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ON PSEUDO GENERALIZED QUASI-EINSTEIN MANIFOLDS

A. A. SHAIKH AND SAN]JIB KUMAR JANA

Abstract. The object of the present paper is to introduce a type of non-flat Riemannian manifold called pseudo gen-

eralized quasi-Einstein manifold and studied some properties of such a manifold with several non-trivial examples.

1. Introduction

In 2000 M. C. Chaki and R. K. Maity [1] introduced the notion of quasi-Einstein manifold.
A non-flat Riemannian manifold (M", g) (n > 2) is said to be quasi-Einstein manifold if its
Ricci tensor S of type (0, 2) is not identically zero and satisfies the following:

SX,Y)=ag(X,Y)+ BAX)A(Y) (1.1

where «, f are scalars such that § # 0 and A is a non-zero 1-form defined by g(X, U) = A(X)
for all vector fields X; U being a unit vector field, called the generator of the manifold. An
n-dimensional manifold of this kind is denoted by (QE),. The scalars «, §§ are known as the
associated scalars.

Recently U. C. De and G. C. Ghosh [3] introduced the notion of generalized quasi-Einstein
manifold. A non-flat Riemannian manifold (M",g) (n > 2) is said to be generalized quasi-
Einstein manifold if its Ricci tensor S of type (0, 2) is not identically zero and satisfies the
following condition:

SX,Y)=ag(X,Y)+ BAX)AY)+yBX)B(Y) (1.2)

where @,  and y are non-zero scalars and A, B are non-zero 1-forms defined respectively
by g(X,U) = A(X) and g(X, V) = B(X) for all vector fields X. The unit vector fields U and
V corresponding to the 1-forms A and B are orthogonal i.e., g(U,V) = 0. Also U and V are
known as the generators of the manifold. Such an n-dimensional manifold of this kind is
denoted by G(QE) .

The present paper deals with a non-flat Riemannian manifold called pseudo generalized
quasi-Einstein manifold.
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A Riemannian manifold (M", g) (n > 2) is called a pseudo generalized quasi-Einstein manifold
if its Ricci tensor S of type (0, 2) is not identically zero and satisfies the following:

SX,Y)=ag(X,Y)+BAX)AY)+yB(X)B(Y)+6D(X,Y) (1.3)
where «, B, y and 6 are non-zero scalars and A, B are non-zero 1-forms such that
gX,U)=AX), gX,V)=B(X) (1.4)

for all vector fields X; U, V being mutually orthogonal unit vector fields called the generators
of the manifold, D is a symmetric (0,2) tensor, with zero trace, which satisfies the condition

D(X,U)=0 (1.5)

for all vector fields X. Also a, f, v and 6 are called the associated scalars; A, B are the asso-
ciated 1-forms of the manifold and D is called the structure tensor of the manifold. Such an
n-dimensional manifold will be denoted by P(GQE) .

Section 2 is concerned with the preliminaries and it is shown that the scalars @ + f and
a+7vy+0D(V,V) are the Ricci curvatures along the directions of the vector fields U and V re-
spectively. After preliminaries, in section 3, we prove the existence theorem for a P(GQE) .
Section 4 is devoted to the conformally flat P(GQE), and introduced the notion of pseudo
generalized quasi-constant curvature. It is shown that a manifold of pseudo generalized quasi-
constant curvature is a P(GQE) ;. But the converse is not true, in general. Howevera P(GQE)3
is a manifold of pseudo generalized quasi-constant curvature. Section 5 deals with some ge-
ometric properties of P(GQE),. In section 6 we investigate the application of P(GQE)4 to
the general relativistic viscous fluid spacetime admitting heat flux and it is shown that such
a spacetime obeying Einstein’s equation with a cosmological constant is a connected semi-
Riemannian P(GQE)4. In the last section we discover several non-trivial examples of the
P(GQE),, which are neither (QE); nor G(QE),.

2. Preliminaries

We considera P(GQE), (n>2). Let{e; :i =1,...,n} be an orthonormal basis of the tangent
space at any point of the manifold. Then setting X = Y = ¢; in (1.3) and taking summation
over i,1 < i < n we obtain

r=na+p+vy, (2.1)

where r is the scalar curvature of the manifold. Also from (1.3) we have

SWU,U)=a+p, 2.2)
S(V,V)=a+y+6D(V,V) and 2.3)
S(U,V)=0. (2.4)

It is known that if P be a unit vector field, then S(P, P) is the Ricci curvature in the direction of
P. Hence from (2.2) and (2.3) we can state the following:
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Theorem 2.1. In a P(GQE), (n > 2), the scalars a + 8 and a +y +0D(V,V) are the Ricci
curvatures in the directions of the generators U and V respectively.

Let Q and L be the symmetric endomorphisms of the tangent space at any point of the
manifold corresponding to the Ricci tensor S and the structure tensor D respectively i.e.,
g(QX,Y)=8(X,Y)and g(LX,Y) = D(X,Y). Further, let s2 and d? denote the squares of the

n
length of the Ricci tensor S and the structure tensor D respectively. Then st = Y S(Qej,e;)
i=1

n
and d? = D(Lej, e;). Now from (1.3) we get
=1

1

n n
Y S(Qeje) = (n—2)a* +(@+P)* +(@+y)* +ydD(V,V)+8 Y_ S(Le;, e;). (2.5)
i=1 i=1
Also from (1.3) we obtain
n n
S(Lej,e;) =yD(V,V)+8 Y_ D(Le;, e;). (2.6)
=1 i=1

1

Hence from (2.5) and (2.6) it follows that
s =na® + B2 —y? +2[af+yS(V, V)] +62d>. 2.7

From (2.7) it follows that 6 > % (resp. <, =) according as na® + ﬁz - 7/2 +2[af+yS(V, V)] <0
(resp. >, =). Hence we can state the following:

Theorem 2.2. In a P(GQE), (n > 2) the associated scalar ¢ is less than or equal or greater
than the ratio which the length of the Ricci tensor S bears to the length of the structure tensor D
according as na? + 2 —y? + 2[af+yS(V, V)] > 0 or, = 0 or, < 0 respectively.

3. Existence Theorem of P(GQE), (n> 2)

To prove the existence theorem of P(GQE), (n > 2), we first state a well-known result ([5],
[6]) as follows:

Proposition 3.1. For a connected orientable manifold M" the following assertions are
equivalent:

1. There is a non-vanishing vector field V on M".
2. Either M" is non-compact, or M" is compact and has Euler number y(M"™) = 0.

Theorem 3.1. Let (M", g) be a connected orientable Riemannian manifold which is either
non-compact or compact with vanishing Euler number. If the Ricci tensor S of type (0,2) of a
Riemannian manifold is non-vanishing and satisfies the following relation

SY,2)S(X, W) =S(X,2)S(Y,W) = p1[g(Y, 2)g(X, W) — g(X, 2)g (Y, W)]
+p28(T'X,W)g(Y,2) (3.1
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where p1, p2 are non-zero scalars and T is the symmetric endomorphism of the tangent space
at any point of the manifold corresponding to a tensor field of type (0,2), then the manifold is a
pseudo generalized quasi-Einstein manifold.

Proof. From the Proposition 3.1, it follows that there is a non-vanishing vector field V'
on the manifold (M", g) under consideration such that g(X, V) = B(X) for all vector fields X.
Then setting Y = Z = V in (3.1) yields
SWV,MSX, W) =S(X,V)SW,V) = p1[g(V,V)g(X, W) -g(X,V)g(W, V)]

+p2g(TX,W)g(V,V),

which can be written as

aS(X,W)-B(QX)B(QW) = p1||V||2g(X, W) —p1B(X)B(W)

+p2lIVIPg(TX, W) 3.2)

where a = S(V,V) and B(QX) = g(QX, V) = S(X, V). Since S(V, V) is the Ricci curvature in the
direction of the generator V and the Ricci tensor is non-vanishing, it follows that the scalar a
is non-vanishing. From (3.2) it follows that

S(X, W) = ag(X, W) + BAX) A(W) +yB(X)B(W) +6D(X, W)
VI VI :
where a = 22— =1y = - 5 = 2220 A(X) = B(QX) and D(X, W) = g(TX,W). Since

V is non-null, S # 0, p; and p, are non-zero scalars, it follows that «, f, y, § are non-zero
scalars. Hence the manifold is a P(GQE) ,,.

4. Conformally flat P(GQE), (n>3)

Let R be the curvature tensor of type (0, 4) of a conformally flat P(GQE) . Then we have

RX,Y,Z,W) = ﬁ[g(Y,Z)S(X, W) -g(X,Z)S(Y, W)
+8(X, W)S(Y,2) - g(Y,W)S(X, 2)]

-
—m[g(Y,Z)g(X,W)—g(X,Z)g(Y,W)], (4.1)

where r is the scalar curvature of the manifold. Using (1.3) and (2.1) in (4.1) we obtain
ROGY, 2wy = S ZBY oy e (x, W) - g(X, 2)g(Y, W]
y 4o » (n _ 1) (n _ 2) g » g ’ g y g »

% [g(Y, 2) A(X)AW) — g(X, Z) A(Y) A(W)

+8(X, WAV AZ) - g(Y, W AX) A(2)]
+—L g0V, 2)BOOBW) - g(X, 2)BY)BW)
+g(X,W)B(Y)B(Z) - g(Y,W)B(X)B(Z)]

+

+%[g(Y,Z)D(X, W) -g(X,Z)D(Y, W)
+g8(X,W)D(Y,Z)-g(Y,W)D(X, Z)]. (4.2)
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According to Chen and Yano [2], a Riemannian manifold (M", g) (n = 3) is said to be of
quasi-constant curvature if it is conformally flat and its curvature tensor R of type (0, 4) has
the form

R(X,Y,Z,W) = a1[g(Y,2)g(X, W) — g(X,Z)g(Y,W)]
+ax[g(Y,Z) A(X)A(W) — g(X, 2) A(Y) A(W)
+8(X,W)A(Y)A(Z) - g(Y,W)A(X) A(Z)],
where Ais a 1-form and a,, a, are scalars of which ay # 0.
Also according to De and Ghosh [3], a Riemannian manifold (M", g) (n = 3) is said to be of
generalized quasi-constant curvature if it is conformally flat and its curvature tensor R of type
(0, 4) has the form
RX,Y,Z,W) = b[g(Y,Z2)g(X, W) -g(X,Z)g(Y,W)]
+b2[g(Y, Z) A(X)A(W) — g(X, Z) A(Y) A(W)
+g(X,W)A(Y)A(Z) — g(Y, W) A(X) A(Z)]
+b3(g(Y,Z)B(X)B(W) - g(X, Z)B(Y)B(W)
+g(X,W)B(Y)B(Z) — g(Y,W)B(X)B(Z)],
where A and B are 1-forms and by, by, b3 are non-zero scalars. Generalizing this notion we
define the manifold of pseudo generalized quasi-constant curvature as follows:
A Riemannian manifold (M", g) (n = 3) is said to be of pseudo generalized quasi-constant cur-
vatureif it is conformally flat and its curvature tensor R of type (0, 4) satisfies the condition
R(X,Y,Z,W) = a[g(Y,2)g(X, W) -g(X,Z)g(Y,W)]
+a2[g(Y, Z) A(X)A(W) — g(X, Z) A(Y) A(W)
+g(X,W)A(Y)A(Z) - g(Y, W) A(X) A(Z)]
+a3(g(Y,Z)B(X)B(W)-g(X,Z)B(Y)B(W)
+g(X,W)B(Y)B(Z) — g(Y,W)B(X)B(Z)]
+a4[g(Y,Z)D(X, W) - g(X,Z)D(Y, W)
+g(X,W)D(Y,Z)-g(Y,W)D(X, Z)], (4.3)

where a1, a»,..., a4 are non-zero scalars and D is a symmetric tensor of type (0, 2).
Now the relation (4.2) can be written as

R(X,Y,Z,W) = B1(g(Y,2)g(X, W) - g(X, Z2)g(Y,W)]
+P218(Y, 2) AX)A(W) — g(X, Z) A(Y) A(W)
+8(X,W)A(Y)A(Z) — g(Y, W) A(X) A(Z)]
+B3(g (Y, Z)B(X)B(W) - g(X, Z) B(Y)B(W)
+g(X,W)B(Y)B(Z) - g(Y,W)B(X)B(Z)]
+B418(Y,Z)D(X,W)-g(X,Z)D(Y, W)
+g8(X,W)D(Y,Z)-g(Y,W)D(X, Z)], (4.4)
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where ; = %, B2 = %, Bs = % and B4 = % are non-zero scalars. Comparing
(4.3) and (4.4), it follows that the manifold is of pseudo generalized quasi-constant curvature.

This leads to the following:

Theorem 4.1. A conformally flat P(GQE), (n > 3) is a manifold of pseudo generalized
quasi-constant curvature.

Let us now consider a manifold of pseudo generalized quasi-constant curvature. Then
from (4.3) it follows that

S(X,Y)=ag(X,Y)+PAX)AY) +7B(X)B(Y) +5D(X,Y),

where @ = (n—1)a; +as+as, ﬁ_ =(n-2ay, y=((n-2)as and 6 = (n—2)a4 are non-zero scalars.
Thus we have the following:

Theorem 4.2. A manifold (M", g) (n > 2) of pseudo generalized quasi-constant curvature
isa P(GQE),.

Now a P(GQE), is not a manifold of pseudo generalized quasi-constant curvature in gen-
eral. However, since a 3-dimensional Riemannian manifold is conformally flat, it follows by
virtue of Theorem 4.1 that a P(GQE)3 is a manifold of pseudo generalized quasi-constant cur-
vature. This leads to the following:

Corollary4.1. A P(GQE)3 is a manifold of pseudo generalized quasi-constant curvature.

5. Geometric Properties of P(GQE),, (n>2)

This section deals with some geometric properties of P(GQE), (n > 2). From (1.3) it fol-
lows that

SX,U)=(a+pP)gX,U) forall X.
This leads to the following:

Theorem 5.1. In a P(GQE),, (n > 2) the generator U is an eigenvector of the Ricci tensor S
corresponding to the eigen value a + f5.

Next we suppose thatina P(GQE), (n > 2), the generator U is a parallel vector field. Then
we have VxU = 0 for all X, which implies that R(X,Y)U = 0 and hence S(X,U) = 0 for all X.
Again from (1.3) we have

S(X,U) =(a+ P)AX).
Therefore we must have a + = 0. Thus we have the following:

Theorem 5.2. If the generator U of a P(GQE), (n > 2) is a parallel vector field then the
associated scalars a, 5 are related by a + 5 = 0.
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Again since U and V are orthogonal unit vector fields, we have from (2.2) that
gQU,U)=a+p,

which implies that QU is orthogonal to U if and only if a + = 0. Hence we can state the
following:

Theorem 5.3. In a P(GQE),, (n> 2), QU is orthogonal to U ifand only ifa+ = 0.

Further from (2.3) we obtain
gQV,V)y=a+y+dD(V,V),

which implies that QV is orthogonal to V if and only if @ +y + 6 D(V, V) = 0. Thus we have the
following:

Theorem 5.4. Ina P(GQE),, (n > 2), QV isorthogonal toV ifand only if a+y+06D(V,V) =

We now consider a compact orientable P(GQE),, (n > 2) without boundary. From (1.3) we
have
SX, X)=ag(X,X)+BAX)AX)+yB(X)B(X) +6D(X, X). (5.1)

Let us assume that Oy be the angle between U and any vector field X; Oy be the angle between

x,0) gX, V)
V and any vector field X. Therefore, cosOy = L2 and cosfOy = . Further, we
V8X,X) V88X, X)

assume that 8y = 0y. Then we have cosfy = cosfOy and consequently g(X,V) = g(X,U).
Hence from (5.1) we have

SX, X) =z (a+B+y)igX, U)}? when a,B,7,6D(X,X) are positive. (5.2)

Definition 5.1. A vector field H in a Riemannian manifold (M", g) (n > 2) is said to be
harmonic [7] if
dr=0 and 671=0 (5.3)

where 7(X) = g(X, H) for all X.
It is known from [7] that in a compact, orientable Riemannian manifold (M", g) (n > 2), the
following relation holds

1
f [S(X,X) - =|dt|* +|VX[> = (67)?ldv =0 for any vector fieldX,  (5.4)
M=P(GQE), 2

where ‘dv’ denotes the volume element of M. Now let X € y(M) be a harmonic vector field.
Then (5.4) yields by virtue of (5.3) that

f [S(X,X)+|VX|2]dl/=0 for any vector field X. (5.5)
M
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Hence if each of , §, v, 6 D(X, X) of P(GQE), are positive, then (5.2) and (5.5) together yields
f [(a+B+PIgX, DI +|VXI*ldv <0,
M

which implies by virtue of a + f+y > 0 that
g(X,U)=0 and VX =0 forany vector field X. (5.6)

Thus from (5.6), it follows that X is orthogonal to U and X is a parallel vector field.
Similarly for the case, Oy < 0y, arguing as before it can be shown that g(X,V) =0and VX =0
for any vector field X. Thus we can state the following:

Theorem 5.5. In a compact, orientable P(GQE),, (n > 2) without boundary any harmonic
vector field X is parallel and orthogonal to one of the generators of the manifold which makes
greatest angle with the vector X provided that a, B, y and 6 D(X, X) are positive scalars.

6. General relativistic viscous fluid spacetime admitting heat flux

Let (M*%, g) be a connected semi-Riemannian viscous fluid spacetime admitting heat flux
and satisfying Einstein’s equation with a cosmological constant 1. Also let U be the unit
timelike velocity vector field of the fluid, V' be the unit heat flux vector field and D be the
anisotropic pressure tensor of the fluid. Then we have

gu,u)=-1, gv,vy=1, gU,V)=0, (6.1)
D(X,Y)=D(Y,X), Tr.D=0, D(X,U)=0 forall vector fields X. (6.2)

Let
g(X,U)=A(X), g(X,V)=B(X)forall vector field X. (6.3)

Also let T be the energy-momentum tensor of type (0, 2) describing the matter distribution of
such a fluid and it be of the following form [4]

TX,Y)=pg(X,Y)+(0c+pAX)A(Y)+B(X)B(Y)+D(X,Y) (6.4)

where o and p are the energy density and isotropic pressure respectively. General relativity
flows from Einstein’s equation given by

S(X,Y) - %g(X, V)+Ag(X,Y)=kT(X,Y)

for all vector fields X, Y, where S is the Ricci tensor of type (0, 2), r is the scalar curvature, A is
a cosmological constant. Thus by virtue of (6.4), the above equation can be written as

S(X,Y) - %g(X, V)+A8(X,Y) = klpg(X,Y) + (0 + p) A(X)A(Y)
+B(X)B(Y)+D(X,Y)]. (6.5)



ON PSEUDO GENERALIZED QUASI-EINSTEIN MANIFOLDS 17

Let us now consider a P(GQE)4 viscous fluid spacetime with the generator U as the flow vector
field of the fluid.
Again from (6.5) we have

SX,Y)=[kp+ % -ANgX,Y)+k(c+pAX)A(Y)+ kB(X)B(Y)+kD(X,Y)

which shows that the spacetime under consideration is a P(GQE)4 with kp + % -A, k(o +p),
k and k as associated scalars; A and B as associated 1-forms; U and V as generators and D as
the structure tensor of type (0, 2). Hence we can state the following:

Theorem 6.1. A viscous fluid spacetime admitting heat flux and satisfying Einstein’s equa-
tion with a cosmological constant is a 4-dimensional connected semi-Riemannian pseudo gen-
eralized quasi-Einstein manifold.

Using (1.3) and (2.1) in (6.5) we get

2kp-21+2a+p+y
2

g(X,Y) =[B-k(o+ p)lAX)AY)
+(y—-k)BX)B(Y)-kD(X,Y). (6.6)
Setting Y = U in (6.6) we obtain by virtue of (6.1)—(6.3) that

2kp-21+2a+p+y
2

A(X) =[ko +kp - BIA(X) for all vector field X. (6.7)

Again setting X = U in (6.7) we obtain

2 3 -2A
g 2a+3pry-21

6.8
ok (6.8)
Now contracting (6.5) we get
r=2r+41=k@Bp-o+1),
which yields by virtue of (2.1) and (6.8) that
61 -6 —-y-2k
_ at+p-y-2k 6.9)

6k

Since a, f, y are not constants, from (6.8) and (6.9) it follows that o and p are not constants.
Hence we can state the following:

Theorem 6.2. If a viscous fluid P(GQE)4 spacetime admitting heat flux obeys Einstein’s
equation with a cosmological constant then none of the energy density and isotropic pressure
of the fluid can be a constant.

Now if the associated scalars a, 3, y are constants then it follows from (6.8) and (6.9) that
o and p are constants. Since o > 0 and p > 0, we have from (6.8) and (6.9) that

2a+306+ 6a—B+y—-2k
<aTﬁ’Y andﬂ/>%

A
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and hence 5 ok et 3
6 2
Thus we have the following:

Theorem 6.3. If a viscous fluid P(GQE)4 spacetime admitting heat flux obeys Einstein’s
equation with a cosmological constant A, then A satisfies the relation (6.10).

7. Some examples of P(GQE),

This section deals with several examples of P(GQE),,. On the real number space R" (with
coordinates x!, x2,...,x") we define a suitable Riemannian metric g such that R” becomes a
Riemannian manifold (M", g). We calculate the components of the Ricci tensor and then we
verify the defining condition (1.3).

Example 1. We define a Riemannian metric on the 4-dimensional real number space R*
by the formula

ds® = gijdxidxj = (dx"H? + (xH%(dx*)? + (x' sin xD)2(dx®)? + (dx4)2,

(i,j=1,2,...,4), (71)

where x! # 0 and 0 < x? < 7. Then the only non-vanishing components of the Christoffel
symbols and the curvature tensor are
2 2 2

1
1 _ 1wl Dy 2212 _ + 3 13 _ 2 12 s
5 =—x",I33=—x(sinx”)",I'{, = _x1 =TI7;,T5;5 =cotx”,T'5;3 = —sinx” cos x~,

Rozsp = —(x'sinx%)?

and the components which can be obtained from these by the symmetry properties. Using
the above relations, we can find the non-vanishing components of Ricci tensor as follows:

So2=-1,

S33 = —(sinxz)z.

Also it can be easily found that the scalar curvature of the manifold is non-zero and is given by
—ﬁ # 0. Therefore R* with the considered metric is a Riemannian manifold (M*, g) of
non-vanishing scalar curvature. We shall now show that this M*is a P(GQE), i.e., it satisfies
the defining relation (1.3). Let us now consider the associated scalars, associated 1-forms and

structure tensor as follows:

r =

1 1 1 2

Twe Pt ee e T e (7.2)

Ai(x) = x' for i=2,

=0 otherwise, (7.3)
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Bij(x) =1 for i=2,
=x' fori=3,

=0 otherwise, (7.4)

1 .
Dij(x)=§ for i=j=1,4,

1
=—— fori=j=2,3,
> J

=—x! for i=2,j=3,

=0 otherwise (7.5)

at any point x € M. In our M?*, (1.3) reduces with these associated scalars, 1-forms and struc-
ture tensor to the following equations:
(i) Sn=agn+pA1A+yB1B+6Dn,
(i) Sz =aga+BA2A2+yB2By+6Do»,
(iii) So3 = ago3 + ﬁAgAg + YBZB?) +0Do3,
(iv) S33=agss+ BA3A3+YyBsBs+06Ds3,
(V) Sas=agu+PAyAs+yByBs+06Dyy
since for the cases other than (i)—(v) the components of each term of (1.3) vanishes identically
and the relation (1.3) holds trivially. Now from (7.2)—(7.5) we get the following relations for the
right hand side (R.H.S.) and left hand side (L.H.S.) of (i):

R.H.S.of (i) = agi+ ﬁAlAl +YBIBI + 6D11 =0=3S5;; = L.HS. of (i).
Again
R.H.S. of (ii) = agoo + ﬁAgAg +YBng +5D22 =-1=589=L.H.S. of (v),
R.H.S. of (iv) = ags3 + BA3A3 +YB3B3 + 8 D33 = —(sin x*)? = S33 = L.H.S. of (iv).
By a similar argument as in (i), (ii) and (iv) it can be shown that the relations (iii) and (v) are

true. Therefore, (M*, g) is a P(GQE)4 which is neither (QE)4 nor G(QE)4. Hence we can state
the following:

Theorem 7.1. Let (M*, g) be a Riemannian manifold endowed with the metric given by
ds® = gijdxidxj = (dxH? + (xH%(dx®? + (x' sin x2)%(dx>)? + (dxh)?,
(i)j = 1)2)--- 74))

where x' #0 and 0 < x* < 5. Then (M*, g) is a pseudo generalized quasi-Einstein manifold of
non-vanishing scalar curvature which is neither quasi-Einstein nor generalized quasi-Einstein.

Example 2. We define a Riemannian metric on the 4-dimensional real number space R*
by the formula

ds® = gij dx'dxl = e* (dxH? + exz(dxz)2 +e* (dx®)? + (sin 3% (dxh?,

(i,j=1,2,...,4), (76)
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3

where 7 < x° < 7. Then the only non-vanishing components of the Christoffel symbols and

the curvature tensor are

1 3
1 __ 1 _r2 _3 4 _ 3 3 _ _,—xP .3 3
Iy =-3 =I5,=T%5;, TIj3,=cotx’, Iy,=-e~ sinx cosx’,

3 2

3
Ryguz =1+ 3 sin x cos x® — 3(cos x°)
and the components which can be obtained from these by the symmetry properties. Using
the above relations, we can find the non-vanishing components of Ricci tensor as follows:

3
S3z=1+ 3 cotx® = 2(cot x3)?,

3 3
Spu=e Y [1+ > sin x® cos x® — 3(cos x°)?].

Also it can be easily shown that the scalar curvature of the manifold is non-vanishing. There-
fore R* with the considered metric is a Riemannian manifold (M?, g) of non-vanishing scalar
curvature. We shall now show that this M* is a P(GQE); i.e., it satisfies the defining condition
(1.3). Let us now consider the associated scalars, associated 1-forms and structure tensor as
follows:

a=—e* (cotx®)?, = 3" cotx®, y= e‘x3, S=e* (cotx)?, 7.7

3¢ +2e* cotxd .
Ai(x) = \| = fori=3,

3
= \/E(cotx3)2+1 for i =4,

=0 otherwise, (7.8)

B;i(x) = \/e*’ — (cotx3)2 for i =3,

=0 otherwise, (7.9)

Djj(x) = e for i=j=1,

e for i=j=2,

—e* for i=j=3,

e** — (cotx3)2][3e** +2e*' cotx3
\/[ ( il ]fori=3,j=4,

6
2 ..
=e for i=j=4,

=0 otherwise (7.10)

at any point x € M. In our M?*, (1.3) reduces with these associated scalars, 1-forms and struc-
ture tensor to the following equations
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(i) S11=agn+pA1A+yB1B1+6Dn;,
(i) Soo =g+ PfA2Ar+YBaBo+06Dy2,
(iii) 533 =wg33+ ﬁAgAg + YB3B3 + 5D33,
(iv) 534 =wg3+ ﬁA3A4 + YB3B4 + 5D34,
(V) Sas=agus+PAsAy+yYByBy+06Dyy,
since for the cases other than (i) —(v) the components of each term of (1.3) vanishes identically
and the relation (1.3) holds trivially. By virtue of (7.7)—(7.10) we get the following relations for
the right hand side (R.H.S.) and left hand side (L.H.S.) of (iii):

3
R.H.S. of (iii) = ags3+BA3A3+yBsB3+0D33=1+ 5 cotx® —2(cotx*)?
= 533 = L.H.S. of (111)

By a similar argument as in (iii) it can be shown that the relations (i), (ii), (iv) and (v) are true.
Therefore, (M*, g) is a P(GQE)4 which is neither (QE)4 nor G(QE)4. Thus we can state the
following:

Theorem 7.2. Let (M*, g) be a Riemannian manifold endowed with the metric given by
ds? = gijdx'dxl = " (dx")?+e* (dx)? + e (dx*)? + (sinx*)2(dx?, (i, j =1,2,...,4)

where 7 < X< 5. Then (M*,g) is a pseudo generalized quasi-Einstein manifold of non-

vanishing scalar curvature which is neither quasi-Einstein nor generalized quasi-Einstein.

Example 3. We define a Riemannian metric on the 4-dimensional real number space R*
by the formula

ds* = gijdx'dx) = (1 +2p)[(dx")* + (dx®)* + (dx*)? + (dxM?), (1,j=1,2,...,4)  (7.1])

1
where p = % and p is a non-zero constant. Then the only non-vanishing components of the
Christoffel symbols and the curvature tensor are

1 _pl _rl p L=r?2 =r3=r¢ P
[pp=T33=Ty= C1+2p’ =T =I=I,= 1+2p’
Ry221 = R1331 = R1441 = LA

1+2p

and the components which can be obtained from these by the symmetry properties. Using
the above relations, we can find the non-vanishing components of Ricci tensor as follows:

3
511=ﬁ,
522=ﬁ,
533=ﬁ,
S44:#‘
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Also it can be easily shown that the scalar curvature of the manifold is non-vanishing. There-
fore R* with the considered metric is a Riemannian manifold (M?, g) of non-vanishing scalar
curvature. We shall now show that this M* is a P (GQE)4 i.e., it satisfies the defining condition
(1.3). Let us now consider the associated scalars, associated 1-forms and structure tensor as

follows:
p

4
o= p 2p 5 p
1+2p

B P aaop VT T areps 0T Grop

(7.12)

Ai(x)=p fori=1,

for i =3,

2
p for i =4,
2
0

otherwise, (7.13)

P ;
Bi(x) = for i =2,
l V2

=0 otherwise, (7.14)

Dij(x) =1 fori=j=1,
=-2yp fori=1,j=3,
=—2p% fori=1, j=4,
=p®> fori=j=2,
=-1 fori=j=3,
=—-p fori=3, j=4,
=—p® fori=j=4,
=0 otherwise (7.15)

at any point x € M. In our M*, scalars, 1-forms and structure tensor to the following equa-
tions
(i) Sn=agn+pA1A+yB1B+6Dn,
(ii) 513 =wgi3+ ﬁAl As +YBlB3 +5D13,
(iii) 514 =agia+ ﬁAl Ay +YBlB4 +5D14,
@iv) 522 =g+ ﬁAgAz +YBZBZ +5D22,
(v) S33=agss+PA3A3+yB3Bs+06Ds3,
(Vi) S34=ag3s+BA3Ay+YB3Bs+6D3y,
(vii) 544 =wgaq+ ﬁA4A4 +YB4B4 +5D44,
since for the cases other than (i)—(vii) the components of each term of (1.3) vanishes iden-
tically and the relation (1.3) holds trivially. By virtue of (7.12)—(7.15) we get the following
relations for the right hand side (R.H.S.) and left hand side (L.H.S.) of (i):

3p

RH.S. of (i) = +BA1A1 +YB1B1 +0D11 = ———
of (i) = agi +pA1A1 +yB1B 0= 052

=871 = L.H.S. of (i).
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By a similar argument as in (i) it can be shown that the relations (ii)—(vii) are true. Therefore,
(M?, g) is a P(GQE)4 which is neither (QE)4 nor G(QE),4. Thus we can state the following:

Theorem 7.3. Let (M*, g) be a Riemannian manifold endowed with the metric given by

ds® = gijdx'dx! = (1+2p)[(dx")? + (dx®)? + (@dx*)? + (dxH?), (i,j=1,2,...,4)

1
where p = % and p is a constant. Then (M*,g) is a pseudo generalized quasi-Einstein mani-

fold of non-vanishing scalar curvature which is neither quasi-Einstein nor generalized quasi-
Einstein.

(1]

(2]
(3]

(4]
(3]

(6]
(7]
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