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REFINEMENTS OF JENSEN’S INEQUALITY

I. BRNETIĆ, C. E. M. PEARCE AND J. PEČARIĆ

Abstract. Some new refinements are presented for Jensen’s inequality. These strengthen several

results obtained in the recent literature.

1. Introduction

A central tool in analysis is Hadamard’s inequality
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for convex functions. Recently some improvements for this have been found by Yang and
Wang [3]. In particular they established the following.
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They also constructed a convex, increasing function which lies between the two sides
of the first inequality in (1).

Theorem B. Let f : [a, b] → R be a convex function and αi ∈ (0, 1) (i = 1, . . . , n)
with

∑n

i=1 αi = 1. If K : [0, 1] → R is a function defined by
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then

(i) K is convex on [0, 1],
(ii)
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(iii) K is increasing on [0,1].

In this paper we make some analogous improvements to Jensen’s inequality. In Section
2 we derive the first of these. An important special case extends Theorem A. A related
result provides a further interpolation of our first result. In Section 3 we present a convex
function construction analogous to that of Theorem B. Finally in Section 4 we give a
second improvement of Jensen’s inequality. This extends a result of Yang and Wu [4].

We suppose without further comment the existence of all the integrals in our discus-
sion. We also suppose n ≥ 2 throughout, as the statements for n = 1 are either trivial
or void.

2. First Refinement

Theorem 1. Suppose I is a real interval. Let f : I → R be a convex function,

g : [a, b] → I a real function and w : [a, b] → R a positive function. Let αi ∈ (0, 1)

(i = 1, . . . , n) with
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Proof. Using Jensen’s inequality, we obtain
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which establishes the first inequality in (2).
For all k = 1, . . . , n, define
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It has been shown in [2] that
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for all k = 1, . . . , n − 1 and all real n-tuples (x1, . . . , xn), so in particular we have
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that is,
Fk+1,n ≤ Fk,n,

which provides the remaining inequalities. The final equality is trivial.
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the value of Fk,n obtained in the special case w(x) := 1 and g(x) := x. In particular we
have
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Corollary 1. Let f : [a, b] → R be convex and αi ∈ (0, 1) (i = 1, . . . , n) with
∑n

i=1 αi = 1. Then

f

(

a + b

2

)

≤ Fn,n ≤ · · · ≤ F k+1,n ≤ F k,n ≤ · · · ≤ F 1,n =
1

b − a

∫ b

a

f(x)dx.

Remark 1. Corollary 1 provides a refinement of Theorem A, which may be written

f

(

a + b

2

)

≤ Fn,n ≤ Fn−1,n ≤ F 1,n.

We now establish some associated results.

Theorem 2. Let the assumptions of Theorem 1 be fulfilled. Then

Fk,n ≤ Gk,n :=
(n − k)F1,n + (k − 1)Fn,n

n − 1
.

Proof. Let fk,n be defined as in the proof of Theorem 1. It is known (see [1, p.173])

that

fk,n(x1, . . . , xn) ≤
(n − k)f1,n(x1, . . . , xn) + (k − 1)fn,n(x1, . . . , xn)

n − 1

holds for all k = 1, . . . , n and all real n-tuples (x1, . . . , xn). As in the previous theorem

we may replace xi by g(xi). Multiplication by
∏n

ℓ=1 w(xℓ) and integrating with respect

to x1, x2, . . . , xn yields the desired result.

Proposition 1. Under the assumptions of Theorem 1,

Fn,n = Gn,n ≤ Fn−1,n ≤ Gn−1,n ≤ · · · ≤ Gk+1,n ≤ Gk,n ≤ · · · ≤ G1,n = F1,n.

Proof. By definition Fn,n = Gn,n and F1,n = G1,n and since Fn,n ≤ F1,n, we have

Gk+1,n ≤ Gk,n for 1 ≤ k < n.

Corollary 2. Suppose the assumptions of Corollary 1 hold and that Gk,n is the value

of Gk,n when w(x) := 1 and g(x) := x. Then

Fn−1,n ≤ Gn−1,n ≤ · · · ≤ Gk+1,n ≤ Gk,n ≤ · · · ≤ G1,n = F 1,n.

Remark 2. Corollary 2 supplies an interpolation of the last inequality in (1).

3. Convex Function Construction

In this section we proceed to the construction of a convex, increasing function between

the two sides of the first inequality in (2).



REFINEMENTS OF JENSEN’S INEQUALITY 67

Theorem 3. Let the assumptions of Theorem 1 be fulfilled and suppose the function
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for 0 ≤ t < u ≤ 1. Hence Hf (t) ≤ Hf (u) for t < u.

4. Second Refinement

Theorem 4. Suppose I is a real interval. Let f : I → R be a convex function and
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for all xi ∈ I (i = 1, . . . , n) and t ∈ [0, 1], whence (3) and (4) follow.
The special case n = 3 was shown by Yang and Wu [4] and used to establish [4,

Theorem 2.2]. The present result can be used to generalize, [4, Theorem 2.2] in a natural
way.
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