded if
for every neighbourhood N of 0 there exists ε > 0 such that B ⊆ εN . Then we define

C0(X, E) = {f ∈ C(X, E) : f vanishes at infinity on X}, and

Cb(X, E) = {f ∈ C(X, E) : f(X) is bounded in E}, where f(X) = {f(x) : x ∈ X}.

Clearly C0(X, E) ⊂ Cb(X, E). When E = K with the usual topology, these spaces are
respectively denoted by C(X), C0(X) and Cb(X). In case X = N, the set of all natural
numbers with the discrete topology, Cb(N) = l∞, the Banach algebra of all bounded
sequences in K, and C0(N) = c0, the Banach space of null sequences in K. A real-valued
function f on X is called upper-semicontinuous if the set {x ∈ X : f(x) < a} is open for
all a in R. By a weight we mean a non negative upper-semicontinuous function on X .
Let V denote a family of weights on X . Then we say that V > 0 if for every x ∈ X there
is some vx ∈ V such that vx(x) > 0; and that V is direct upward (or a Nachbin family)
if for every pair u, v ∈ V and every a > 0 there exists a w ∈ V such that au(x) ≤ w(x)
and av(x) ≤ w(x) for all x in X . Since there is no loss of generality, we hereafter assume
that the sets of weights are directed upward. Now by a system of weights we mean a set
V of weights on X which additionally satisfies that V > 0.

Let us now consider the following vector spaces (over K) of continuous functions from
X into E for a given system V of weights on X :

CV0(X, E) = {f ∈ C(X, E) : vf vanishes at infinity on X for all v ∈ V } and

CVb(X, E) = {f ∈ C(X, E) : (vf)(X) is bounded in E for all v ∈ V },

where (vf)(X) = {v(x)f(x) : x ∈ X}.
It is clear that CV0(X, E) ⊂ CVb(X, E). On CVb(X, E), consider the weighted topol-

ogy wV , which is Hausdorff, linear and has a base of neighbourhoods of 0 consisting of
all sets of the form:

N(v, G) = {f : (vf)(X) ⊆ G}, where v ∈ V and G is a neighbourhood of 0 in E.
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The space CVb(X, E), equipped with wV is called a weighted space. The space

CV0(X, E), being a subspace of CVb(X, E), is equipped with the topology induced by

CVb(X, E).

The following are some instances of weighted spaces:

(i) If V is the set of all non-negative constant functions on X , then CVb(X, E) =

Cb(X, E) and CV0(X, E) = C0(X, E). The topology wV in this case is the topology

of uniform convergence.

(ii) If V = {aχK : a ≥ 0 and K ⊂ X , K compact}, where χK denotes the characteristic

function of K, then CVb(X, E) = CV0(X, E) = C(X, E) and wV is the compact-

open topology.

(iii) If V is the system of all non-negative weights which vanish at infinity on X , then

CVb(X, E) = CV0(X, E) = Cb(X, E) and wV in this case is the substrict topology.

For more details on such weighted spaces, we refer to Nachbin [7], Singh and Summers

[17], Khan [2] and Khan and Thaheen [3].

Let B(E) denote the vector space of all continuous linear mappings from E into itself,

endowed with the linear topology which has a base of neighbourhoods of 0 consisting of

all sets of the form:

U(B, G) = {A ∈ B(E) : A(B) ⊆ G}, where B is bounded (or a finite) subset of E and

G is a neighbourhood of 0 in E. By Bu(E) (respectively, Bs(E)), we denote the space

B(E) when it is equipped with the uniform (respectively, strong) operator topology, that

is, the topology of uniform (pointwise) convergence on bounded (finite) subsets of E.

Let L(X, E) denote a vector space of functions from X into E. If π : X → B(E)

and T : X → X are mappings such that π.foT ∈ L(X, E) for every f ∈ L(X, E), then

the correspondence f → π.foT is a linear transformation from L(X, E) into itself and

we denote it by Wπ,T (here the multiplication of π and the composite function foT is

defined as π.foT (x) = π(x)(f(T (x)) for all x ∈ X). In case L(X, E) is a topological

vector space and Wπ,T is continuous, it is called a weighted composition operator (in

short, written as WCO) on L(X, E) induced by the pair (π, T ).

In case T is the identity map on X , the corresponding operator Wπ,T is called the

multiplication operator and is denoted by Mπ. On the other hand, when π(x) = I, the

identity operator on E, for all x ∈ X , the corresponding WCO is called the composition

operator and is denoted by CT . For a detailed account of these operators on spaces of

continuous functions, we refer to the monograph [16] of Singh and Manhas as well the

recent survey article [11] of Singh and one of the authors.

A neighbourhood G of 0 in E is called shrinkable if rG ⊆ intG for 0 ≤ r < 1. By

[5, Theorems 5 and 6], every Hausdorff topological vector space has a base of shrinkable

neighbourhoods of 0 and also the Minkowski functional ρG of any such neighbourhood

G is continuous. For details, we refer to [2, 3].

For any t ∈ E and for f ∈ C(X), the function ft defined by setting ft(x) = f(x)t for

all x ∈ X clearly belongs to C(X, E). In particular, the constant t-function 1t belongs

to C(X, E). The conditions under which 1t belongs to CVa(X, E) are recorded in the

following proposition:
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Proposition 1. Let N be a base of neighbourhoods of 0 in E. Then the following

statements are equivalent:

(1.a) Every v ∈ V is bounded (respectively, vanishes at infinity) on X .
(1.b) For every t ∈ E, 1t ∈ CVb(X, E) (respectively, CV0(X, E))
(1.c) Every constant selfmap on X induces a composition operator on CVb(X, E) (re-

spectively, CV0(X, E)).

Proof. We may assume that N consists of closed, balanced and shrinkable sets. The
proof then follows from Propositions 2.1. and 2.2 of [13] by replacing the continuous
seminorms p and q respectively by the Minkowski functionals ρG and ρH of shrinkable

neighbourhoods G and H of 0 in E.

Characterization of WCOs

In this section, we present necessary and sufficient conditions for Wπ,T to be a WCO
on the weighted spaces CVb(X, E) and CV0(X, E). To avoid trival cases, we assume that
for every x ∈ X , there exists an hx ∈ CV0(X) such that hx(x) 6= 0. This holds, in

particular, when X is locally compact or when each v ∈ V vanishes at infinity on X .
In the locally convex setting, a characterization of WCO on CVb(X, E) has been

presented by Singh and one of the authors in [10] under the assumption that π(X) is
equicontinuous whereas on CV0(X, E) it has been reported by Manhas in [6] but under the
condition that X is a kR-space. For non-locally convex spaces, multiplication operators on
weighted spaces have been studied by Khan and Thaheem [4] with the same requirement

as in [6]. It can be noted that either of the condition that “π(X) is equicontinuous” or
“X is a kR-space” is needed only to make the map Mπ continuous (cf. [15]). Also, the
results in [4, 6, 10, 14] characterizing WCOs and multiplication operators on weighted
spaces require as a hypothesis that T is continuous on whole of X and π is continuous
in the uniform operator topology. But for instance when π(x) = 0 for all x ∈ X , Wπ,T

is a continuous operator even if T is not continuous on whole of X . We now see that π
is continuous in the strong operator topology as follows:

If the system V of weights satisfies condition (1.a) of Proposition 1 above, and Wπ,T

is a WCO on CVa(X, E), where a ∈ {b, 0}, then, for any t ∈ E, Wπ,T 1t ∈ CVa(X, E)
and Wπ,T 1t(x) = π(x)t for all x ∈ X . Further, if {xα} is a net in X such that xα → x
in X , then for every shrinkable neighbourhood G of 0 in E, we have

ρG[π(xα) − π(x)](t) = ρG[Wπ,T 1t(xα) − Wπ,T 1t(x)] → 0

This implies that π ∈ C(X, Bs(E)). Note that π is not necessarily continuous in the
uniform operator topology (see [1] for example).

Theorem 2. Let N be a base of neighbourhoods of 0 in E, T : X → X and π : X →
B(E) such that π(x) 6= 0 for all x ∈ X. Assume that π(X) is equicontinuous (or X is

a kR-space). Then the following conditions are sufficient for the pair (π, T ) to induce a

WCO on CVb(X, E):
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(2.1) π ∈ C(X, Bs(E));

(2.2) T is continuous;

(2.3) for every v ∈ V and G ∈ N , there eixsts u ∈ V and H ∈ N such that

v(x)ρG(π(x)t) ≤ uoT (x)ρH(t) for all x ∈ X and t ∈ E.

Furthermore, if the system V consists of bounded weights on X , then the above conditions

(2.1)-(2.3) are also necessary for (π, T ) to induce a WCO on CVb(X, E).

Proof. We may assume that N consists of closed, balanced and shrinkable sets.

Sufficient Part. Assume that (2.1)-(2.3) hold. It can be shown that Wπ,T take

CVb(X, E) into itself as proved in [10] using [14, 15] with the corresponding seminorms

replaced by the Minkowski functionals. To see the continuity of Wπ,T , let {fα : α ∈ ∆}
be a net in CVb(X, E) such that fα → 0, and let v ∈ V and G ∈ N . Using (2.3), choose

u ∈ V and H ∈ N such that v(x)ρG(π(x)t) ≤ u(T (x)ρH(t) for all x ∈ X and t ∈ E.

Since fα → 0, their exists an α0 ∈ ∆ such that fα ∈ N(u, H) for all α ≥ α0. Then, for

any x ∈ X and α ≥ α0, we have

v(x)ρG(π(x)(fαoT (x))) ≤ uoT (x)ρH(fαoT (x)) < 1,

or equivalently, v(x)Wπ,T fα(x) ∈ G. Thus wπ,T is continuous at 0 and hence, by its

linearity, on CVb(X, E).

Necessary Part. Assume that all weights in V are bounded. Then, as noted above,

(2.1) holds while the proof of (2.2) is similar the one given in Theorem 2.2 of [12]. To

prove (2.3), let v ∈ V and G ∈ N . Then, by continuity of Wπ,T , there exists u ∈ V and

H ∈ N such that

Wπ,T (N(u, H)) ⊆ N(v, G). (∗)

We claim that v(x)ρG(π(x)t) ≤ 3uoT (x)ρH(t) for all x ∈ X and t ∈ E. To prove this,

let x0 ∈ X and s ∈ E be fixed, take y = T (x0), and set ε = u(y)ρH(s). Then consider

the following cases:

(I) ε 6= 0; (II) ε = 0; that is, (IIa) u(y) = 0, ρh(s) 6= 0;

(IIb) u(y) 6= 0, ρH(s) = 0; (IIc) u(y) = 0, ρH(s) = 0.

Case (I): Suppose ε 6= 0. Then the set D1 = {x ∈ X : u(x)ρH(s) < 3ε} is an open

neighbourhood of y and so according to Nachbin’s Lemma [7, page 69], there exists an f ∈
CVb(X) such that 0 ≤ f ≤ 1, f(y) = 1, and f(X\D1) = {0}. Write h = (1/3ε)fs. Then

h ∈ CVb(X, E) and for any x ∈ X, ρH(u(x)h(x)) = (1/3ε)u(x)f(x)ρH(s) ≤ 1, which

means that h ∈ N(u, H). By (∗), Wπ,T h ∈ N(v, G) which gives v(x)ρG(π(x)hoT (x)) ≤ 1

for every x ∈ X . This inequality when evaluated at x0 gives v(x0)ρG(π(x0)s) ≤ 3ε =

3uoT (x0)ρH(s).
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Case (IIa): When u(y) = 0, ρH(s) 6= 0, we argue by contradiction. Suppose

v(x0)ρG(π(x0)s) > 0 and write δ = (1/3)v(x0)ρG(π(x0)s). Then the set D2 = {x ∈
X : u(x) < δ[ρH(s)]−1} is an open neighbourhood of y and so again by Nachbin’s

lemma there exists an f ∈ CVb(X) such that 0 ≤ f ≤ 1, f(y) = 1 and f(X\D2) =

{0}. Write h = (1/δ)fs. Then h ∈ N(u, H) and Wπ,T h ∈ N(v, G), which implies

that v(x)ρG(π(x)hoT (x)) ≤ 1 for every x ∈ X . This when evaluated at x = x0 gives

u(x0)ρG(π(x0)s) ≤ δ, which is absurd. Thus we must have v(x0)ρG(π(x0)s) = 0. For

cases (IIb) and (IIc), we take D3 = {x ∈ X : u(x) < δ +u(y)} and D4 = {x ∈ X : u(x) <

δ} respectively as open neighbourhood of y and proceed in the same way as in case (IIa).

Thus, for all cases, we have v(x0)ρG(π(x0)s) ≤ uoT (x0)ρH(s). Since x0 ∈ X and s ∈ E

are arbitrarily taken, we conclude that v(x)ρG(π(x)t) ≤ 3uoT (x)ρH(t) for all x ∈ X and

t ∈ E, proving our claim as well as the proof of the theroem.

The conditions of Theorem 2 above are not sufficient for the pair (π, T ) to induce

a WCO on CV0(X, E) as already noted in [17, page 307] for the scalar valued space

CV0(X). In the following theorem, we shall present a necessary and sufficient condition

for Wπ,T to be a WCO on CV0(X, E), which also answers a remark given in [16, page

145] in the present setting.

Theorem 3. Let N be a base of neighbourhoods of 0 in E, T : X → X and π : X →
B(E) such that π(x) 6= 0 for all x ∈ X. Assume that π(X) is equicontinuous (or X is

a kR-space). Then the following conditions are sufficient for the pair (π, T ) to induce a

WCO on CV0(X, E):

(3.1) π ∈ C(X, Bs(E));

(3.2) T is continuous;

(3.3) for every v ∈ V and G ∈ N , there exists u ∈ V and H ∈ N such that v(x)ρG(π(x)t)

≤ uoT (x)ρH(t) for all x ∈ X and t ∈ E.

(3.4) for every v ∈ V , G ∈ N , ε > 0 and compact subset K of X , the set T−1(K) ∩ Kt

is compact for all t ∈ E, where Xt = {x ∈ X : v(x)ρG(π(x)t) ≥ ε}.
Furthermore, the above conditions (3.1)-(3.4) are necessary for (π, T ) to induce a

WCO on CV0(X, E) if all the weights in V vanish at infinity on X .

Proof. We may assume that N consists of closed, balanced and shrinkable sets.

Sufficient Part. Assume that (3.1)-(3.4) hold. Then, by Theorem 2 above, Wπ,T is

a WCO on CVb(X, E). We show that CV0(X, E) is invariant under Wπ,T . For this, let

f ∈ CV0(X, E), v ∈ V and G ∈ N . By (3.3) choose u ∈ V and H ∈ N such that

v(x)ρG(π(x)t) ≤ uoT (x)ρH(t) for all x ∈ X and t ∈ E. (∗∗)

Since f ∈ CV0(X, E), given any ε > 0 there exists a compact subset K of X such that

u(x)ρH(f(x)) < ε for all x ∈ X\K. Also, for any t ∈ E, set Kt = T−1(K) ∩ Xt is

compact, in view of (3.4). Now if x 6∈ Kt, then either x 6∈ T−1(K) or x 6∈ Xt. First

suppose that x 6∈ T−1(K). Then T (x) ∈ X\K, and so we have uoT (x)ρH(foT (x)) < ε.

By (∗∗), this implies that v(x)ρG(π(x)(foT (x))) < ε. If x 6∈ Xt, then v(x)ρG(π(x)t) < ε



CHARACTERIZATIONS OF WEIGHTED COMPOSITION OPEARTORS 7

and in particular this implies that v(x)ρG(π(x)(foT (x))) < ε. Thus vWπ,T f : X → E

vanishes at infinity. Since v ∈ V was arbitrary, we conclude that Wπ,T f ∈ CV0(X, E).

Necessary Part. Assume that all the weights in V vanish at infinity and let Wπ,T

be a WCO on CV0(X, E). Then the conditions (3.1)-(3.3) can be proved in a similar

way as in Theorem 2 above. To prove (3.4), take v ∈ V , G ∈ N , ε > 0 and let K

be a compact subset of X . Then by Nachbin’s Lemma [7, page 69] there exists an

f ∈ CV0(X) such that 0 ≤ f ≤ 1 and f(K) = {1}. For any t ∈ E, the function

ft ∈ CV0(X, E) since weights are vanishing. So Wπ,T ft ∈ CV0(X, E), which means

that the set A = {x ∈ X : v(x)ρG(π(x)(foT (x))) ≥ ε} is compact. We note that

Kt = T−1(K) ∩ Xt is a closed subset of A. Hence Kt is compact.

Remarks. (i) Theorems 2 and 3 above improve Theorem 3.1 of [4], Theorem 2.1 of

[6], Theorem 3.2 of [10], Theorem 2.1 of [14] and Theorems 3.3 and 3.4 of [9] as well as

extend Theorem 2.2 of [12] to a non-locally convex setting.

(ii) On non-locally convex weighted spaces FVb(X, E) and FV0(X, E) of E-valued

functions (not necessarily continuous) on a topological space X , weighted composition

operators have been studied by two of the authors in [8].
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