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A GRÜSS’ TYPE INTEGRAL INEQUALITY FOR MAPPINGS

OF r-HÖLDER’S TYPE AND APPLICATIONS

FOR TRAPEZOID FORMULA

SEVER SILVESTRU DRAGOMIR

Abstract. A new integral inequality of Grüss’ type for mappings of r-Hölder’s type and appli-

cations for trapezoid formula in Numerical Integration are given.

1. Introduction

In 1935, G. Grüss proved the following integral inequality:
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provided that f and g are two integrable functions on [a, b] and satisfying the condition

φ ≤ f(x) ≤ Φ and γ ≤ g(x) ≤ Γ for all x ∈ [a, b].

The constant 1
4 is the best possible one and is achieved for f(x) = g(x) = sgn(x− a+b

2 ).
For other similar results, generalizations for positive linear functionals, discrete ver-

sions, determinantal versions etc. see the Chapter X of the book [1] due to Mitrinović,
Pečarić and Fink where further references are given.

In this paper we shall point out a new Grüss’ type integral inequality for mappings
of r-Hölder’s type and apply it in connection with the trapezoid rule from Numerical
Integration.

2. The Results

In this section we point out a Grüss’ type inequality for mappings satisfying the
condition of Hölder as follows

Theorem 2.1. Suppose that f is of r-H1-Hölder type and g is of s-H2-Hölder type,

i.e.,

|f(x) − f(y)| ≤ H1|x − y|r and |g(x) − g(y)| ≤ H2|x − y|s (2.1)
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for all x, y ∈ [a, b], where H1, H2 > 0 and r, s ∈ (0, 1] are fixed. Then we have the

inequality:
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Proof. By the assumption (2.1) we have

|(f(x) − f(y))(g(x) − g(y))| ≤ H1H2|x − y|r+s

for all x, y ∈ [a, b]. Integrating on [a, b]2 we get
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Now, we observe that:
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we get the desired inequality (2.2).

Remark 2.2. If s = r = 1, i.e., in the case of Lipschitzian mappings, we have the
following inequality [1]
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where L1 and L2 are the corresponding Lipschitz constants.
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3. Applications for Trapezoid Formula

In this section we point out some applications of the above results for the trapezoid
rule as follows

Theorem 3.1. Let f : [a, b] → R be a differentiable mapping and assume that its

derivative f ′ : (a, b) → R is of r-Hölder’s type on (a, b), i.e.,

|f ′(x) − f ′(y)| ≤ H |x − y|r for all x, y ∈ (a, b) (3.1)

where r is fixed in (0, 1]. Then we have the inequality

∣

∣

∣

f(a) + f(b)

2
−

1

b − a

∫ b

a

f(x)dx
∣

∣

∣
≤

H(b − a)r+1

(r + 2)(r + 3)
. (3.2)

Proof. Integrating by parts, we have
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Define f1 : [a, b] → R, f1(x) = x − a+b
2 and g1 : [a, b] → R, g1(x) = f ′(x). Then f1 is

of s-H1-Hölder’s type with s = 1, H1 = 1. Applying Theorem 2.1 for f1 and g1 we get
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Now, as
∫ b

a

(x −
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2
)dx = 0

then the inequality (3.4) becomes, via the identity (3.3) the desired inequality (3.2).

The following approximation of the integral
∫ b

a
f(x)dx holds.

Corollary 3.2. Suppose that f is as above. If Ih : a = x0 < x1 < · · · < xn1
< xn = b

is a partitioning of [a, b] and hi := xi+1 − xi (i = 0, . . . , n − 1) then we have

∫ b

a

f(t)dt = AT,Ih(f) + RT,Ih
(f) (3.5)
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where

AT,Ih
(f) =

n−1
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f(xi) + f(xi+1)

2
hi, (3.6)

is the classical trapzoid rule and the remainder RT,Ih
(f) is satisfying the estimation
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Proof. Applying Theorem 3.1 on the interval [xi, xi+1] (i = 0, . . . , n − 1) we get
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for all i = 0, . . . , n − 1.

Summing the above inequalities and using the generalized triangle inequality we get

the approximation formula (3.5) and the remainder is satisfying the estimation (3.7).

The following theorem concerning a perturbed trapezoid formula also holds.

Theorem 3.3. Let f : [a, b] → R be a twice differentiable mapping and assume that

its second derivative f ′′ : (a, b) → R is of r-H-Hölder’s type on (a, b) i.e.,

|f ′′(x) − f ′′(y)| ≤ H |x − y|r for all x, y ∈ (a, b) (3.8)

where ris fixed in (0, 1]. Then we have the inequality
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Proof. Integrating by parts, we can state that
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Consider the mapping f1 : [a, b] → R, f1(x) = (x−a)(b−x). Then f ′

1(x) = (a+b)−2x

and then |f ′

1(x)| ≤ b−a for all x ∈ [a, b], and then f1 is of s-H1-Hölder’s type with s = 1,

H1 = b − a. Consider also g1 : (a, b) → R, g1(x) = f ′′(x) which is of r-H-Hölder’s type.
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Applying Theorem 2.1 for f1 and g1 we get:
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Using the identity (3.10), the above inequality becomes the desired result (3.9).

The following quasi-trapezoid composite formula holds.

Corollary 3.4. Let f be as in the above theorem. If Ih is a partitioning of [a, b],
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The proof follows by the above theorem and we shall omit the details.
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