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KÄHLERIAN SUBMERSIONS WITH

VANISHING BOCHNER CURVATURE TENSOR

KAZUHIKO TAKANO

Abstract. In this paper, we discuss the Kählerian submersion with vanishing Bochner curvature

tensor and prove that the Bochner curvature tensor of the base space vanishes. Also, we seek a

sufficient condition with respect to the length of the Ricci tensor of each fiber that the Bochner

curvature tensor of each fiber vanishes.

1. Introduction

Let (M, g) and (M̂, ĝ) be two Riemannian manifolds. A Riemannian submersion

π : M → M̂ is a mapping of M onto M̂ such that π has maximal rank and π∗ preserves
the length of horizontal vectors. The various fundamental equations for Riemannian
submersions were found by B. O’Neill [5].

Let (M, g, φ) be a real 2m-dimensional Kählerian manifold with the almost complex

structure φ and Kählerian metric g, and (M̂, ĝ, φ̂) a real 2n-dimensional almost complex
manifold with the almost complex structure φ̂ and metric ĝ. A Riemannian submersion
π : M → M̂ is said to be a Kählerian submersion, if it commutes with the almost complex
structures. B. Watson [9] has studied the Kählerian submersion and proved the following
theorem:

Theorem A. Let π : M → M̂ be a Kählerian submersion. Then the base space

and each fiber are Kählerian manifolds, and the horizontal distribution is integrable.

Moreover, if M is of constant holomorphic sectional curvature c, then M̂ is a space of

constant holomorphic sectional curvature c(≤ 0).

On the other hand, Riemannian submersions with almost contact structure of contact
structure is studied in [2] and [8]. Also, B. H. Kim [3] and the author [7] have investigated
Riemannian subersions with Sasakian structure such that contact Bochner curvature
tensor of the total space vanishes identically.

In and §3, we prepare fundamental equations of the Riemannian and Kählerian sub-
mersion, respectively. We consider the Kählerian submersion with vanishing Bochner
curvature tensor in
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2. Riemannian Submersions

Let π : M → M̂ be a Riemannian submersion. We put dim M = m and dim M̂ = n.

For each point x ∈ M̂ , submanifolds π−1(x) with the induced metric g are called fibers

and denoted by Mx. We notice that the dimension of each fiber is always m − n(= s).

A vector field on M is vertical if it is always tangent to fibers, horizontal if always

orthogonal to fibers. We denote the vertical and horizontal subspace in the tangent

space Tp(M) of the total space M by Vp(M) and Hp(M) for each point p ∈ M , and

the vertical and horizontal distributions in the tangent bundle T (M) of M by V(M) and

H(M), respectively. Then T (M) is the direct sum of V(M) and H(M). The projection

mappings are denoted V : T (M) → V(M) and H : T (M) → H(M) respectively. Also,

we denote by ∇ the Levi-Civita connection of g and ∇ the collection of all Levi-Civita

connections of g. Notice that ∇UV is a well-defined vertical vector field on M for vertical

vector fields U and V on M , more precisely ∇UV = V∇UV . The letters U, V, W, W ′ will

always denote vertical vector fields, and X, Y, Z, Z ′ horizontal vector fields.

We define the (1,2)-tensor T on M for vector fields E and F by

TEF = H∇VEVF + V∇VEHF.

Then T satisfies the following properties [5]:

(1) At each point, TE is a skew-symmetric linear operator on any Tp(M), and it reverses

the horizontal and vertical subspaces.

(2) T is vertical; that is, TE = TVE .

(3) For vertical vector fields, T has the symmetry property TUV = TV U .

T is related to the second fundamental form of fibers, it is identically zero if and only if

each fiber is totally geodesic. We call the Riemannian submersion with totally geodesic

fiber if T vanishes identically.

Next, we define the integrability (1,2)-tensor A associated with the submersion as

follows:

AEF = H∇HE∇VF + V∇HEHF

for vector fields E and F . Then it has the following properties [5]:

(1′) At each point, AE is a skew-symmetric linear operator on Tp(M), and it reverses the

horizontal and vertical subspaces.

(2′) A is horizontal; that is, AE = AHE .

(3′) For horizontal vector fields, A has the alternation property AXY = −AY X =
1
2V [X, Y ].
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Here, since A is related to the integrability of H(M), it is identically zero if and only if
H(M) is integrable. Moreover, if A and T vanish identically, then the total space is a
locally product space of the base space and fiber.

We call a vector field X on M projectable if there exists a vector field X∗ on M̂ such
that π∗(Xp) = X∗π(p) for each p ∈ M , and say that X and X∗ are π-related. Also, a
vector field X on M is called basic if it is projectable and horizontal. Then we have [5]

Lemma B. If X and Y are basic vector field on M which are π-related to X∗ and

Y∗ on M̂ , then

(1) ĝ(X∗, Y∗) = g(X, Y ) ◦ π, where g is the metric on M and ĝ the metric on M̂ ,

(2) H[X, Y ] is basic and is π-related to [X∗, Y∗],
(3) H∇XY is basic and is π-related to ∇̂X∗

Y∗, where ∇̂ is the Riemannian connection

of M̂ .

Lemma C. Let X and Y be horizontal vector fields, U and V vertical vector fields.

Then

∇UV = TUV + ∇UV, (2.1)

∇UX = H∇UX + TUX, (2.2)

∇XU = AXU + V∇XU, (2.3)

∇XY = H∇XY + AXY. (2.4)

Furthermore, if X is basic, H∇UX = AXU .

Next, we denote by R the curvature tensor of g, by R the collection of all curvature
tensors of the Riemannian metric g on the fiber and by R̂(X, Y )Z the horizontal vec-
tor field such that π∗(R̂(X, Y )Z) = R̂(π∗X, π∗Y )π∗Z at each p ∈ M , where R̂ is the

curvature tensor of ĝ on M̂ . Then we have [5]

Lemma D. Let U, V, W, W ′ be vertical vector fields, and X, Y, Z, Z ′ horizontal vector

fields. Then

g(R(U, V )W, W ′) = g(R(U, V )W, W ′) + g(TUW, TV W ′) − g(TV W, TUW ′), (2.5)

g(R(U, V )W, X) = g((∇UT )V W, X) − g((∇V T )UW, X), (2.6)

g(R(X, U)Y, V ) = g((∇XT )UY, V ) − g((∇UA)XY, V ) + g(TUX, TV Y )

−g(AXU, AY V ), (2.7)

g(R(U, V )X, Y ) = g((∇UA)XV, Y ) − g((∇V A)XU, Y ) − g(AXU, AY V )

+g(AXV, AY U) + g(TUX, TV Y ) − g(TV X, TUY ), (2.8)

g(R(X, Y )Z, U) = −g((∇ZA)XY, U) − g(AXY, TUZ) + g(AY Z, TUX)

+g(AZX, TUY ), (2.9)

g(R(X, Y )Z, Z ′) = g(R̂(X, Y )Z, Z ′) + 2g(AXY, AZZ ′) − g(AY Z, AXZ ′)

+g(AXZ, AY Z ′). (2.10)



24 KAZUHIKO TAKANO

Also, in [5] we get

g((∇UA)XY, V ) + g((∇V A)XY, U) = g((∇Y T )UV, X) − g((∇XT )UV, Y ). (2.11)

For each p ∈ M , we denote by {X1, . . . , Xn} and {U1, . . . , Us} local orthonormal basis

of H(M) and V(M), respectively. Then we define [1]

g(AX , AY ) =
n∑

i=1

g(AXXi, AY Xi) =
s∑

α=1

g(AXUα, AY Uα),

g(AX , TU ) =

n∑

i=1

g(AXXi, TUXi) =

s∑

α=1

g(AXUα, TUUα),

g(TU , TV ) =

n∑

i=1

g(TUXi, TV Xi) =

s∑

α=1

g(TUUα, TV Uα),

g(AU, AV ) =

n∑

i=1

g(AXi
U, AXi

V ),

g(TX, TY ) =

s∑

α=1

g(TUα
X, TUα

Y )

and we put

g((∇UT )V , TW ) =

s∑

α=1

g((∇UT )V Uα, TW Uα),

g((∇XT )Y, TZ) =

s∑

α=1

g((∇XT )Uα
Y, TUα

Z).

Also, for tensors A and T we set

δ̂A = −

n∑

i=1

(∇Xi
A)Xi

, δT = −

s∑

α=1

(∇Uα
T )Uα

.

Moreover, we define the symmetric tensor δ̃T by

(δ̃T )(U, V ) =

n∑

i=1

g((∇Xi
, T )UV, Xi)

for vertical vector fields U and V . Also, the mean curvature vector along each fiber gives

the horizontal vector field

N =

s∑

α=1

TUα
Uα.

If N is identically zero, then each fiber is called a minimal submanifold of M .
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Let Ric, R̂ic and Ric be the Ricci tensors of the Riemannian metrics g, ĝ and g,
respectively. Then we have [1]

Ric(U, V ) = Ric(U, V ) − g(N, TUV ) + g(AU, AV ) + (δ̃T )(U, V ), (2.12)

Ric(X, U) = g((δT )U, X)− g((δ̂A)X, U) − 2g(AX , TU ) + g(∇UN, X), (2.13)

Ric(X, Y ) = R̂ic(X, Y )−2g(AX , AY )−g(TX, TY )+
1

2
{g(∇XN, Y )+g(∇Y N, X)},(2.14)

where R̂ic is the horizontal symmetric 2-form on M such that R̂ic(X, Y )=R̂ic(π∗X, π∗Y ).
Moreover, if r, r̂ and r are the scalar curvatures of the Riemannian metrics g, ĝ and g,
respectively, then

r = r̂ + r − 2δ̂N − |N |2 − |A|2 − |T |2, (2.15)

where we denote r̂ ◦ π by r̂ simply and we put |N |2 = g(N, N),

|A|2 =

n∑

i=1

g(AXi
, AXi

) =

s∑

α=1

g(AUα, AUα),

|T |2 =

n∑

i=1

g(TXi, TXi) =

s∑

α=1

g(TUα
, TUα

).

3. Kählerian Manifolds and Kählerian Submersions

Let (M, g, φ) be a real 2m-dimensional Kählerian manifold with the almost complex
structure φ and Kählerian metric g, that is, φ2 = −I, g and φ are compatible and ∇φ = 0.
For a Kählerian manifold, the Ricci tensor satisfies the following property:

Ric(φE1, φE2) = Ric(E1, E2) (3.1)

for vector fields E1 and E2 on M . A Kählerian manifold M is said to be a space of
constant holomorphic sectional curvature c if the curvature tensor satisfies

g(R(E1, E2)E3, E4) =
c

4

{
g(E2, E3)g(E1, E4) − g(E1, E3)g(E2, E4)

+g(φE2, E3)g(φE1, E4) − g(φE1, E3)g(φE2, E4)

+2g(E1, φE2)g(φE3, E4)
}

(3.2)

for vector fields Ei (i = 1, 2, 3, 4) on M . We easily find c = r
m(m+1) .

The Bochner curvature tensor B of M is defined by [6]

g(B(E1, E2)E3, E4)

= g(R(E1, E2)E3, E4)

+
1

2m + 4

{
g(E1, E3)Ric(E2, E4) − g(E2, E3)Ric(E1, E4) + Ric(E1, E3)g(E2, E4)
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−Ric(E2, E3)g(E1, E4) + g(φE1, E3)S(E2, E4) − g(φE2, E3)S(E1, E4)

+S(E1, E3)g(φE2, E4) − S(E2, E3)g(φE1, E4) + 2g(φE1, E2)S(E3, E4)

+2S(E1, E2)g(φE3, E4)
}

−
r

(2m + 4)(2m + 2)

{
g(E1, E3)g(E2, E4) − g(E2, E3)g(E1, E4)

+g(φE1, E3)g(φE2, E4) − g(φE2, E3)g(φE1, E4)

+2g(φE1, E2)g(φE3, E4)
}

(3.3)

for vector fields Ei(i = 1, 2, 3, 4) on M , where S(E1, E2) = Ric(φE1, E2).

Next, we put (M̂, ĝ, φ̂) is a real 2n-dimensional almost complex manifold with the

almost complex structure φ̂ and metric ĝ. A Riemannian submersion π : M → M̂ is said
to be a Kählerian submersion if π∗φ = φ̂π∗. Then B. Watson [9] proved that the vertical
and horizontal distributions determined by π are φ-invariant, that is, φV(M) = V(M)

and φH(M) = H(M). If X is basic on M which is π-related to X∗ on M̂ , then φX is
basic and π-related to φ̂X∗. We find from Theorem A that a given property on M is
induced onto M̂ and onto Mx for each point x ∈ M̂ by π. Thus, we denote the induced
almost complex structure of each fiber by φ. We put dimMx = 2s(m = n + s). Also,
a Kählerian submersion is said to be with vanishing Bochner curvature tensor if the
Bochner curvature tensor of M vanishes identically.

We will seek the fundamental equations of the Kählerian submersion. Let π : M → M̂

be a Kählerian submersion. Then the integrability tensor A vanishes from Theorem A.
Also, it is easy to see from Lemma C that ∇φ = 0 is equivalent to the following equations:

(H∇Xφ)Y = 0, (3.4)

(V∇Xφ)U = 0, (3.5)

(H∇Uφ)X = 0, (3.6)

TU (φX) = φ(TUX), (3.7)

TU (φV ) = φ(TUV ), (3.8)

(∇Uφ)V = 0 (3.9)

for horizontal vector fields X and Y , vertical vector fields U and V . Since each fiber is
invariant submanifold of M , each fiber is minimal, that is, N = 0. Therefore, equations
(2.5)-(2.10) and (2.11) are rewritten as follows:

g(R(U, V )W, W ′) = g(R(U, V )W, W ′) + g(TUW, TV W ′) − g(TV W, TUW ′), (3.10)

g(R(U, V )W, X) = g((∇UT )V W, X) − g((∇V T )UW, X), (3.11)

g(R(X, U)Y, V ) = g((∇XT )UY, V ) + g(TUX, TV Y ), (3.12)

g(R(U, V )X, Y ) = g(TUX, TV Y ) − g(TV X, TUY ), (3.13)

g(R(X, Y )Z, U) = 0, (3.14)

g(R(X, Y )Z, Z ′) = g(R̂(X, Y )Z, Z ′) (3.15)
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and

g((∇Y T )UV, X) − g((∇XT )UV, Y ) = 0. (3.16)

Let {X1, . . . , X2n, U1, . . . , U2s} be a local orthonormal frame such that {X1, . . . , X2n}

and {U1, . . . , U2s} are local orthonormal bases of H(M) and V(M), respectively, where

Xn+i = φXi (i = 1, 2, . . . , n) and Us+α = φUα (α = 1, 2, . . . , s). By virtue of A = 0 and

N = 0, we get from (2.12)-(2.14) and (2.15)

Ric(U, V ) = Ric(U, V ) + (δ̃T )(U, V ), (3.17)

Ric(X, U) = g((δT )U, X), (3.18)

Ric(X, Y ) = R̂ic(X, Y ) − g(TX, TY ) (3.19)

and

r = r̂ + r − |T |2. (3.20)

Also, we define skew-symmetric tensors S, Ŝ and S by S(E, F ) = Ric(φE, F ),

Ŝ(X, Y ) = R̂ic(φX, Y ) and S(U, V ) = Ric(φU, V ), respectively. Then we obtain from

(3.17)-(3.19) that

S(U, V ) = S(U, V ) + (δ̃T )(φU, V ), (3.21)

S(X, U) = g((δT )U, φX), (3.22)

S(X, Y ) = Ŝ(X, Y ) − g(TφX, TY ). (3.23)

From (3.21), we find (δ̃T )(U, V ) − (δ̃T )(φU, φV ) = 0. On the other hand, by a straight-

forward computation we have (δ̃T )(φU, φV ) = −(δ̃T )(U, V ), where we have used (3.5)

and (3.8). Thus we get

(δ̃T )(U, V ) = 0. (3.24)

From (3.17) and (3.24), we have

Lemma 3.1. Let π : M → M̂ be a Kählerian submersion. If the total space is of

constant holomorphic sectional curvature, then each fiber is an Einstein manifold.

4. Kählerian Submersions with Vanishing Bochner Curvature Tensor

In this section, we shall consider the Kählerian submersion π : M → M̂ with vanishing

Bochner curvature tensor. Then we see from (3.3), (3.10)-(3.15), (3.17)-(3.19), (3.21)-

(3.23) that g(B(E1, E2)E3, E4) = 0 is equivalent to the following equations for horizontal
vector fields X, Y, Z, Z ′ and vertical vector fields U, V, W, W ′:

g(R(U, V )W, W ′) + g(TUW, TV W ′) − g(TV W, TUW ′)

1

2m + 4

{
g(U, W )Ric(V, W ′) − g(V, W )Ric(U, W ′) + Ric(U, W )g(V, W ′)

−Ric(V, W )g(U, W ′) + g(φU, W )S(V, W ′) − g(φV, W )S(U, W ′)
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+S(U, W )g(φV, W ′) − S(V, W )g(φU, W ′) + 2g(φU, V )S(W, W ′)

+2S(U, V )g(φW, W ′)
}

−
r

(2m + 4)(2m + 2)

{
g(U, W )g(V, W ′) − g(V, W )g(U, W ′) + g(φU, W )g(φV, W ′)

−g(φV, W )g(φU, W ′) + 2g(φU, V )g(φW, W ′)
}

= 0, (4.1)

g((∇UT )V W, X) − g((∇V T )UW, X)

+
1

2m + 4

{
g(U, W )g((δT )V, X) − g(V, W )g((δT )U, X) + g(φU, W )g((δT )V, φX)

−g(φV, W )g((δT )U, φX) + 2g(φU, V )g((δT )W, φX)
}

= 0, (4.2)

g((∇XT )UY, V ) + g(TUX, TV Y )

+
1

2m + 4

[
g(X, Y )Ric(U, V ) +

{
R̂ic(X, Y ) − g(TX, TY )

}
g(U, V )

+g(φX, Y )S(U, V ) +
{
Ŝ(X, Y ) − g(TφX, TY )

}
g(φU, V )

]

−
r

(2m + 4)(2m + 2)

{
g(X, Y )g(U, V ) + g(φX, Y )g(φU, V )

}
= 0, (4.3)

g(TUX, TV Y ) − g(TV X, TUY ) −
2r

(2m + 4)(2m + 2)
g(φX, Y )g(φU, V )

+
2

2m + 4

[
g(φX, Y )S(U, V ) +

{
Ŝ(X, Y ) − g(TφX, TY )

}
g(φU, V )

]
= 0, (4.4)

g(X, Z)g((δT )U, Y ) − g(Y, Z)g((δT )U, X)

+g(φX, Z)g((δT )U, φY ) − g(φY, Z)g((δT )U, φX) + 2g(φX, Y )g((δT )U, φZ) = 0,(4.5)

g(R̂(X, Y )Z, Z ′)

+
1

2m + 4

[
g(X, Z)

{
R̂ic(Y, Z ′) − g(TY, TZ ′)

}
− g(Y, Z)

{
R̂ic(X, Z ′) − g(TX, TZ ′)

}

+
{
R̂ic(X, Z) − g(TX, TZ)

}
g(Y, Z ′) −

{
R̂ic(Y, Z) − g(TY, TZ)

}
g(X, Z ′)

+g(φX, Z)
{
Ŝ(Y, Z ′) − g(TφY, TZ ′)

}
− g(φY, Z)

{
Ŝ(X, Z ′) − g(TφX, TZ ′)

}

+
{
Ŝ(X, Z) − g(TφX, TZ)

}
g(φY, Z ′) −

{
Ŝ(Y, Z) − g(TφY, TZ)

}
g(φX, Z ′)

+2g(φX, Y )
{

Ŝ(Z, Z ′) − g(TφZ, TZ ′)
}

+ 2
{
Ŝ(X, Y ) − g(TφX, TY )

}
g(φZ, Z ′)

]

−
r

(2m + 4)(2m + 2)

{
g(X, Z)g(Y, Z ′) − g(Y, Z)g(X, Z ′) + g(φX, Z)g(φY, Z ′)

−g(φY, Z)g(φX, Z ′) + 2g(φX, Y )g(φZ, Z ′)
}

= 0. (4.6)

From (4.5), we get

g((δT )U, X) = 0. (4.7)
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Substituting this into (4.2), we find

g((∇UT )V W, X) − g((∇V T )UW, X) = 0. (4.8)

Because of (3.20), we see from (4.6) that

sR̂ic(Y, Z) + (n + 2)g(TY, TZ)−
s(r̂ − |T |2) − (n + 1)r

2(n + s + 1)
g(Y, Z) = 0, (4.9)

which yields
r̂

n(n + 1)
+

r

s(s + 1)
+

n + 2s + 2

ns(s + 1)
|T |2 = 0. (4.10)

If we substitute (4.10) into (4.9), then we find

g(TY, TZ) = −
s

n + 2
R̂ic(Y, Z) +

sr̂ + (n + 2)|T |2

2n(n + 2)
g(Y, Z). (4.11)

Owing to (3.20) and (4.11), equation (4.6) can be rewritten as follows:

g(R̂(X, Y )Z, Z ′)

+
1

2n + 4

{
g(X, Z)R̂ic(Y, Z ′) − g(Y, Z)R̂ic(X, Z ′) + R̂ic(X, Z)g(Y, Z ′)

−R̂ic(Y, Z)g(X, Z ′) + g(φX, Z)Ŝ(Y, Z ′) − g(φY, Z)Ŝ(X, Z ′)

+Ŝ(X, Z)g(φY, Z ′) − Ŝ(Y, Z)g(φX, Z ′) + 2g(φX, Y )Ŝ(Z, Z ′)

+2Ŝ(X, Y )g(φZ, Z ′)
}

−
r̂

(2n + 2)(2n + 4)

{
g(X, Z)g(Y, Z ′) − g(Y, Z)g(X, Z ′) + g(φX, Z)g(φY, Z ′)

−g(φY, Z)g(φX, Z ′) + 2g(φX, Y )g(φZ, Z ′)
}

= 0. (4.12)

Hence, we have

Theorem 4.1. If π : M → M̂ is a Kählerian submersion with vanishing Bochner

curvature tensor, then the Bochner curvature tensor of M̂ vanishes.

From (4.10), we have

Lemma 4.1. Let π : M → M̂ be a Kählerian submersion with vanishing Bochner

curvature tensor. Then we get r̂
n(n+1) + r

s(s+1) ≤ 0, equality holds if and only if the

Kählerian submersion has totally geodesic fiber.

Operating ∇X to (4.11), we find

s(∇X R̂ic)(Y, Z) + (n + 2)
{
g((∇XT )Y, TZ) + g(TY, (∇XT )Z)

}

−
1

2n

{
s∇X r̂ + (n + 2)∇X |T |2

}
g(Y, Z) = 0,
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which implies
s∇Z r̂ + (n + 2)∇Z |T |2 = 0, (4.13)

if n > 1. Thus we have

Lemma 4.2. Let π : M → M̂ be a Kählerian submersion with vanishing Bochner

curvature tensor. Then the scalar function sr̂ + (n + 2)|T |2 is constant on M̂ if n > 1.

Also, making use of (3.20), (4.10) and N = 0, we find from (4.1)

nRic(V, W ) + (n + s + 2)g(TV , TW ) −
1

2s

{
nr + (n + s + 2)|T |2

}
g(V, W ) = 0. (4.14)

Operation ∇U to the above equation, we obtain

n(∇URic)(V, W ) + (n + s + 2)
{
g((∇UT )V , TW ) + g((∇UT )W , TV )

}

−
1

2s

{
n∇Ur + (n + s + 2)∇U |T |2

}
g(V, W ) = 0,

which together with (4.7) and (4.8) implies that

n∇V r + (n + s + 2)∇V |T |2 = 0, (4.15)

if s > 1. Thus we have

Lemma 4.3. Let π : M → M̂ be a Kählerian submersion with vanishing Bochner

curvature tensor. Then the scalar function nr + (n + s + 2)|T |2 is constant on each fiber

if s > 1.

From (4.14) we have

Lemma 4.4. Let π : M → M̂ be a Kählerian submersion with vanishing Bochner cur-

vature tensor. Each fiber is an Einstein manifold if and only if g(TV , TW ) = |T |2

2s
g(V, W )

if s > 1.

Next, we consider the following Bochner curvature tensor B of each fiber

g(B(U, V )W, W ′)

= g(R(U, V )W, W ′)

+
1

2s + 4

{
g(U, W )Ric(V, W ′) − g(V, W )Ric(U, W ′) + Ric(U, W )g(V, W ′)

−Ric(V, W )g(U, W ′) + g(φU, W )S(V, W ′) − g(φV, W )S(U, W ′)

+S(U, W )g(φV, W ′) − S(V, W )g(φU, W ′) + 2g(φU, V )S(W, W ′)

+2S(U, V )g(φW, W ′)
}

−
r

(2s + 2)(2s + 4)

{
g(U, W )g(V, W ′) − g(V, W )g(U, W ′) + g(φU, W )g(φV, W ′)

−g(φV, W )g(φU, W ′) + 2g(φU, V )g(φW, W ′)
}

.



KÄHLERIAN SUBMERSIONS WITH VANISHING BOCHNER CURVATURE TENSOR 31

Substituting (4.1) into the above equation and owing to (3.20) and (4.10), we get

g(B(U, V )W, W ′)

= −g(TUW, TV W ′) + g(TV W, TUW ′)

+
n

2(s + 2)(n + s + 2)

{
g(U, W )Ric(V, W ′) − g(V, W )Ric(U, W ′) + Ric(U, W )g(V, W ′)

−Ric(V, W )g(U, W ′)+g(φU, W )S(V, W ′)−g(φV, W )S(U, W ′)

+S(U, W )g(φV, W ′)−S(V, W )g(φU, W ′)+2g(φU, V )S(W, W ′)

+2S(U, V )g(φW, W ′)
}

−
1

2s

{
nr

(s + 2)(n + s + 2)
+

|T |2

2(s + 1)

}{
g(U, W )g(V, W ′) − g(V, W )g(U, W ′)

+g(φU, W )g(φV, W ′) − g(φV, W )g(φU, W ′) + 2g(φU, V )g(φW, W ′)
}

.

Denote by |B|2 the length of the Bochner curvature tensor of each fiber. Then making
use of (3.1), (3.7), (4.14) and N = 0, we can get from the above equation

|B|2 =

2s∑

α,β=1

|[TUα
, TUβ

]|2 −
8n2

(s + 2)(n + s + 2)2
|Ric|2

+
4n2

s(s + 2)(n + s + 2)2
r2 −

2

s(s + 1)
|T |4. (4.16)

Also, it is know that

Lemma E. ([10] p. 185) For a 2s-dimensional Kählerian submanifold of a Kählerian

manifold, the following inequality holds:

1

s
|T |4 ≤

2s∑

α,β=1

|[TUα
, TUβ

]|2 ≤ |T |4.

From (4.16) and Lemma E, we have

Theorem 4.2. Let π : M → M̂ be a Kählerian submersion with vanishing Bochner

curvature tensor. If

|Ric|2 ≥
r2

2s
+

(s − 1)(s + 2)

8s(s + 1)

(n + s + 2

n

)2

|T |4,

then the Bochner curvature tensor of each fiber vanishes identically.

Remark 4.1. Let π : M → M̂ be a Kählerian submersion with vanishing Bochner
curvature tensor. Then the length of the Ricci tensor satisfies the following inequality
from (4.14)

|Ric|2 ≤
r2

2s
+

2s − 1

2s

(n + s + 2

n

)2

|T |4.
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Remark 4.2. Let π : M → M̂ be a Kählerian submersion with vanishing Bochner
curvature tensor and totally geodesic fiber. Then M is locally a product of two spaces

of constant holomorphic sectional curvatures c and −c, where c = r̂
n(n+1) = r

s(s+1) ([4]).
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