REFINEMENTS OF JENSEN'S INEQUALITY

I. BRNETIĆ, C. E. M. PEARCE AND J. PEČARIĆ

Abstract. Some new refinements are presented for Jensen's inequality. These strengthen several results obtained in the recent literature.

1. Introduction

A central tool in analysis is Hadamard's inequality

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} f(x)dx \le \frac{f(a)+f(b)}{2}$$

for convex functions. Recently some improvements for this have been found by Yang and Wang [3]. In particular they established the following.

Theorem A. Let $f : [a,b] \to \mathbf{R}$ be a convex function and $\alpha_i \in (0,1)$ (i = 1, ..., n) with $\sum_{i=1}^{n} a_i = 1$. Then

$$f\left(\frac{a+b}{2}\right) \leq \frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b f\left(\sum_{i=1}^n a_i x_i\right) dx_1 \cdots dx_n$$

$$\leq \sum_{i=1}^n \frac{1-\alpha_i}{(n-1)(b-a)^{n-1}} \int_a^b \cdots \int_a^b \left(\frac{\sum_{j=1, j\neq i}^n \alpha_j x_j}{1-\alpha_i}\right) \times dx_1 \cdots dx_{i-1} dx_{i+1} \cdots dx_n$$

$$\leq \frac{1}{b-a} \int_a^b f(x) dx. \tag{1}$$

They also constructed a convex, increasing function which lies between the two sides of the first inequality in (1).

Theorem B. Let $f : [a,b] \to \mathbf{R}$ be a convex function and $\alpha_i \in (0,1)$ (i = 1,...,n)with $\sum_{i=1}^{n} \alpha_i = 1$. If $K : [0,1] \to \mathbf{R}$ is a function defined by

$$K(t) = \frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b f\left(t \sum_{i=1}^n \alpha_i x_i + (1-t)\frac{a+b}{2}\right) dx_1 \cdots dx_n,$$

Received March 9, 1999; revised April 4, 1999.

1991 Mathematics Subject Classification. Primary 26D15, secondary 26A51. Key words and phrases. Jensen's inequality, convexity.

63

then (i) K is convex on [0, 1], (ii)

$$\min_{t \in [0,1]} K(t) = K(0) = f\left(\frac{a+b}{2}\right),$$
$$\max_{t \in [0,1]} K(t) = K(1) = \frac{1}{(b-a)^n} \int_a^b \dots \int_a^b f\left(\sum_{i=1}^n \alpha_i x_i\right) dx_1 \dots dx_n,$$

(iii) K is increasing on [0,1].

In this paper we make some analogous improvements to Jensen's inequality. In Section 2 we derive the first of these. An important special case extends Theorem A. A related result provides a further interpolation of our first result. In Section 3 we present a convex function construction analogous to that of Theorem B. Finally in Section 4 we give a second improvement of Jensen's inequality. This extends a result of Yang and Wu [4].

We suppose without further comment the existence of all the integrals in our discussion. We also suppose $n \ge 2$ throughout, as the statements for n = 1 are either trivial or void.

2. First Refinement

Theorem 1. Suppose I is a real interval. Let $f : I \to \mathbf{R}$ be a convex function, $g : [a,b] \to I$ a real function and $w : [a,b] \to \mathbf{R}$ a positive function. Let $\alpha_i \in (0,1)$ (i = 1, ..., n) with $\sum_{i=1}^{n} \alpha_i = 1$ and $\overline{w} = \int_a^b w(x) dx$. Further, let

$$F_{k,n} = \frac{1}{\binom{n-1}{k-1}\overline{w}^k} \sum_{1 \le i_1 < \dots < i_k \le n} \sum_{r=1}^k \alpha_{i_r} \int_a^b \dots \int_a^b \left[\prod_{s=1}^k w(x_{i_s})\right] f\left(\frac{\sum\limits_{j=1}^k \alpha_{i_j} g(x_{i_j})}{\sum\limits_{j=1}^k \alpha_{i_j}}\right) d_{x_{i_1}} \dots dx_{i_k}.$$

Then

$$f\left(\frac{1}{\overline{w}}\int_{a}^{b}w(x)g(x)dx\right) \leq F_{n,n} \leq \cdots \leq F_{k+1,n} \leq F_{k,n} \leq \cdots \leq F_{1,n} = \frac{1}{\overline{w}}\int_{a}^{b}w(x)f(g(x))dx.$$
(2)

Proof. Using Jensen's inequality, we obtain

$$f\left(\frac{1}{\overline{w}}\int_{a}^{b}w(x)g(x)dx\right) = f\left(\frac{1}{\overline{w}^{n}}\int_{a}^{b}\cdots\int_{a}^{b}\left[\prod_{j=1}^{n}w(x_{j})\right]\sum_{j=1}^{n}\alpha_{i}g(x_{i})dx_{1}\cdots dx_{n}\right)$$
$$\leq \frac{1}{\overline{w}}\int_{a}^{b}\cdots\int_{a}^{b}\left[\prod_{j=1}^{n}w(x_{j})\right]f\left(\sum_{i=1}^{n}\alpha_{i}g(x_{i})\right)dx_{1}\cdots dx_{n},$$

which establishes the first inequality in (2).

For all $k = 1, \ldots, n$, define

$$f_{k,n}(x_1, \dots, x_n) = \frac{1}{\binom{n-1}{k-1}} \sum_{1 \le i_1 < \dots < i_k \le n} \sum_{r=1}^k \alpha_{i_r} f\left(\frac{\sum_{j=1}^k \alpha_{i_j} x_{i_j}}{\sum_{j=1}^k \alpha_{i_j}}\right)$$

It has been shown in [2] that

 $f_{k+1,n}(x_1,\ldots,x_n) \le f_{k,n}(x_1,\ldots,x_n)$

for all k = 1, ..., n - 1 and all real *n*-tuples $(x_1, ..., x_n)$, so in particular we have

$$f_{k+1,n}(g(x_1),\ldots,g(x_n)) \le f_{k,n}(g(x_1),\ldots,g(x_n)).$$

On multiplying by $\prod_{\ell=1}^{n} w(x_{\ell})$ and integrating with respect to x_1, x_2, \ldots, x_n , we obtain

$$\frac{\overline{w}^{n-k-1}}{\binom{n-1}{k}} \sum_{1 \le i_1 < \dots < i_{k+1} \le n} \sum_{r=1}^{k+1} \alpha_{i_r} \int_a^b \dots \int_a^b \left[\prod_{s=1}^{k+1} w(x_{i_s}) \right] f\left(\frac{\sum\limits_{j=1}^{k+1} \alpha_{i_j} g(x_{i_j})}{\sum\limits_{j=1}^{k+1} \alpha_{i_j}} \right) dx_{i_1} \dots dx_{i_{k+1}} dx_{i_{$$

that is,

$$F_{k+1,n} \leq F_{k,n}$$

which provides the remaining inequalities. The final equality is trivial.

Denote by

$$\overline{F}_{k,n} = \frac{1}{\binom{n-1}{k-1}(b-a)^k} \sum_{1 \le i_1 < \dots < i_k \le n} \sum_{r=1}^k \alpha_{i_r} \int_a^b \dots \int_a^b f\left(\frac{\sum\limits_{j=1}^k \alpha_{i_j} x_{i_j}}{\sum_{j=1}^k \alpha_{i_j}}\right) dx_{i_1} \dots dx_{i_k}$$

the value of $F_{k,n}$ obtained in the special case w(x) := 1 and g(x) := x. In particular we have

$$\overline{F}_{n,n} = \frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b f\left(\sum_{i=1}^n \alpha_i x_i\right) dx_1 \cdots dx_n.$$

Then we have the following.

Corollary 1. Let $f : [a,b] \to \mathbf{R}$ be convex and $\alpha_i \in (0,1)$ (i = 1,...,n) with $\sum_{i=1}^{n} \alpha_i = 1$. Then

$$f\left(\frac{a+b}{2}\right) \leq \overline{F}_{n,n} \leq \cdots \leq \overline{F}_{k+1,n} \leq \overline{F}_{k,n} \leq \cdots \leq \overline{F}_{1,n} = \frac{1}{b-a} \int_{a}^{b} f(x) dx.$$

Remark 1. Corollary 1 provides a refinement of Theorem A, which may be written

$$f\left(\frac{a+b}{2}\right) \leq \overline{F}_{n,n} \leq \overline{F}_{n-1,n} \leq \overline{F}_{1,n}.$$

We now establish some associated results.

Theorem 2. Let the assumptions of Theorem 1 be fulfilled. Then

$$F_{k,n} \le G_{k,n} := \frac{(n-k)F_{1,n} + (k-1)F_{n,n}}{n-1}.$$

Proof. Let $f_{k,n}$ be defined as in the proof of Theorem 1. It is known (see [1, p.173]) that

$$f_{k,n}(x_1,\ldots,x_n) \le \frac{(n-k)f_{1,n}(x_1,\ldots,x_n) + (k-1)f_{n,n}(x_1,\ldots,x_n)}{n-1}$$

holds for all k = 1, ..., n and all real *n*-tuples $(x_1, ..., x_n)$. As in the previous theorem we may replace x_i by $g(x_i)$. Multiplication by $\prod_{\ell=1}^n w(x_\ell)$ and integrating with respect to $x_1, x_2, ..., x_n$ yields the desired result.

Proposition 1. Under the assumptions of Theorem 1,

$$F_{n,n} = G_{n,n} \le F_{n-1,n} \le G_{n-1,n} \le \dots \le G_{k+1,n} \le G_{k,n} \le \dots \le G_{1,n} = F_{1,n}.$$

Proof. By definition $F_{n,n} = G_{n,n}$ and $F_{1,n} = G_{1,n}$ and since $F_{n,n} \leq F_{1,n}$, we have $G_{k+1,n} \leq G_{k,n}$ for $1 \leq k < n$.

Corollary 2. Suppose the assumptions of Corollary 1 hold and that $\overline{G}_{k,n}$ is the value of $G_{k,n}$ when w(x) := 1 and g(x) := x. Then

$$\overline{F}_{n-1,n} \le \overline{G}_{n-1,n} \le \dots \le \overline{G}_{k+1,n} \le \overline{G}_{k,n} \le \dots \le \overline{G}_{1,n} = \overline{F}_{1,n}.$$

Remark 2. Corollary 2 supplies an interpolation of the last inequality in (1).

3. Convex Function Construction

In this section we proceed to the construction of a convex, increasing function between the two sides of the first inequality in (2). **Theorem 3.** Let the assumptions of Theorem 1 be fulfilled and suppose the function $H_f: [0,1] \to \mathbf{R}$ is defined by

$$H_f(t) = \frac{1}{\overline{w}^n} \int_a^b \cdots \int_a^b \left[\prod_{j=1}^n w(x_j) \right] f\left(t \sum_{i=1}^n \alpha_i g(x_i) + \frac{1-t}{\overline{w}} \int_a^b w(x) g(x) dx \right) dx_1 \cdots dx_n.$$

Then

(i) H_f is convex on [0,1],

(ii)

$$\min_{t \in [0,1]} H_f(t) = H_f(0) = f\left(\frac{1}{\overline{w}} \int_a^b w(x)g(x)dx\right),$$
$$\max_{t \in [0,1]} H_f(t) = H_f(1) = \frac{1}{\overline{w}^n} \int_a^b \cdots \int_a^b f\left[\prod_{j=1}^n w(x_j)\right] f\left(\sum_{i=1}^n \alpha_i g(x_i)\right) dx_1 \cdots dx_n,$$

(iii) H_f is increasing on [0,1].

Proof. (i) The function

$$\phi(t) := t \sum_{i=1}^{n} \alpha_i g(x_i) + \frac{1-t}{\overline{w}} \int_a^b w(x) g(x) dx$$

is linear for $t \in [0, 1]$, so that $f \circ \phi$ is convex on [0,1]. Hence H_f is convex on [0,1]. (ii) From the convexity of f,

$$H_f(t) \le tH_f(1) + (1-t)H_f(0).$$

Also, by the first inequality in (2),

$$H_f(0) = f\left(\frac{1}{\overline{w}}\int_a^b w(x)g(x)dx\right) \le H_f(1).$$

Hence $H_f(t) \leq H_f(1)$.

Set e(x) := x. By the convexity of f,

$$H_f(t) \ge f(H_e(t)) = f\left(\frac{t}{\overline{w}} \int_a^b w(x)g(x)dx + \frac{1-t}{\overline{w}} \int_a^b w(x)g(x)dx\right)$$
$$= f\left(\frac{1}{\overline{w}} \int_a^b w(t)g(t)dt\right) = H_f(0).$$

(iii) Using the convexity of H_f and $H_f(t) \ge H_f(0)$,

$$\frac{H_f(u) - H_f(t)}{u - t} \ge \frac{H_f(t) - H_f(0)}{t} \ge 0$$

for $0 \le t < u \le 1$. Hence $H_f(t) \le H_f(u)$ for t < u.

4. Second Refinement

Theorem 4. Suppose I is a real interval. Let $f : I \to \mathbf{R}$ be a convex function and let $h : [0,1] \to \mathbf{R}$ be defined by

$$h(t) = \frac{1}{n} \sum_{i=1}^{n} f((1-t)x_i + tx_{i+1}),$$

where $x_i \in I$ $(1 \le i \le n)$ and $x_{n+1} = x_1$. Then h is convex on [0,1],

$$\min_{t \in [0,1]} h(t) = h(0) = f\left(\frac{\sum_{i=1}^{n} x_i}{n}\right),$$

$$\max_{t \in [0,1]} h(t) = h(1) = \frac{\sum_{i=1}^{n} f(x_i)}{n}.$$
(3)

Proof. Let $t_1, t_2 \in [0, 1]$ and $a_1, a_2 > 0$ with $a_1 + a_2 = 1$. Then

$$h(a_{1}t_{1} + a_{2}t_{2}) = \frac{1}{n} \sum_{i=1}^{n} f\left(\left(1 - \sum_{j=1}^{2} a_{j}t_{j}\right) x_{i} + \sum_{j=1}^{2} a_{j}t_{j}x_{i+1}\right)$$
$$= \frac{1}{n} \sum_{i=1}^{n} f\left(\sum_{j=1}^{2} a_{j}[(1 - t_{j})x_{i} + t_{j}x_{i+1}]\right)$$
$$\leq \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{2} a_{j}f((1 - t_{j})x_{i} + t_{j}x_{i+1})$$
$$= a_{1}h(t_{1}) + a_{2}h(t_{2}),$$

so h is convex on [0,1].

Consequently

$$f\left(\frac{\sum_{i=1}^{n} x_i}{n}\right) \le h(t) \le \frac{\sum_{i=1}^{n} f(x_i)}{n},$$

for all $x_i \in I$ (i = 1, ..., n) and $t \in [0, 1]$, whence (3) and (4) follow.

The special case n = 3 was shown by Yang and Wu [4] and used to establish [4, Theorem 2.2]. The present result can be used to generalize, [4, Theorem 2.2] in a natural way.

Acknowledgement

This research was done during a visit to the University of Adelaide by the first-named author and was supported by an ARC grant. The authors wish to thank the referee for useful suggestions.

References

- J. Pečarić, F. Proschan, Y. L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, New York, 1992.
- [2] J. Pečarić, Remarks on an inequality of S. Gabler, J. Math. Anal. Appl., 184(1994), 19-21.
- [3] G. -S. Yang and C. -S. Wang, Some refinements of Hadamard's inequality, Tamkang J. Math., 28(1997), 87-92.
- [4] G. -S. Yang and H. -L. Wu, A refinement of Hadamard's inequality for isotonic linear functionals, Tamkang J. Math., 27(1996), 327-336.

Faculty of Electrical Engineering & Computing, University of Zagreb, Unska 3, Zagreb, Croatia. ilko.brnetic@fer.hr

Applied Mathematics Department, The University of Adelaide, Adelaide SA 5005, Australia. cpearce@maths.adelaide.edu.au

jpecaric@maths.adelaide.edu.au