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On the sum of distance Laplacian eigenvalues of

graphs

Shariefuddin Pirzada and Saleem Khan

Abstract. Let G be a connected graph with n vertices, m edges and having diameter
d. The distance Laplacian matrix DL is defined as DL = Diag(Tr) − D, where
Diag(Tr) is the diagonal matrix of vertex transmissions and D is the distance matrix
of G. The distance Laplacian eigenvalues of G are the eigenvalues of DL and are
denoted by δ1, δ1, . . . , δn. In this paper, we obtain (a) the upper bounds for the sum
of k largest and (b) the lower bounds for the sum of k smallest non-zero, distance
Laplacian eigenvalues of G in terms of order n, diameter d and Wiener index W of
G. We characterize the extremal cases of these bounds. Also, we obtain the bounds
for the sum of the powers of the distance Laplacian eigenvalues of G. Finally, we
obtain a sharp lower bound for the sum of the βth powers of the distance Laplacian
eigenvalues, where β ̸= 0, 1.

Keywords. Distance matrix, distance Laplacian matrix, distance Laplacian eigenvalues,
diameter, Wiener index

1 Introduction

A graph G = (V,E) consists of the vertex set V (G) = {v1, v2, . . . , vn} and the edge set E(G).
We assume all the graphs under consideration are simple and connected. Further, |V (G)| = n is
the order and |E(G)| = m is the size of G. The degree of v, denoted by dG(v) (we simply write
dv) is the number of edges incident on the vertex v. As usual, Kn is a complete graph with n
vertices and K1,n−1 is a star graph with n vertices. Also, Ka,b is a complete bipartite graph with
two partite sets V1 and V2 of cardinalities a and b, respectively, such that each vertex of V1 is
adjacent to every vertex of V2. For other standard definitions, we refer [12].

The adjacency matrix A = (aij) of G is an n × n matrix whose (i, j)-entry is equal to
1, if vi is adjacent to vj and equal to 0, otherwise. Let Deg(G) = diag(d1, d2, . . . , dn) be the
diagonal matrix of vertex degrees di = dvi , i = 1, 2, . . . , n of G. The positive semi-definite matrix
L(G) = Deg(G) − A(G) is the Laplacian matrix of G. The eigenvalues of L(G) are called the
Laplacian eigenvalues of G. Let Sk(G) be the sum of the k largest Laplacian eigenvalues of G.
Several researchers have been investigating the parameter Sk(G) because of its importance in
dealing with many problems in the theory, for instance, Brouwer’s conjecture, Laplacian energy.
More recent work on Sk(G) can be seen in [5, 6, 7, 8, 13].
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In G, the distance between two vertices u, v ∈ V (G), denoted by duv, is defined as the
length of a shortest path between u and v. The diameter of G is the maximum distance be-
tween any two vertices of G. The distance matrix of G is denoted by D(G) and is defined as
D(G) = (duv)u,v∈V (G). The vertex transmission TrG(v) of a vertex v is defined as the sum of
the distances from v to all other vertices in G, that is, TrG(v) =

∑
u∈V (G)

duv. A graph G is said

to be k-transmission regular if TrG(v) = k, for each v ∈ V (G). The Wiener index (also called
transmission) of a graph G, denoted by W (G), is the sum of distances between all unordered

pairs of vertices in G. Clearly, W (G) = 1
2

∑
v∈V (G)

TrG(v). For any vertex vi ∈ V (G), the vertex

transmission TrG(vi) is also called the transmission degree of vi.

Let Tr(G) = diag(Tr1, T r2, . . . , T rn) be the diagonal matrix of vertex transmissions of G.
Aouchiche and Hansen [1] introduced the Laplacian for the distance matrix of a connected graph.
The matrix DL(G) = Tr(G) −D(G) (or simply DL) is called the distance Laplacian matrix of
G. The eigenvalues of DL are called the distance Laplacian eigenvalues of G. Since DL(G) is
a real symmetric positive semi-definite matrix, we denote its eigenvalues by δi’s and order them
as 0 = δn ≤ δn−1 ≤ · · · ≤ δ1. The largest distance Laplacian eigenvalue δ1 is called the distance
Laplacian spectral radius of G. More work on distance Laplacian eigenvalues can be found in
[2, 9, 11].

Motivated by the parameter Sk(G) of the Laplacian matrix, we introduce the following. For
1 ≤ k ≤ n − 1, let Uk denote the sum of the k largest distance Laplacian eigenvalues and Lk

denote the sum of k smallest positive distance Laplacian eigenvalues of the graph G, that is,

Uk =

k∑
i=1

δi and Lk =

k∑
i=1

δn−i.

In Section 2, we obtain the upper bounds for Uk in terms of order n, diameter d and Wiener index
W of G. Also, we find the lower bounds for Lk in terms of the same parameters. In particular,
we obtain the bounds for Uk and Lk when G is a bipartite graph. We characterize the extremal
cases of these bounds. We derive the bounds for the sum of the powers of the distance Laplacian
eigenvalues of G. Also, we obtain a sharp lower bound for the sum of the βth powers of the
distance Laplacian eigenvalues, where β ̸= 0, 1.

2 On the sum of the distance Laplacian eigenvalues of
graphs

We begin with the following observation due to Caen [3].

Lemma 2.1. [3] Let [n] = {1, 2, . . . , n} be the canonical n-element set and let [n](2) denote the
set of 2-element subsets of [n], that is, the edge set of Kn. To each entry {i, j} = ij in [n](2),
associate a real variable xij, then for n ≥ 2, and for all x′

ijs, we have

(∑
ij

xij

)2

+

(
n− 1

2

)∑
ij

x2
ij −

n− 1

2

∑
i

(∑
j ̸=i

xij

)2

≥ 0.

The following result gives the upper bound for the sum of the squares of the vertex trans-
missions in terms of the Wiener index W , the diameter d and the order n of the graph G.
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Lemma 2.2. Let G be a connected graph with n vertices having diameter d. Then∑
i

Tr2(i) ≤ 2W 2

n− 1
+

n(n− 1)(n− 2)d2

2

with equality if and only if G ∼= Kn.

Proof. Substituting dij for xij in Lemma 2.1 and noting that each dij ≤ d, we have(∑
ij

dij

)2

+

(
n− 1

2

)∑
ij

d2ij −
n− 1

2

∑
i

(∑
j ̸=i

dij

)2

≥ 0

or W 2 +

(
n− 1

2

)∑
ij

d2ij −
n− 1

2

∑
i

Tr2(i) ≥ 0.

Then
∑
i

Tr2(i) ≤ 2W 2

n− 1
+

2

n− 1

(n− 1)(n− 2)

2

(n(n− 1)

2
d2
)
,

or
∑
i

Tr2(i) ≤ 2W 2

n− 1
+

n(n− 1)(n− 2)d2

2
,

proving the inequality.
Assume that the equality holds in the above inequalities. Then clearly each dij = d. Since

G is connected, there is at least one dij = 1 and thus d = 1 which clearly shows that G ∼= Kn.

Conversely, if G ∼= Kn, then it is easy to see that d = 1, W = n(n−1)
2 and

∑
i

Tr2(i) =

n(n − 1)2. Substituting these values in the above inequalities, we observe that the equality
holds.

Now, we obtain an upper bound for Uk in terms of the Wiener index, the diameter and the
order of the graph G. The proof follows by using similar techniques as in Zhou [14].

Theorem 2.1. Let G be a connected graph with n vertices having diameter d. For 1 ≤ k ≤ n−2,
we have

Uk ≤ 2Wk

n− 1
+

√
k(n− k − 1)(dn(n− 1)− 2W )(dn(n− 1) + 2W )√

2(n− 1)

with equality if and only if G ∼= Kn. Equality always holds for k = n− 1.

Proof. It is easy to see that

n−1∑
i=1

δi =
∑
i∈V

Tr(i) = 2W and

n−1∑
i=1

δ2i =
∑
i

Tr2(i) + 2
∑

1≤i<j≤n

d2ij .

For 1 ≤ k ≤ n− 2, using Cauchy-Schwarz inequality, we have

(2W − Uk)
2

= (δk+1 + · · ·+ δn−1)
2 ≤ (n− k − 1)(δ2k+1 + · · ·+ δ2n−1)

= (n− k − 1)
(∑

i

Tr2(i) + 2
∑

1≤i<j≤n

d2ij − (δ21 + · · ·+ δ2k)
)

≤ (n− k − 1)
(∑

i

Tr2(i) + 2
∑

1≤i<j≤n

d2ij −
U2
k

k

)
,
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which implies that

U2
k − 4kWUk

n− 1
+

4kW 2

n− 1
− k(n− k − 1)

n− 1

(∑
i

Tr2(i) + 2
∑

1≤i<j≤n

d2ij

)
≤ 0.

Thus,

Uk ≤
2Wk +

√
k(n− k − 1)

[
(n− 1)

(∑
i

Tr2(i) + 2
∑

1≤i<j≤n

d2ij

)
− 4W 2

]
n− 1

.

Using Lemma 2.2, we get

Uk ≤
2Wk +

√
k(n− k − 1)

[
(n− 1)

(
2W 2

n−1 + n(n−1)(n−2)d2

2 + d2n(n− 1)
)
− 4W 2

]
n− 1

.

On further simplifications, we have

Uk ≤
2Wk +

√
k(n−k−1)

(
d2n2(n−1)2−4W 2

)
2

n− 1
,

or,

Uk ≤ 2Wk

n− 1
+

√
k(n− k − 1)(dn(n− 1)− 2W )(dn(n− 1) + 2W )√

2(n− 1)
,

proving the inequalities.
Assume that the equality hold in above inequalities. Then all the above inequalities have to

be equalities and after using Cauchy-Schwarz theorem and Lemma 2.2, we observe that G ∼= Kn.
Conversely, let G ∼= Kn. Taking the characteristic polynomial of Kn into consideration, it

is quite easy to check that Uk = nk, W = n(n−1)
2 and d = 1. Using these values in the main

inequality, we observe that the equality holds.
Using the fact that trace of a matrix is equal to sum of its eigenvalues and noting that

2W = Un−1, we see that equality always holds in main inequality when k = n− 1.

From Theorem 2.1, we obtain the following upper bound for the spectral radius δ1 of the
distance Laplacian matrix of a graph.

Theorem 2.2. Let G be a connected graph on n vertices having diameter d. Then

δ1 ≤ 2W

n− 1
+

√
(n− 2)(dn(n− 1)− 2W )(dn(n− 1) + 2W )√

2(n− 1)

with equality if and only if G ∼= Kn.

Using arguments same as in Theorem 2.1, we have the following lower bound for Lk.

Theorem 2.3. Let G be a connected graph with n vertices having diameter d. Then, for 1 ≤
k ≤ n− 2, we have

Lk ≥ 2Wk

n− 1
−

√
k(n− k − 1)(dn(n− 1)− 2W )(dn(n− 1) + 2W )√

2(n− 1)

with equality if and only if G ∼= Kn. Equality always holds for k = n− 1.
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As a consequence of Theorem 2.3, we get the following upper bound for the smallest non-zero
distance Laplacian eigenvalue δn−1 of G.

δn−1 ≥ 2W

n− 1
−

√
(n− 2)(dn(n− 1)− 2W )(dn(n− 1) + 2W )√

2(n− 1)

with equality if and only if G ∼= Kn.

Now, we have the following observation about the sum of the squares of the distances in a
graph.

Lemma 2.3. Let G be a connected graph with n ≥ 2 vertices and m edges having diameter d.
Then ∑

1≤i<j≤n

d2ij ≤
2m(1− d2) + d2n(n− 1)

2

with equality if and only if d ≤ 2.

Proof. Since G contains m edges, therefore there are exactly m distances equal to 1 and the
remaining distances (if there are any) are greater or equal to 2. As each dij ≤ d, we have∑

1≤i<j≤n

d2ij ≤ m+ d2
(n(n− 1)

2
−m

)
=

2m(1− d2) + d2n(n− 1)

2
,

proving the inequality.
Assume that the equality hold in above inequalities. If there are no non-adjacent pair of

vertices, then clearly d = 1, so that G is a complete graph. If there are some non-adjacent pair
of vertices, then from the above proof we observe that the distance between every non-adjacent
pair of vertices is same and equals to d. Since G is connected, at least one such distance equals
to 2, so that d = 2.

Conversely, if d = 1, then G is a complete graph and it is easy to check that the equality
holds in this case. Similarly, we can easily see that the equality holds when d = 2. This proves
the result.

From Lemma 2.3, we obtain the following corollary for the class of connected bipartite
graphs.

Corollary 2.4. Let G be a connected bipartite graph with n ≥ 3 vertices, m edges and having
diameter d. Then ∑

1≤i<j≤n

d2ij ≤
2m(1− d2) + d2n(n− 1)

2

with equality if and only if G is a complete bipartite graph.

We require the following lemma due to Zhou [14].

Lemma 2.4. [14] Let G be a connected bipartite graph on n vertices and m edges and let dv be
the degree of any vertex v of G. Then ∑

v∈V (G)

d2v ≤ mn

with equality if and only if G is a complete bipartite graph.
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We have the following observation for the sum of the squares of the vertex transmissions of
a bipartite graph.

Lemma 2.5. Let G be a connected bipartite graph having n ≥ 3 vertices, m edges and diameter
d with bi-partition of vertex set as {V1, V2} with |V1| = a, |V2| = b, a ≥ b ≥ 1 and a + b = n.
Then ∑

i

Tr2(i) ≤ mn(1− d)2 + nd2(n− 1)2 + 4md(1− d)(n− 1)

with equality if and only if G is a complete bipartite graph.

Proof. Without loss of generality, let i ∈ V1. Since G is bipartite we have the following inequality

Tr(i) ≤ di + d(b− di) + d(a− 1),

or,

Tr(i) ≤ di(1− d) + d(n− 1)

so that

Tr2(i) ≤ d2i (1− d)2 + (d(n− 1))2 + 2ddi(1− d)(n− 1).

Taking the summation over all vertices in V , we have∑
i

Tr2(i) ≤
∑
i

d2i (1− d)2 +
∑
i

(d(n− 1))2 +
∑
i

2ddi(1− d)(n− 1).

Using Lemma 2.4 and noting that
∑
i

di = 2m, from the above inequality, we have

∑
i

Tr2(i) ≤ mn(1− d)2 + nd2(n− 1)2 + 4md(1− d)(n− 1).

Assume that the equality hold in above inequality. Then we observe that the distance
between every non-adjacent pair of vertices is the same and equals to 2, which is possible only if
G is complete bipartite.

Conversely, it is easy to check that the equality holds for complete bipartite graphs.

We note the following observation.

Lemma 2.6. [1] The distance Laplacian characteristic polynomial of a complete bipartite graph

Ka,b is P
Ka,b

L (x) = x(x− n)(x− (2a+ b))a−1(x− (2b+ a))b−1.

Now, we obtain an upper bound for Uk when G is a connected bipartite graph.

Theorem 2.5. Let G be a connected bipartite graph with n ≥ 3 vertices, m edges and having
diameter d. Then, for 1 ≤ k ≤ n− 2, we have

Uk ≤
2Wk +

√
k(n− k − 1)

[
(n− 1)

(
m(1− d)(n+ 3dn− 2d+ 2) + d2n2(n− 1)

)
− 4W 2

]
n− 1

with equality if and only if k = n − 2 and G ∼= K1,n−1 or G ∼= Kn
2 ,n2

. Equality always holds for
k = n− 1.
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Proof. Let 1 ≤ k ≤ n − 2. From the proof of Theorem 2.1 and using Corollary 2.4 and Lemma
2.5, we get the required inequality.

Let the equality hold in above inequality. Then we observe that

δ1 = δ2 = · · · = δk and δk+1 = δk+2 = · · · = δn−1

and G is a complete bipartite graph. Taking Lemma 2.6 into consideration, we have k = n − 2
and G ∼= K1,n−1 or G ∼= Kn

2 ,n2
.

Conversely, if k = n−2 and G ∼= k1,n−1 or G ∼= kn
2 ,n2

, then we can easily check that equality
follows in both cases.

Using same argument as in Theorem 2.1, we see that equality holds when k = n− 1.

Some results for δ1 in bipartite graphs can be seen in [10]. Using Theorem 2.5, we get the
following strict upper bound for distance Laplacian spectral radius for the class of connected
bipartite graphs with n ≥ 4.

Theorem 2.6. Let G be a connected bipartite graph with n ≥ 4 vertices, m edges and having
diameter d. Then

δ1 <

2W +

√
(n− 2)

[
(n− 1)

(
m(1− d)(n+ 3dn− 2d+ 2) + d2n2(n− 1)

)
− 4W 2

]
n− 1

.

With the help of Theorem 2.5, we can easily obtain the following upper bound for Lk.

Theorem 2.7. Let G be a connected bipartite graph with n ≥ 3 vertices, m edges and having
diameter d. Then, for 1 ≤ k ≤ n− 2, we have

Lk ≥
2Wk −

√
k(n− k − 1)

[
(n− 1)

(
m(1− d)(n+ 3dn− 2d+ 2) + d2n2(n− 1)

)
− 4W 2

]
n− 1

with equality if and only if k = n − 2 and G ∼= K1,n−1 or G ∼= Kn
2 ,n2

. Equality always holds for
k = n− 1.

The following lemma will be used in the sequel.

Lemma 2.7. [1] Let G be a connected graph on n vertices and m ≥ n edges. Let G∗ be the
connected graph obtained from G by the deletion of an edge. Let δ1 ≥ δ2 ≥ · · · ≥ δn−1 ≥ δn = 0
and δ∗1 ≥ δ∗2 ≥ · · · ≥ δ∗n−1 ≥ δ∗n = 0 denote the distance Laplacian spectra of G and G∗,
respectively. Then, δ∗i ≥ δi, for all i = 1, 2, . . . , n.

Now, let β be a real number such that β ̸= 0, 1 and let Sβ(G) =
n−1∑
i=1

δβi , that is, the sum of

the βth powers of distance Laplacian eigenvalues of G.

Lemma 2.8. Let G be a connected graph with n vertices and m ≥ n edges. Let G∗ be the
connected graph obtained from G by the deletion of an edge. Let δ1 ≥ δ2 ≥ · · · ≥ δn−1 ≥ δn = 0
and δ∗1 ≥ δ∗2 ≥ · · · ≥ δ∗n−1 ≥ δ∗n = 0 be the distance Laplacian eigenvalues of G and G∗,
respectively. Then
(i) Sβ(G

∗) > Sβ(G) for β > 0 and Sβ(G
∗) < Sβ(G) for β < 0.

(ii) For any connected graph G with n vertices Sβ(G) ≥ (n−1)nβ if β > 0, and Sβ(G) ≤ (n−1)nβ

if β < 0, with either of the equality if and only if G ∼= Kn.
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Proof. Using Lemma 2.7, we have
n−1∑
i=1

δ∗i −
n−1∑
i=1

δi ≥ 2. Hence (i) follows directly from Lemma

2.7. We know that the eigenvalues of Kn are n, n, . . . , n, 0, so that (ii) follows from (i).

The following lemma will be used in the proof of Theorem 2.8.

Lemma 2.9. [4] Let G be a connected graph such that DL has an eigenvalue with multiplicity
n − 2. Let δ1 ≥ δ2 ≥ · · · ≥ δn−1 ≥ δn = 0 be the eigenvalues of DL. Then exactly one of the
following condition holds.
(i) m(δ1) = n− 2 and G ∼= K1,n−1 or G ∼= Kp,p.
(ii) m(δn−1) = n− 2 and G ∼= Kn−2 ∨K2.

Now, we have the following result.

Theorem 2.8. Let β be a real number with β ̸= 0, 1 and let G be a connected graph with n ≥ 3

vertices. Let R =
n−1∏
i=1

δi. Then

Sβ(G) ≥ δβ1 + (n− 2)
(R

δ1

) β
n−2

with equality if and only if G ∼= Kn or G ∼= Kn−2 ∨K2.

Proof. By the arithmetic-geometric mean inequality, we have

Sβ(G) = δβ1 +

n−1∑
i=2

δβi ≥ δβ1 + (n− 2)
( n−1∏

i=2

δβi

) 1
n−2

= δβ1 + (n− 2)
(n−1∏

i=1

δi

δ1

) β
n−2

= δβ1 + (n− 2)
(R

δ1

) β
n−2

with equality if and only if δ2 = δ3 = · · · = δn−1.
Now, if δ1 = δ2, then δ1 = δ2 = δ3 = · · · = δn−1, so that G ∼= Kn. If δ1 ̸= δ2, by Lemma 2.9, we
have G ∼= Kn−2 ∨K2.

Conclusions. The parameters Uk and Lk introduced in this paper will be of great importance
in the investigation of the distribution of distance Laplacian eigenvalues of a graph. In particu-
lar, it will throw more light in the study of the distance Laplacian spectral radius and distance
Laplacian energy of a graph. Although the bounds for Uk and Lk are obtained in terms of the
order, Wiener index and diameter of the graph, there is enough scope to obtain more bounds for
Uk and Lk in terms of several other parameters, which will lead to interesting discussion on the
problem.
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