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Relative essential ideals in N-groups

T. Sahoo, B. Davvaz, H. Panackal, B. S. Kedukodi and S. P. Kuncham

Abstract. Let G be an N -group where N is a (right) nearring. We introduce the
concept of relative essential ideal (or N -subgroup) as a generalization of the concept
of an essential submodule of a module over a ring or a nearring. We provide suitable
examples to distinguish between the notions relative essential and essential ideals.
We prove the important properties and obtain equivalent conditions for the relative
essential ideals (or N -subgroups) involving the quotient. Further, we derive results
on direct sums, complement ideals of N -groups, and obtain their properties under
homomorphism.
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1 Introduction

The notion ‘essential submodule’ of a module over a ring is analogue to the concept ‘dense
subspace’ in a topological space [2]. As a topological space, the set of rational numbers is dense
in the set of real numbers whereas the set of integers is not dense in the set of rational numbers.
Unlike in topological spaces, in the case of algebraic systems such as modules over rings, there can
be a situation that if a submodule is not essential in a given module, then it is possible to retain its
essentiality with respect to (or relative to) a suitable proper submodule. Herein, we introduce and
explore the properties of such essential ideals of N -group (also known as a module over a nearring)
with respect to its arbitrary substructure. The role of an essential ideal is predominant to study
the aspects of Goldie dimension in modules over rings, and over nearrings (generalized rings).
The authors [8], [13], [15], [10] have studied uniform ideals, complement ideals, and corresponding
Goldie dimension theorems in N -groups. Further, in [11], [17], linearly independent elements and
u-linearly independent elements were introduced and obtained conditions for an N -group to have
finite Goldie dimension. In [14], the concepts essential ideals, uniform ideals in modules over a
matrix nearring were introduced and proved a characterization theorem for a module over a matrix
nearring to have finite Goldie dimension. One can refer to [5], [6], [10], [16] for the developments
of essential ideals and dimension concepts in N -groups, and [9], [12], [2] for essential submodules
and related results on modules over rings.

An additive group N (not necessarily abelian) is said to be a (right) nearring if (i) (N, ·) is
a semigroup; and (ii) (a + b) · c = a · c + b · c for all a, b, c ∈ N . Obviously, if (N,+, ·) is a right
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nearring, then 0 ·a = 0 for all a ∈ N , but a ·0 ̸= 0 for some a ∈ N . If a ·0 = 0, for all a ∈ N , then
N is called zero-symmetric (denoted as N = N0). We denote ab instead of a · b. We refer to Pilz
[7] for the definitions such as N -group and ideal of an N -group. If N = N0, then the modular law
([7], pg. 48): for any ideals I, J and K of G with K contained in I, then I∩(J+K) = (I∩J)+K.
Further, for any ideals I and J of G, I + J is an ideal of G ([7], Cor. 2.3).

For any subsets I1, I2 of G, (I1 : I2) = {n ∈ N | nI2 ⊆ I1}. For each g ∈ G, Ng is an
N -subgroup of G. If I is an N -subgroup of G, then for each g ∈ G, (I : g) = {n ∈ N | ng ∈ I},
is a left N -subgroup of N.

An ideal H is essential in G (see, [8]) if for any ideal K of G, with H ∩ K = (0), then
K = (0). Let K be an ideal of G. If an ideal K ′ is maximal with respect to K ∩K ′ = (0), then
we say that K ′ is a complement of K (or a complement in G). An N -subgroup H is essential
(resp. strictly essential) (see, [6]) in G denoted by H1 ≤e G (resp. H1 ≤se G) if K is an ideal
(resp. N -subgroup) of G, H ∩K = (0), implies that K = (0).

In section 2, we introduce the concept of relative essential ideal (or N -subgroup) as a gen-
eralization of the concept of an essential submodule of a module over a ring or a nearring. We
exhibit possible illustrations of these notions to distinguish between relative essential and essen-
tial ideals. We prove the important properties and obtain equivalent conditions for the relative
essential ideals (or N -subgroups) involving the quotient. In section 3, we prove the properties of
essentiality and derive results on direct sums under homomorphisms. In section 4, we introduce
the relative complement ideal and strictly relative complement ideal of an N -group and obtain
its properties.

2 Relative essential ideals in N-groups and examples

We introduce different essentiality with respect to an arbitrary ideal and exhibit possible illus-
trations of the essentiality in various N -groups. We prove the fundamental properties, quotient
preserving essentiality of ideals and related results.

Definition 2.1. Let H1, H2 be two ideals (or N -subgroups) of G. Then

(i) H1 is said to be relative G-essential in H2, if there exists a proper ideal ∆ of G such that
(a) H1 ⊆ H2,
(b) H1 ⊈ ∆,
(c) for any ideal K of G, K ⊆ H2, H1 ∩K ⊆ ∆ implies
K ⊆ ∆.
We denote it by H1 ≤e

∆ H2, and read as H1 is ∆-essential in H2.

(ii) If H2 = G in (i), then we say that H1 is relative essential in G, denoted by H1 ≤e
∆ G.

Remark 2.2. 1. If H1 and H2 are ideals in definition 2.1(i) with ∆ = (0), then the notion
‘relativeG-essential’ coincides with ‘G-essential’, defined by [13], and if ∆ = (0) in definition
2.1(ii), then the notion ‘relative essential’ coincides with ‘essential’, defined in [8].

2. If H1 is an N -subgroup in definition 2.1(ii) with ∆ = (0), then the notion ‘relative essential’
coincides with ‘essential’ defined by [6].

Definition 2.3. Let H1, H2 be two N -subgroups of G. Then

(i) H1 is said to be strictly relative G-essential in H2, if there exists a proper N -subgroup ∆
of G such that
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(a) H1 ⊆ H2,
(b) H1 ⊈ ∆,
(c) for any N -subgroup K of G, K ⊆ H2, H1 ∩K ⊆ ∆ implies
K ⊆ ∆.
We denote it by H1 ≤se

∆ H2, and read as H1 is strictly ∆-essential in H2.

(ii) IfH2 = G in (i), then we say thatH1 is strictly relative essential inG, denoted byH1 ≤se
∆ G.

Remark 2.4. If ∆ = (0) in definition 2.3(ii), then the notion ‘strictly relative essential’ coincides
with ‘strictly essential’ defined by [6].

We provide explicit illustrations of different types of essential ideals and N -subgroups for a
given N -group to distinguish the notion ‘relative essential’ introduced, and the notion ‘essential’
already exists. However, in some examples, we confine the computations only to such ideals and
N -subgroups wherein the comparison between the types of essentiality is conveyed in the specified
N -group.

Example 2.5. Let (Z12,+12, ·12) and G = N. Then the ideals and N -subgroups of G are H1 =
{0, 2, 4, 6, 8, 10}, H2 = {0, 6}, H3 = {0, 3, 9} and H4 = {0, 4, 8}. Then, we have

1. H4 ≤e
H3

H1, H4 ≤se
H3

H1, H4 ≤se
H3

G, and H4 ≤e
H3

G.

2. H4 ≰e H1 since H4 ∩H2 ⊆ {0} and H2 ̸= {0}.

3. H4 ≤se G, whereas H4 ≰e G. Also, H2 ≰e G,H3 ≰e G.

Example 2.6. Consider the nearring N = (A4,+, ·) listed as O(2), in ([7], page 423), and
let G = N. The N -subgroups are H1 = {0}, H2 = {0, 1}, H3 = {0, 2}, H4 = {0, 2, 3}, H5 =
{0, 4, 8}, H6 = {0, 1, 2, 3} and the only proper ideal is H6. Then we have the following.

1. H2 ≤se
H4

H6. However, H2 ≰se H6, since H2 ∩H4 ⊆ {0} and H4 ̸= {0}.

2. H5 ≤se
H6

G. However, H5 ≰se G, since H5 ∩H4 ⊆ {0} and H4 ̸= {0}.

Example 2.7. Consider the nearring N listed as K(139), page 418 of [7], and in [3]. Let N =
D8 =

〈
{r, s | r4 = s2 = e, rs = sr−1}

〉
= {e, r, r2, r3, s, sr, sr2, sr3}, where r is the rotation in an

anti-clockwise direction about the origin through π/2 radians and s is the reflection about the line
of symmetry, and G = N with the addition and external multiplication are defined as follows.
Then G is an N -group where N is non-abelian.

+ e r r2 r3 s sr3 sr2 sr

e e r r2 r3 s sr3 sr2 sr

r r r2 r3 e sr3 sr2 sr s

r2 r2 r3 e r sr2 sr s sr3

r3 r3 e r r2 sr s sr3 sr2

s s sr sr2 sr3 e r3 r2 r

sr3 sr3 s sr sr2 r e r3 r2

sr2 sr2 sr3 s sr r2 r e r3

sr sr sr2 sr3 s r3 r2 r e

Table 1
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* e r r2 r3 s sr3 sr2 sr

e e e e e e e e e

r e r r2 r3 s sr3 sr2 sr

r2 e r2 e r2 e e e e

r3 e r3 r2 r s sr3 sr2 sr

s e s r2 sr2 s e sr2 r2

sr3 e sr3 e sr3 e sr3 e sr3

sr2 e sr2 r2 s s e sr2 r2

sr e sr e sr e sr3 e sr3

Table 2

Then, H1 = {e, sr3}, H2 = {e, r2}, H3 = {e, s}, H4 = {e, sr2}, H5 = {e, r2, sr3, sr} and
H6 = {e, r2, s, sr2} are the N -subgroups, whereas the ideals are only H2, H5 and H6. We have
the following.

1. H2 ≤e H6, H2 ≤se H5, H2 ≤e G,H5 ≤e G,H6 ≤e G, but H1 ≰se H5, since H1 ∩H2 ⊆ {0},
and H2 ̸= {0}. Further, H5 ≰se G, as H5 ∩H3 = {0} and H3 ̸= {0}.

2. H1 ≤se
H6

H5, H5 ≤se
H6

G and H5 ≤e
H6

G.

Example 2.8. Let N =

((
Z4 2Z4

0 Z4

)
,+, ·

)
, where N non-commutative, the Osofsky’s 32-

elements matrix ring and G = N . G is considered as an N -group. Ideals as well as N -subgroups

are: J1=

(
0 0
0 0

)
, J2=

(
2Z4 0
0 0

)
, J3=

(
0 0
0 2Z4

)
, J4=

(
0 2Z4

0 0

)
, J5=

(
0 2Z4

0 2Z4

)
, J6=

(
0 2Z4

0 Z4

)
,

J7=

(
2Z4 2Z4

0 0

)
, J8=

(
2Z4 2Z4

0 2Z4

)
, J9=

(
2Z4 2Z4

0 Z4

)
, J10=

(
Z4 2Z4

0 0

)
, J11=

(
Z4 2Z4

0 2Z4

)
, J12=

(
Z4 2Z4

0 Z4

)
.

Then we have the following

1. J7 ≤e
J3

J11, J7 ≤se
J3

J11, J7 ≤se
J3

G and J7 ≤e
J3

G.

2. J7 ≤e J11, J7 ≤se J11, J9 ≤se G, J9 ≤e G.

3. J6 ≰se J9, since J6 ∩ J2 ⊂ {0} and J2 ̸= {0}.

4. J7 ≰se G and J7 ≰e G, since J7 ∩ J3 ⊆ {0} and J3 ̸= {0}.

Example 2.9. Let N = (Z24,+24, ·24) and G = N. The ideals and N -subgroups are H1 =
⟨2⟩H2 = ⟨3⟩, H3 = ⟨4⟩, H4 = ⟨6⟩, H5 = ⟨8⟩, H6 = ⟨12⟩. Then,

1. H3 ≤e
H2

H1 and H5 ≤Ge
H4

H3.

2. H3 ≤e
H2

G, but H5 ≰se
H4

G, since H5 ∩H2 = {0} and H2 ̸= {0}.

3. H3 ≤se G,H3 ≤e
H2

G and H3 ≰se G, but H5 ≰se G, since H5 ∩H6 = {0} and H6 ̸= {0}.

In the following examples 2.10, 2.11, we consider module G over the ring of integers, and
hence the ideals and N -subgroups are the same. We refer to them as submodules.

Example 2.10. TakeG = (Z4 × Z2,+) . Then the submodules areH1 = ⟨(0, 0)⟩, H2 = ⟨(2, 0)⟩, H3 =
⟨(2, 1)⟩, H4 = ⟨(1, 0)⟩, H5 = ⟨(1, 1)⟩, H6 = ⟨(0, 1)⟩. It can be observed that,
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1. H2 ≤e
H3

H5, H2 ≤e H5.

2. H2 ≰e
H3

G, as H2 ∩H6 ⊆ H3 but H6 ⊈ H3.

3. H2 ≰e G as H2 ∩H3 ⊆ {0} but H3 ̸= {0}.

4. H2 ≰e G since H2 ∩H3 ⊆ {0} and H3 ̸= {0}.

Example 2.11. Let G = (Z× Z6,+) . The submodules are H1 = ⟨(0, 0)⟩, H2 = ⟨(0, 2)⟩, H3 =
⟨(0, 3)⟩, H4 = ⟨(1, 0)⟩. Then we have the following.

1. H2 ≤e
H3

H4, H2 ≤se
H3

H4, H2 ≤e
H3

G and H2 ≤se
H3

G.

2. H2 ≰e H4, H2 ≰e G, since H2 ∩H3 = {0} and H3 ̸= {0}.

Example 2.12. Let (N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},+, ·) ([1], Table no 12/3(23)) be a
nearring. The operation table is given below:

+ 0 1 2 3 4 5 6 7 8 9 10 11

1 1 0 3 2 5 4 7 6 9 8 11 10

2 2 10 0 4 3 6 5 8 7 11 1 9

3 3 11 1 5 2 7 4 9 6 10 0 8

4 4 9 10 6 0 8 3 11 5 1 2 7

5 5 8 11 7 1 9 2 10 4 0 3 6

6 6 7 9 8 10 11 0 1 3 2 4 5

7 7 6 8 9 11 10 1 0 2 3 5 4

8 8 5 7 11 9 1 10 2 0 4 6 3

9 9 4 6 10 8 0 11 3 1 5 7 2

10 10 2 4 0 6 3 8 5 11 7 9 1

11 11 3 5 1 7 2 9 4 10 6 8 0

Table 3

and

a · b =
{

0 if b ̸= 10,
b if b = 10, for all a, b ∈ N.

Then,H1 = {0, 1},H2 = {0, 4},H3 = {0, 8},H4 = {0, 7},H5 = {0, 2},H6 = {0, 6},H7 = {0, 11},
H8 = {0, 5, 9}, H9 = {0, 1, 6, 7}, H10 = {0, 4, 7, 11}, H11 = {0, 2, 7, 8}, H12 = {0, 1, 4, 5, 8, 9},
H13 = {0, 3, 5, 7, 9, 10} and H14 = {0, 2, 5, 6, 9, 11} are the N -subgroups, whereas the ideals are
H4, H8, H12, H13 and H14. We have the following.

1. H4 ≤e
H8

H13, but H4 ≰e H13, as H4 ∩H8 = {0}, and H8 ̸= {0}.

2. H14 ≤e
H4

G, but H14 ≰e G, as H14 ∩H4 = {0} and H4 ̸= {0}.

3. H1 ≤se
H11

H10, but H1 ≰se H10, as H1 ∩H4 = {0}, H4 ⊆ H10, and H4 ̸= {0}.

Proposition 2.13. Let Hi, 1 ≤ i ≤ 3, be ideals of G, and ∆ a proper ideal of G. Then

1. H1 ≤e
∆ H3, H2 ≤e

∆ H3 and H1 ∩H2 ⊈ ∆ implies that H1 ∩H2 ≤e
∆ H3.
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2. Let H1 ⊆ H2 ⊆ H3. Then H1 ≤e
∆ H3 if and only if H1 ≤e

∆ H2 and H2 ≤e
∆ H3.

Proof. (1) Suppose H1 ≤e
∆ H3, H2 ≤e

∆ H3 and (H1 ∩H2) ⊈ ∆. Let (H1 ∩H2) ∩K ⊆ ∆, where
K is an ideal of G, K ⊆ H3. Then H1 ∩ (H2 ∩K) ⊆ ∆. Since (H2 ∩K) is an ideal of G, K ⊆ H3

and H1 ≤e
∆ H3, we get H2 ∩ K ⊆ ∆. Again, since H2 ≤e

∆ H3, we have K ⊆ ∆. Therefore,
(H1 ∩H2) ≤e

∆ H3.

(2) Suppose H1 ≤e
∆ H3. Let K be an ideal of G, K ⊆ H2 such that H1 ∩ K ⊆ ∆. Since

K ⊆ H2 ⊆ H3 and H1 ≤e
∆ H3, we have K ⊆ ∆, shows that H1 ≤e

∆ H2. Next, let L be an ideal
of G, L ⊆ H3 such that H2 ∩ L ⊆ ∆. Now H1 ∩ L ⊆ H2 ∩ L ⊆ ∆ and since H1 ≤e

∆ H3, we have
L ⊆ ∆. Therefore, H2 ≤e

∆ H3.

Conversely, let K be an ideal of G, K ⊆ H3 such that H1 ∩K ⊆ ∆. Now H1 ∩ (H2 ∩K) ⊆
H1 ∩K ⊆ ∆. Since H2 ∩K is ideal of G, H2 ∩K ⊆ H2, and H1 ≤e

∆ H2, we have H2 ∩K ⊆ ∆.
Again since H2 ≤e

∆ H3, we get K ⊆ ∆, proves H1 ≤e
∆ H3.

Remark 2.14. The other implication of the Proposition 2.13 (1), need not be true, in general.
Consider the Example 2.9, where H1 = ⟨2⟩, H2 = ⟨3⟩, H3 = ⟨4⟩, ∆ = H4 = ⟨6⟩, H5 = ⟨8⟩ and
H6 = ⟨12⟩. Since H5 ∩H1 = ⟨8⟩, we have

(i) H5 ∩H1 ⊆ H3

(ii) H5 ∩H1 ⊈ ∆

Then K = H6 is the only ideal satisfying K ⊆ H3, (H5 ∩ H1) ∩ K ⊆ ∆ implies that K ⊆ ∆.
Therefore, H5 ∩H1 ≤e

∆ H3. However, since H1 ⊈ H3, we conclude that H1 ≰e
∆ H3.

Lemma 2.15. Let N = N0 and ∆ ⊆ H1 ⊆ H2 be ideals of G. Then H1 ≤e
∆ H2 if and only if

H1/∆ ≤e H2/∆.

Proof. Suppose H1 ≤e
∆ H2. Let K/∆ be an ideal of G/∆ contained in H2/∆ such that H1/∆∩K/∆ =

(0)/∆ in G/∆. Then H1 ∩ K/∆ = (0)/∆, implies H1 ∩K ⊆ ∆. Since H1 ≤e
∆ H2 and K ⊆ H2, we get

K ⊆ ∆, means K/∆ = (0)/∆.

Conversely, let K be an ideal of G, K ⊆ H2 such that H1 ∩ K ⊆ ∆. Then, K + ∆ is an
ideal of G and consequently, (K + ∆)/∆ is an ideal of G/∆ contained in H2/∆. Now we show that
H1/∆∩(K + ∆)/∆ = (0)/∆. For this, let x+∆ ∈ H1/∆∩(K + ∆)/∆. Then x ∈ H1 and x ∈ K+∆, implies
x ∈ H1∩(K+∆). Since N is zero-symmetric and ∆ ⊆ H1, by the modular law, x ∈ ∆+(H1∩K).
Since H1 ∩ K ⊆ ∆, we have x ∈ ∆ + ∆ ⊆ ∆. Hence, H1/∆ ∩ (K + ∆)/∆ = (0)/∆, which gives
(K + ∆)/∆ = (0)/∆, by the converse hypothesis. Therefore K ⊆ ∆, shows that H1 ≤e

∆ H2.

Proposition 2.16. Let N = N0 and let H1, H2, ∆ be (proper) ideals of G. If H1 ≤e
∆ H2, then

(H1 + ∆)/∆ ≤e H2/∆.

Proof. Let A/∆ be an ideal of G/∆ contained in H2/∆ such that A/∆ ∩ (H1 + ∆)/∆ = (0)/∆. Then
(A ∩ (H1 + ∆))/∆ = (0)/∆. Since N is zero-symmetric and ∆ ⊆ A, by modular law ((A ∩ H1) + ∆)/∆ =
(0)/∆. It follows that (A ∩ H1) + ∆ ⊆ ∆, and hence (A ∩ H1) ⊆ ∆. Since H1 ≤e

∆ H2, we have
A ⊆ ∆. Therefore, A/∆ = (0)/∆, and thus (H1 + ∆)/∆ ≤e H2/∆.

Theorem 2.17. Let H, ∆ be N -subgroups of G and 1 ∈ N . Then the following are equivalent.

1. H ≤se
∆ G

2. For each g ∈ G \∆, there exist n ∈ N such that ng ∈ H \∆.
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3. (H : g) ≤se
(∆:g) NN , for each g ∈ G \∆.

Proof. (1) ⇒ (2): Let g ∈ G \ ∆. Now Ng is an N -subgroup of G, g /∈ ∆ and 1 ∈ N , we get
Ng ⊈ ∆. Since H ≤se

∆ G, we get H ∩ Ng ⊈ ∆. Let x ∈ H ∩ Ng such that x /∈ ∆. Then x ∈ H
and x = ng, for some n ∈ N . Therefore, x = ng ∈ H and x /∈ ∆.

(2) ⇒ (1): Let H ∩K ⊆ ∆, where K be an N -subgroup of G. If K ⊈ ∆, then there exists
a ∈ K\∆ ⊆ G\∆. Now by (2), na ∈ H\∆, for some n ∈ N , whereas na ∈ H∩K, a contradiction.
Hence, H ≤se

∆ G.

(1) ⇒ (3): Let g ∈ G \ ∆. By (2), ng ∈ H \ ∆, for some n ∈ N, and hence it follows that
(H : g) ⊈ (∆ : g). Now let I be an N -subgroup of N such that (H : g) ∩ I ⊆ (∆ : g). Clearly, Ig
is an N -subgroup of G. If H ∩ Ig ⊈ ∆, then there exists x ∈ H ∩ Ig, but x /∈ ∆. Then x ∈ H
and x = ig, for some i ∈ I. Hence, i ∈ (H : g) and i ∈ I, but i /∈ (∆ : g), a contradiction to the
assumption. Therefore, H ∩ Ig ⊆ ∆. Since H ≤se

∆ G, we have Ig ⊆ ∆. Thus, (H : g) ≤se
(∆:g) NN .

(3) ⇒ (1): Suppose that H ∩ K ⊆ ∆, where K be an N -subgroup of G. If K ⊈ ∆, then
there exists x ∈ K \∆ ⊆ G \∆. Now by (3), we get (H : x) ≤se

(∆:x) NN . Since (H : x) ⊈ (∆ : x),

there exists a ∈ (H : x) ⊆ N , but a /∈ (∆ : x). That is, ax ∈ H, but ax /∈ ∆. Now since K be
an N -subgroup of G, and a ∈ N , x ∈ K, we get ax ∈ K. Then ax ∈ H ∩ K, but ax /∈ ∆, a
contradiction. Hence, H ≤se

∆ G.

Remark 2.18. Observe that Theorem 2.17 is proved for ‘strictly essential’. These results may
not satisfy for the notion ‘essential’, since for any g ∈ G, Ng is an N -subgroup of G but not an
ideal of G, in general.

Consider the following example.

Example 2.19. Consider the nearring N = (S3,+, ·), given in H(37), p. 411 of [7], and let
G = N . Let c ∈ G. Then Ng = S3g = {0, c}, which is an N -subgroup of S3 but it is not even a
normal subgroup of S3, since a+ c− a = b /∈ {0, c}.

3 N-Homomorphisms of relative essential ideals

We prove homomorphism results of essentiality and the direct sums with respect to arbitrary
ideal of an N -group.

Theorem 3.1. Let f : G1 → G2 be an N -homomorphism, and let ∆ be a proper ideal of G2

such that f(G1) ⊈ ∆. Then f(G1) ≤e
∆ G2 if and only if for any homomorphism ϕ, whenever

ϕ−1(0) ∩ f(G1) ⊆ ∆, we have ϕ−1(0) ⊆ ∆.

Proof. Suppose f(G1) ≤e
∆ G2. Let ϕ : G1 → G2 be an N -homomorphism such that ϕ−1(0) ∩

f(G1) ⊆ ∆. Since f(G1) ≤e
∆ G2, we have ϕ−1(0) ⊆ ∆.

Conversely, let K be an ideal of G2 such that f(G1) ∩K ⊆ ∆. Since f−1(∆) is an ideal of
G1, G1/f−1(∆) is a quotient N -group.
Define ϕ : (f(G1) +K) → G1/f−1(∆) with ϕ(f(g1) + k) = g1 + f−1(∆), for each g1 ∈ G1, k ∈ K.
To show ϕ is well-defined, suppose f(g1)+ k1 = f(g2)+ k2. This implies f(g1)− f(g2) = k2 − k1.
Since f is homomorphism, we get f(g1 − g2) = k2 − k1 ∈ K ∩ f(G1) ⊆ ∆. Therefore, g1 − g2 ∈
f−1(∆), hence g1 + f−1(∆) = g2 + f−1(∆). Thus ϕ(f(g1) + k1) = ϕ(f(g2) + k2).

To show ϕ is an N -homomorphism,
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(i) ϕ((f(g1) + k1) + (f(g2) + k2))= ϕ(f(g1) + f(g2) + k3 + k2), for some k3 ∈ K.

Since f is homomorphism, we get,

ϕ(f(g1) + f(g2) + k3 + k2) = ϕ(f(g1 + g2) + k3 + k2)

= (g1 + g2) + f−1(∆)

= (g1 + f−1(∆)) + (g2 + f−1(∆))

= ϕ(f(g1) + k1) + ϕ(f(g2) + k2)

(ii) Let n ∈ N . Since K is an ideal of G2, we have n(f(g1) + k) − nf(g1) = k1, for some
k1 ∈ K. Then n(f(g1) + k) = k1 + nf(g) = nf(g1) + k2, for some k2 ∈ K.
Now

ϕ(n(f(g1) + k)) = ϕ(nf(g1) + k2)

= ϕ((f(ng1) + k2))

= ng1 + f−1(∆)

= n(g1 + f−1(∆))

= n(ϕ(f(g1) + k))

Therefore, ϕ is an N -homomorphism. Now to show ϕ−1(0)∩ f(G1) ⊆ ∆, let x ∈ ϕ−1(0)∩ f(G1).
Then ϕ(x) = 0 in G1/f−1(∆), where x = f(g) + k, for some g ∈ G, k ∈ K, implies g + f−1(∆) =
f−1(∆). Therefore, g ∈ f−1(∆) and hence f(g) ∈ ∆. Also x ∈ f(G1) implies that x = f(g1), for
some g1 ∈ G1, and it follows that f(g) + k = f(g1). Now k = f(g1)− f(g)= f(g1 − g) ∈ f(G1).
So, k ∈ f(G1) ∩ K ⊆ ∆. Therefore, x = f(g) + k ∈ ∆ + ∆ ⊆ ∆. By hypothesis we conclude
that ϕ−1(0) ⊆ ∆. Now let x ∈ K. Then x = 0 + k = f(0) + k, since f is a homomorphism. Now
ϕ(x) = ϕ(f(0) + k) = 0 + f−1(∆) in G1/f−1(∆). Therefore, x ∈ ϕ−1(0). Thus K ⊆ ϕ−1(0) ⊆ ∆,
proves f(G1) ≤e

∆ G2.

Proposition 3.2. Let f ∈ HomN (G1, G2) where N = N0, ∆ and H be ideals of G2. If H ≤e
∆ G2,

then f−1(H) ≤e
f−1(∆) G1.

Proof. Since ∆, H are ideals of G2, ([7], Prop. 2.17), f
−1(H) and f−1(∆) are ideals of G1. Let

L be an ideal of G1 such that f−1(H) ∩ L ⊆ f−1(∆). To show H ∩ f(L) ⊆ ∆, let x ∈ H ∩ f(L).
Then x ∈ H and x = f(l) for some l ∈ L, implies l = f−1(x) ∈ f−1(H) ∩ L ⊆ f−1(∆),
and hence x = f(l) ∈ ∆. Since H ≤e

∆ G2, we have f(L) ⊆ ∆, and so L ⊆ f−1(∆). Hence,
f−1(H) ≤e

f−1(∆) G1.

Theorem 3.3. Let K be an ideal of G and π : G → G/K be an N -epimorphism. If S is an ideal
of G such that π(S) ≤e

f(∆) π(G) then S+K ≤e
∆ G, where ∆ is a proper ideal of G containing K.

Proof. Define π: G → G/K by π(g) = g+K and let S be an ideal of G such that π(S) ≤e
f(∆) π(G).

To show S + K ≤e
∆ G, let I be an ideal of G such that (S + K) ∩ I ⊆ ∆. Let a + K ∈

((S + K)/K)∩ ((I + K)/K). Now a+K = s+K = y+K for some s ∈ S, y ∈ I. Then s− y = x for
some x ∈ K. So, y = s−x ∈ S+K, hence y ∈ (S+K)∩I ⊆ ∆. Now a+K = y+K ⊆ ∆+K ⊆ ∆.
Therefore, ((S + K)/K) ∩ ((I + K)/K) ⊆ ∆ + K ⊆ ∆. Since (S + K)/K = π(S) ≤e

∆ π(G), we have
(I + K)/K ⊆ ∆, implies that I ⊆ ∆+K ⊆ ∆. Therefore, S +K ≤e

∆ G.

Remark 3.4. Converse of Theorem 3.3 need not be true, in general. Consider an N -group G,
where G = N = Z, the nearring of integers. Clearly, S = 2Z and K = 6Z are ideals of G. Consider
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the canonical map π : G → G/K. Now it can be observed that S + K = 2Z ≤e
3Z Z. However,

π(S) = π(2Z) = 2Z/6Z = {0̄, 2̄, 4̄} is not ∆ = 3Z essential in G/K = Z/6Z ∼= Z6 = {0̄, 3̄} ⊕ {0̄, 2̄, 4̄}.
That is, {0̄, 2̄, 4̄} ≰e

∆/K Z6.

Definition 3.5. An ideal I of G is said to be a relative direct summand if there is an ideal J ,
and a proper ideal ∆ of G such that I + J = G and I ∩ J ⊆ ∆. In this case, we say that I + J is
∆-direct (or ∆-direct sum) in G.

If ∆ = (0), then I is a direct summand of G defined in [7].

Example 3.6. (i) Consider the ideals ∆ = H1 = {1,−1}, H2 = {1,−1, i,−i} and H3 =
{1,−1, j,−j} in the N -group Q8 over itself given in L(1), pg. 418 of [7]. Here H2 is ∆-direct
summand of H3, but H2 is not a direct summand of H3, since H2∩H3 = {1,−1} ̸= {1},
identity in Q8.

(ii) Consider the ideals ∆ = H2 = {0, 6}, H3 = {0, 3, 6, 9} and H4 = {0, 4, 8} in the N -group
Z12 over itself given in the Example 2.5. Here H3 is a ∆-direct summand of H4, and also,
H3 is a direct summand of H4.

Definition 3.7. A family {Ii}i∈I of ideals of G is said to be relative direct if there exists a proper

ideal ∆ of G such that Ii∩(
∑
j ̸=i

Ij) ⊆ ∆ and
∑
i∈I

Ii = G. In this case, we call
n∑

i=1

Ii as ∆-direct sum.

Example 3.8. Consider the ideals of N -group D8 given in Example 2.7. Take ∆ = H1. Then
H2 ∩ (H3 +H4) ⊆ ∆, H3 ∩ (H2 +H4) ⊆ ∆ and H4 ∩ (H2 +H3) ⊆ ∆. Also H2 +H3 +H4 = G.
Therefore, {H2, H3, H4} is ∆-direct.

Theorem 3.9. Let f : G → G′ be an N -isomorphism. Suppose that Ii, 1 ≤ i ≤ n are ideals of
G, and ∆ a proper ideal of G such that Ii ⊈ ∆ for all i. Then

(i)
n∑

j=1

Ij is ∆-direct in G if and only if
n∑

j=1

f(Ij) is f(∆)-direct in G′; and

(ii) K1 ≤e
∆ K2 if and only if f(K1) ≤e

f(∆) f(K2).

Proof. (i) Suppose
n∑

j=1

Ij is ∆-direct.

We show that f(Ii) ∩
( n∑

j=1,j ̸=i

f(Ij)

)
⊆ f(∆), let y ∈ f(Ii) ∩

( n∑
j=1,j ̸=i

f(Ij)

)
.

Then, y = f(xi) =
∑
j ̸=i

f(xj), xj ∈ Ij , 1 ≤ j ≤ n. Since f is homomorphism, we get f(xi) =

f

( ∑
j ̸=i

xj

)
, xj ∈ Ij , 1 ≤ j ≤ n. Since f is one-one, we have xi =

( ∑
j ̸=i

xj

)
, xj ∈ Ij , 1 ≤ j ≤ n.

Now since

n∑
j=1

Ij is ∆-direct, xi ∈ Ii ∩
( n∑

j=1,j ̸=i

Ij

)
⊆ ∆. Therefore, y = f(xi) ∈ f(∆), and

n∑
j=1

f(Ij) is f(∆)-direct. Next to show
∑
i∈I

f(Ii) = f(G). For any x ∈
∑
i∈I

Ii, x = x1 + · · · + xn,



78 T. Sahoo, B. Davvaz, H. Panackal, B. S. Kedukodi and S. P. Kuncham

where xi ∈ Ii for 1 ≤ i ≤ n. Then f(x) = f(x1 + · · · + xn). Since f is homomorphism, we have
f(x) = f(x1) + · · ·+ f(xn) ∈

∑
i∈I

f(Ii) ⊆ f(G). Since xi’s are distinct and f is one-one, we have

f(xi)’s are distinct.

Conversely, suppose that f(Ii), 1 ≤ i ≤ n is f(∆)-direct.

Let x ∈ Ii ∩
( n∑

j=1,j ̸=i

Ij

)
. Now f(x) ∈ f(Ii) ∩

(
f

( n∑
j=1,j ̸=i

(Ij)

))
=f(Ii) ∩

( n∑
j=1,j ̸=i

f(Ij)

)
⊆

f(∆). Then f(x) = f(δ) for some δ ∈ ∆, and since f is one-one, we get x = δ. Therefore,

Ii ∩
( n∑

j=1,j ̸=i

Ij

)
⊆ ∆, for 1 ≤ i ≤ n. Let x ∈ G. To show x ∈

n∑
j=1

Ij . Since x ∈ G, f(x) ∈ f(G) =

G′ =

n∑
j=1

f(Ij). Therefore f(x) = f(x1) + · · · + f(xn) = f(x1 + · · · , xn). Since f is one-one,

x = x1 + · · · , xn ∈
n∑

j=1

Ij .

(ii) Suppose K1 ≤e
∆ K2. In a contrary way, suppose that f(K1) ≰e

f(∆) f(K2). Then there

exists an ideal I of G′ contained in f(K2) such that f(K1) ∩ I ⊆ f(∆) and I ⊈ f(∆). Now
I ⊈ f(∆) implies that f−1(I) ⊈ ∆. Write K = f−1(I). Since K is an ideal of G, f(K) is an
ideal of G′ and f(K) = I ⊆ f(K2). Therefore, f(K1) ∩ f(K) ⊆ f(∆) and f(K) ⊈ f(∆). This
shows that f(K) and f(K1) are f(∆)- direct in G′. By (i), K ∩K1 ⊆ ∆ and since K ⊈ ∆, we
get K1 is not ∆- essential in K2, a contradiction. Therefore, f(K1) ≤e

f(∆) f(K2). To prove the

converse, we assume the contrary K1 ≰e
∆ K2. Then there exists an ideal I of G contained in K2

such that K1 ∩ I ⊆ ∆ and I ⊈ ∆. Since I ⊈ ∆, we have f(I) ⊈ f(∆), also since I ⊆ K2, we
have f(I) ⊆ f(K2). Now from K1 ∩ I ⊆ ∆, we get f(K1) ∩ f(I) ⊆ f(∆) but f(I) ⊈ f(∆), a
contradiction to the converse hypothesis.

4 Relative complement ideal in N-groups

We define the complement ideal of an N -group with respect to an arbitrary ideal and obtained
some important results.

Definition 4.1. Let H be an ideal (resp. N -subgroup) of G. An ideal (resp. N -subgroup) H ′

of G is called a relative complement (resp. strictly relative complement) of H if there exists a
proper ideal (resp. N -subgroup) ∆ of G such that H ′ is maximal with respect to H ∩H ′ ⊆ ∆.
In this case, we call H ′ as ∆-complement of H.

If ∆ = (0), then the ∆-complement corresponds to just the complement (resp. strictly comple-
ment) defined in [8] (resp. [6]). We denote the complement (or strictly complement) of H by
Hc.

Example 4.2. Consider the Example 2.7.

(i) Let ∆ = H2. Then H5 is ∆-complement of H6, whereas, with respect to the N -subgroups
∆ = H5, it can be seen that H6 is maximal with respect to H2 ∩H6 ⊆ H5. Hence, H6 is
strictly ∆-complement of H2.

(ii) H5 is a strictly complement as well as strictly H1-complement of H4.

Proposition 4.3. Let H1, H2 be ideals of G, ∆ a proper ideal of G such that ∆ = H1 ∩H2. If
H2 is a ∆-complement of H1, then H1 +H2 ≤e

∆ G.
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Proof. Suppose (H1 +H2) ∩K ⊆ ∆, where K is an ideal of G. To show that K ⊆ ∆. First we
show that H1 ∩ (H2 +K) ⊆ ∆. Let x ∈ H1 ∩ (H2 +K). Then x = h1 and x = h2 + k, for some
h2 ∈ H2, k ∈ K. Now h1 = h2 + k, implies k = h1 − h2 ∈ K ∩ (H1 + H2) ⊆ ∆. Therefore,
k ∈ ∆, and so h1 = h2 + k ∈ H2 + ∆ = H2 (since H1 ∩ H2 = ∆, we get ∆ ⊆ H2), implies
h1 ∈ H1 ∩H2 = ∆, hence x ∈ ∆. Therefore H1 ∩ (H2 +K) ⊆ ∆. Since H2 is a ∆-complement
of H1, we have that H2 +K = H2. This means that K ⫋ H2, and since K ⊆ H1 +H2, we have
K = (H1 +H2) ∩K ⊆ ∆.

Proposition 4.4. Let H and ∆ be (proper) N -subgroups of G. If H ≤se
∆ G, then Hc ⊆ ∆.

Further, if H ∩∆ = (0), then Hc = ∆.

Proof. By definition, Hc is maximum with respect to H ∩ Hc = (0). Since H and Hc are N -
subgroups of G with H ∩ Hc = (0) ⊆ ∆, and H ≤se

∆ G, we have Hc ⊆ ∆. Now suppose that
H ∩∆ = (0). Again by definition, since Hc is maximum with respect to H ∩Hc = (0), we have
∆ ⊆ Hc. Therefore, Hc = ∆.

Proposition 4.5. The following are equivalent for an N -subgroup H of G.

1. H ≤se
Hc G.

2. For each N -subgroup K of G, H ∩K = (0) implies K ⊆ Hc.

3. For each x ∈ G \Hc, there exists n ∈ N such that 0 ̸= nx ∈ H.

Proof. (1) ⇒ (2): Let K be an N -subgroup of G such that H ∩K = (0) and H ⊈ Hc.
Since Hc is complement of H, we have K ⊆ Hc.
(1) ⇒ (3): Let x ∈ G\Hc. By Theorem 2.17, there exists n ∈ N such that nx ∈ H \Hc. If nx = 0,
then since Hc is an N -subgroup of G, we get nx ∈ Hc, a contradiction. Therefore, 0 ̸= nx ∈ H.
(2) ⇒ (1): Let K be an N -subgroup of G such that H ∩K ⊆ Hc. Since H ∩K ⊆ H ∩Hc = (0),
by (2), K ⊆ Hc.
(3) ⇒ (1): Follows by Theorem 2.17.

Proposition 4.6. Let H and ∆ (̸= G) be ideals of G such that ∆ ⊆ H. Then there exists an
ideal H ′ of G such that H +H ′ ≤e

∆ G and (H + H′)/∆ = H/∆ ⊕ (H′ + ∆)/∆, where ‘⊕’ denotes the
direct sum.

Proof. Let S={K : K ∩H ⊆ ∆,K is an ideal of G}. Clearly, (0) ∈ S, hence S ̸= ϕ. Let {Li}i∈I

be a non empty family of ideals of G in S. Define Ki ∼ Kj ⇔ Ki ⊆ Kj . Clearly, ∼ is a
partial order on S, in which every chain has an upper bound, say

⋃
i∈I

Li. By Zorn’s lemma, S

has a maximal element, say H ′. We prove H + H ′ ≤e
∆ G. Let K be an ideal of G such that

(H+H ′)∩K⊆ ∆. We must show that K ⊆ ∆, for this, first we show that H ∩ (H ′+K) ⊆ ∆. Let
x ∈ H, y ∈ H ′, z ∈ K such that x = y+ z. Then by supposition x− y = z ∈ (H +H ′)∩K ⊆ ∆.
Since ∆ ⊆ H, we get y = x − (x − y) ∈ H. Since x − z = y ∈ H ′ and y ∈ H, it follows that
y = x− z ∈ H ∩H ′ ⊆ ∆. Since x− y ∈ ∆, y ∈ ∆, we get x ∈ ∆, shows that H ∩ (H ′ +K) ⊆ ∆.
Since H ′ is maximal such that H ∩ H ′ ⊆ ∆, we have H ′ +K = H ′. This shows that K ⊆ H ′.
Consequently, K = K ∩ (H +H ′) ⊆ ∆, and hence, H +H ′ ≤e

∆ G.

Now to show H/∆ ∩ (H′ + ∆)/∆ = (0)/∆, for any x+∆ ∈ H/∆ ∩ (H′ + ∆)/∆, x ∈ H and x ∈ H ′.
Hence x ∈ H ∩H ′ ⊆ ∆, implies that x+∆ = (0) +∆. Therefore, H/∆∩ (H′ + ∆)/∆ = (0)/∆. Since
H ⊆ H + H ′, we have H/∆ ⊆ (H + H′)/∆. Further, since ∆ ⊆ H, we have H ′ + ∆ ⊆ H ′ + H,
which shows that (H′ + ∆)/∆ ⊆ (H′ + H)/∆. Let x + ∆ ∈ (H + H′)/∆. Then x + ∆ = z + ∆, where
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z ∈ H +H ′, implies that x +∆ = (h + h′) + ∆, for some h ∈ H, h′ ∈ H ′. Therefore, x +∆ =
(h+∆) + (h′ +∆) ∈ H/∆ + (H′ + ∆)/∆. Hence (H + H′)/∆ = H/∆ ⊕ (H′ + ∆)/∆.

Definition 4.7. ([4] ) We say that N distributes over G if d(g1 + g2) = dg1 + dg2 for all
d ∈ N, g1, g2 ∈ G.

Evidently, if N distributes over G then aG is an ideal of G for any a ∈ N . The authors
provided the classes of nearrings wherein each N -subgroup is an ideal ([16], Remark 5.3.39).

Corollary 4.8. Let N distributes over G, let H, and let ∆ (̸= G) be N -subgroups of G, such
that ∆ ⊆ H. Then there exists an N -subgroup H ′ of G such that H+H ′ ≤e

∆ G and (H + H′)/∆ =
H/∆ ⊕ (H′ + ∆)/∆ .

Proof. Follows from Proposition 4.6 and definition 4.7.

Proposition 4.9. Let π: G → G/K be the canonical N -epimorphism, where K is an ideal of G.
Let ∆ be a proper ideal of G contained in K. Consider the following statements.

1. K is ∆-complement.

2. For any ideal K ′ of G with K ⊆ K ′, K ′ is a ∆-complement of G.

3. π(K ′) is a π(∆)-complement in G/K.

Then the conditions (1) and (2) imply (3).

Proof. Suppose K is a ∆-complement of an ideal J of G, and K ′ is a ∆-complement ideal of G
such that K ′ ⊇ K. Then there exists an ideal I of G such that K ′ is maximal with respect to
K ′ ∩ I ⊆ ∆. To show π(K ′) is a π(∆)-complement of π(I). That is, to show π(K ′) is maximal
with respect to π(K ′) ∩ π(I) ⊆ π(∆). Let x ∈ π(K ′) ∩ π(I). Then, x = k′ +K and x = i +K,
where k′ ∈ K and i ∈ I, implies that i − k′ ∈ K ⊆ K ′. Hence i ∈ K ′ ∩ I ⊆ ∆. Therefore,
x = i + K ∈ ∆/K = π(∆). Next we show that π(K ′) is maximum with respect to the above
property. Let T be any ideal of G/K such that π(K ′) ⫋ T . Then T = π(K ′′) for some ideal K ′′

of G with K ′ ⊆ K ′′. If K ′ = K ′′ then T = π(K ′′) = π(K ′) ⫋ T , a contradiction. Therefore,
K ′′ ⫌ K ′. Since K ′ is a ∆-complement of I, we have K ′′ ∩ I ⊈ ∆. Let y ∈ K ′′ ∩ I, y /∈ ∆.
Then y +K ∈ π(K ′′) ∩ π(I). Now if y +K ∈ ∆/K, then y +K = δ +K for some δ ∈ ∆, and so
y−δ ∈ K. This implies that y = (y−δ)+δ ∈ K, hence y ∈ K ∩I ⊆ K ′′∩I ⊆ ∆, a contradiction.
Therefore, y + K /∈ ∆/K. Hence y + K ∈ π(K ′′) ∩ π(I) ⊈ π(∆), thus T ∩ π(I) ⊈ π(∆), proves
π(K ′) is π(∆)-complement of π(I).

5 Conclusion

We have defined the concept of relative essential ideal (or N -subgroup) of an N -group, as a gen-
eralization of essential submodules of modules over rings or nearrings. We have obtained various
properties and proved results on homomorphism, relative complements, and relative direct sums.
This concept can be extended to study various generalizations of closed submodules, extending
submodules, uniform submodules, and their links to finite Goldie dimensional aspects.
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