CERTAIN CLASSES OF MEROMORPHICALLY MULTIVALENT FUNCTIONS WITH FIXED ARGUMENT OF COEFFICIENTS

NAK EUN CHO AND SOON YOUNG WOO

Abstract. In this paper, we consider some classes of meromorphically multivalent functions with fixed argument of coefficients. In those classes, we determine coefficient estimates, distortion theorems and extreme points.

1. Introduction

Let Σ_p denote the class of functions f of the form

$$f(z) = \frac{1}{z^p} + \sum_{n=1}^{\infty} a_n z^n \qquad (p \in N = \{1, 2, \ldots\})$$
(1.1)

which are analytic in $U - \{0\}$, where $U = \{z : |z| < 1\}$. For analytic functions f and g, we say that f is subordinate to g, written $f \prec g$, if there exists a Schwarz function w such that f(z) = g(w(z)) for $z \in U$.

Definition 1.1. Let $\Sigma_p^{\theta}(A, B)$ denote the class of functions f of the form (1.1) such that

$$-z^{p+1}f'(z) \prec p \frac{1+Az}{1+Bz}$$
 (1.2)

and $\arg a_n = \theta$ for $n \in \mathbb{N}$, where $0 \le B \le 1$ and $-B \le A < B$ $(B \ne 1 \text{ or } \cos \theta > 0)$.

We note that every function f belonging to the class $\Sigma_p^\theta(A,B)$ can be written as in the form

$$f(z) = \frac{1}{z^p} + e^{i\theta} \sum_{n=1}^{\infty} |a_n| z^n \quad (z \in U - \{0\}).$$
(1.3)

Definition 1.2. Let $\tilde{\Sigma}_p^{\theta}(A, B)$ denote the class of functions f of the form (1.3) satisfying the following condition

$$\sum_{n=1}^{\infty} n|a_n| \le \delta(\theta, A, B), \tag{1.4}$$

Received March 5, 1999.

 $^{1991\} Mathematics\ Subject\ Classification.\ 30C45.$

Key words and phrases. Mermorphically starlike of order α , meromorphically convex of order α , fixed argument.

⁵⁷

where

$$\delta(\theta, A, B) = \frac{p(B - A)}{\sqrt{1 - B^2 \sin^2 \theta} + B \cos \theta}, \quad 0 \le B \le 1 \text{ and } -B \le A < B \ (B \ne 1 \text{ or } \cos \theta > 0).$$

$$(1.5)$$

Meromorphic univalent functions have been extensively studied by Clunie [1], Libera [2], Mogra, Reddy and Juneja [4], Pormmerenke [5] and others. In particular, the class $\Sigma_p^0(A, B)$ was studied by Mogra [3].

The object of the present paper is to obtain coefficient estimates, distortion theorems and extreme points for the classes of functions defined above.

2. Coefficient Estimates

Theorem 2.1. If a function f of the form (1.3) belongs to the class $\Sigma_p^{\theta}(A, B)$, then it satisfies the condition (1.4).

Proof. Let $f \in \Sigma_p^{\theta}(A, B)$. By Definition (1.1), we obtain

$$-z^{p+1}f'(z) = p\frac{1 + Aw(z)}{1 + Bw(z)},$$

where w is an analytic function in U such that w(0) = 0 and |w(z)| < 1 for $z \in U$. Thus we have

$$\left|\frac{z^{p+1}f'(z)+p}{Ap+Bz^{p+1}f'(z)}\right| = |w(z)| < 1.$$

Then we have

$$\left|\sum_{n=1}^{\infty} n |a_n| z^{n+p}\right| < |Ap + Bz^{p+1} f'(z)|.$$

Putting z = r(0 < r < 1), we obtain

$$|w| < |(B-A)p - Be^{i\theta}w|, \qquad (2.1)$$

where

$$w = \sum_{n=1}^{\infty} n |a_n| r^{n+p}$$

Since w is a real number, by (2.1) we have

$$(1 - B2)w2 + 2pB(B - A)\cos\theta w - p2(B - A)2 < 0.$$

Solving this inequality with respect to w, we obtain

$$\sum_{n=1}^{\infty} n |a_n| r^{n+p} < \delta(\theta, A, B),$$

where $\delta(\theta, A, B)$ is defined by (1.5). Therefore, letting $r \to 1^-$, we have (1.4). From Theorem 2.1, we have

Corollary 2.1. $\Sigma_p^{\theta}(A, B) \subset \widetilde{\Sigma}_p^{\infty}(A, B)$.

Corollary 2.2. If a function f of the form (1.3) belongs to the class $\widetilde{\Sigma}_p^{\theta}(A, B)$, then

$$|a_n| \le \frac{\delta(\theta, A, B)}{n} \quad (n \in N).$$
(2.2)

The result is sharp for the extremal functions f_n of the form

$$f_n(z) = \frac{1}{z^p} + e^{i\theta} \frac{\delta(\theta, A, B)}{n} z^n \quad (n \in N).$$

By Corollary 2.1 and Corollary 2.2, we obtain

Corollary 2.3. If a function f of the form (1.3) belongs to the class $\Sigma_p^{\theta}(A, B)$, then

$$|a_n| \le \frac{\delta(\theta, A, B)}{n} \quad (n \in N),$$

where $\delta(\theta, A, B)$ is defined by (1.5). The result is sharp for $\theta = 0$. The extremal functions are functions f_n of the form

$$f_n(z) = \frac{1}{z^p} + \frac{p(B-A)}{(1+B)n} z^n \qquad (n \in N).$$
(2.3)

3. Distortion Theorems and Extreme Points

Theorem 3.1. If $f \in \Sigma_p^{\theta}(A, B)$, then

$$\frac{1}{|z|^p} - \delta(\theta, A, B)|z| \le |f(z)| \le \frac{1}{|z|^p} + \delta(\theta, A, B)|z|$$
(3.1)

and

$$\frac{p}{|z|^{p+1}} - \delta(\theta, A, B) \le |f'(z)| \le \frac{p}{|z|^{p+1}} + \delta(\theta, A, B),$$
(3.2)

where $\delta(\theta, A, B)$ is defined by (1.5). The result is sharp for $\theta = 0$. The extremal function is function f_1 of the form (2.3).

Proof. Let a function f of the form (1.3) belong to the class $\Sigma_p^{\theta}(A, B)$. By Theorem 2.1, we obtain

$$\sum_{n=1}^{\infty} |a_n| \le \sum_{n=1}^{\infty} n|a_n| \le \delta(\theta, A, B).$$
(3.3)

Since

$$|f(z)| = \left| \frac{1}{z^p} + e^{i\theta} \sum_{n=1}^{\infty} |a_n| z^n \right| \le \frac{1}{|z|^p} + \sum_{n=1}^{\infty} |a_n| |z|^n \le \frac{1}{|z|^p} + |z| \sum_{n=1}^{\infty} |a_n| \le \frac{1}{|z|^p} + |z| \delta(\theta, A, B),$$

and

$$|f(z)| = \left|\frac{1}{z^p} + e^{i\theta} \sum_{n=1}^{\infty} |a_n| z^n \right| \ge \frac{1}{|z|^p} - \sum_{n=1}^{\infty} |a_n| |z|^n \ge \frac{1}{|z|^p} - |z| \sum_{n=1}^{\infty} |a_n| \ge \frac{1}{|z|^p} - |z| \delta(\theta, A, B)$$

by (3.3), we obtain (3.1). Using (3.3), we prove the estimation (3.2) analogously.

Theorem 3.2. Let $\delta(\theta, A, B)$ be defined by (1.5) and let

$$f_0(z) = \frac{1}{z^p} \tag{3.4}$$

and

$$f_n(z) = \frac{1}{z^p} + e^{i\theta} \frac{\delta(\theta, A, B)}{n} z^n \qquad (n \in N).$$
(3.5)

Then a function f belongs to the class $\widetilde{\Sigma}_p^{\theta}(A, B)$ if and only if it is of the form

$$f(z) = \sum_{n=0}^{\infty} \gamma_n f_n(z) \quad (z \in U - \{0\}),$$
(3.6)

where $\sum_{n=0}^{\infty} \gamma_n = 1$ and $\gamma_n \ge 0$ $(n \in N \cup \{0\})$.

Proof. Let a function f of the form (1.3) belong to the class $\widetilde{\Sigma}_{p}^{\theta}(A, B)$. Put

$$\gamma_n = \frac{n}{\delta(\theta, A, B)} |a_n| \qquad (n \in N)$$

and

$$\gamma_0 = 1 - \sum_{n=1}^{\infty} \gamma_n.$$

By the assumption and Definition 1.2, we have $\gamma_n \ge 0$ $(n \in N)$ and $\gamma_0 \ge 0$. Thus

$$\sum_{n=0}^{\infty} \gamma_n f_n(z) = \gamma_0 f_0(z) + \sum_{n=1}^{\infty} \gamma_n f_n(z)$$
$$= \left(1 - \sum_{n=1}^{\infty} \gamma_n\right) \frac{1}{z^p} + \sum_{n=1}^{\infty} \frac{n}{\delta(\theta, A, B)} |a_n| \left(\frac{1}{z^p} + e^{i\theta} \frac{\delta(\theta, A, B)}{n} z^n\right)$$
$$= \frac{1}{z^p} - \sum_{n=1}^{\infty} \frac{n}{\delta(\theta, A, B)} |a_n| \frac{1}{z^p} + \sum_{n=1}^{\infty} \frac{n}{\delta(\theta, A, B)} |a_n| \frac{1}{z^p} + e^{i\theta} \sum_{n=1}^{\infty} |a_n| z^n$$
$$= f(z)$$

60

and the condition (3.6) follows. Conversely, let the function f satisfy (3.6). Since

$$\begin{split} f(z) &= \sum_{n=0}^{\infty} \gamma_n f_n(z) \\ &= \gamma_0 f_0(z) + \sum_{n=1}^{\infty} \gamma_n f_n(z) \\ &= \left(1 - \sum_{n=1}^{\infty} \gamma_n\right) \frac{1}{z^p} + \sum_{n=1}^{\infty} \left(\frac{1}{z^p} + e^{i\theta} \frac{\delta(\theta, A, B)}{n} z^n\right) \gamma_n \\ &= \frac{1}{z^p} + e^{i\theta} \sum_{n=1}^{\infty} \frac{\delta(\theta, A, B)}{n} \gamma_n z^n, \end{split}$$

we can write the function f in the form (1.3), where

$$|a_n| = \frac{\delta(\theta, A, B)}{n} \gamma_n.$$

Moreover,

$$\sum_{n=1}^{\infty} n|a_n| = \sum_{n=1}^{\infty} \gamma_n \delta(\theta, A, B) = \delta(\theta, A, B)(1 - \gamma_0) \le \delta(\theta, A, B).$$

Thus we have $f \in \widetilde{\Sigma}_p^{\theta}(A, B)$, which completes the proof of our result.

By using the same method as in the proof of Theorem 3.2, we can prove the following.

Theorem 3.3. Let $f_0(z) = \frac{1}{z^p}$ and let $f_n(n \in N)$ be defined by (2.3). Then a function f belongs to the class Σ_p^0 if and only if it is of the form (3.6).

From Theorem 3.2 and Theorem 3.3, we obtain the following two corollaries.

Corollary 3.1. $\Sigma_p^0(A, B) = \widetilde{\Sigma}_p^0(A, B).$

Corollary 3.2. The class $\Sigma_p^0(A, B)$ is convex.

Acknowledgement

This work was partially supported by Pukyong National University (1998) and the Korea Research Foundation (Project No.: 1998-015-D00039).

References

J. Clunie, On meromorphic schlicht functions, J. London Math. Soc., 34(1959), 215-216.
 R. J. Libera, Meromphic close-to-convex functions, Duke Math. J., 32(1965), 121-128.

- [3] M. L. Mogra, Meromorphic multivalent functions with positive coefficients, Math. Japonica, 35(1990), 1089-1098.
- [4] M. L. Mogra, T. R. Reddy and O. P. Juneja, Meromorphic univalent functions with positive coefficients, Bull. Austral. Math. Soc., 32(1985), 161-176.
- [5] Ch. Pommerenke, On meromorphic starlike functions, Pacific J. Math., 13(1963), 221-235.

Department of Applied Mathemeatics, Pukyong National University, Pusan 608-737, Korea.