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ON THE EXISTENCE OF PROJECTIVE AFFINE MOTION IN A

W -RECURRENT FINSLER SPACE

A. KUMAR, H. S. SHULKA AND R. P. TRIPATHI

Abstract. The paper is devoted to study the properties of a W -R Fn space admitting an

infinitesimal point transformation xi = xi + vi(x)dt which satisfies the condition Lvλs = 0.

1. Introduction

Let us consider an n-dimensional affinely connected Finsler space Fn [1]
1

equipped

with 2n line elements (xi, ẋi) and a fundamental metric function F (x, ẋ) positively ho-

mogeneous of degree one in its directional argument. The fundamental metric tensor

gij(x, ẋ)
def
= 1

2 ∂̇i∂̇jF
2(x, ẋ)

2

of the space is symmetric in its indices i and j. Let T i
j (x, ẋ)

be any tensor field depending on both the positional and directional arguments. The

covariant derivative of T i
j (x, ẋ) with respect to xk in the sense of Berwald is given by

T i
j(k) = ∂kT i

j − ∂̇hT i
jG

h
k + T h

j Gi
hk − T i

hGh
jk (1.1)

where Gi
jk(x, ẋ) are Berwald’s connection coefficients and satisfy the following relations:

a) ∂̇hGi
jk = Gi

hjk b) Gi
hjkẋh = 0 and (1.2)

c) Gi
hk = Gi

kh

The following commutation formulae involving the Berwald’s covariant derivatives are

given by

∂̇hT i
j(k) − (∂̇hT i

j )(k) = T s
j Gi

shk − T i
sG

s
jhk, (1.3)

3

2T i
j[(h)(k)] = −∂̇rT

i
jH

r
hk + T s

j Hi
shk − T i

sH
s
jhk (1.4)
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2∂̇i ≡ ∂/∂ẋi and ∂i ≡ ∂/∂xi

32A[hk] = Ahk − Akh
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where

Hi
hjk(x, ẋ)

def
= 2

{

∂[kGi
j]h + Gr

h[jG
i
k]r + Gi

rh[kGr
j]

}

(1.5)

are Berwald’s curvature tensor field and satisfies the following relations:

a) Hi
hjk = −Hi

hkj , b) Hi
hjkẋh = Hi

jk, c) Hr
rhj = 2H[hj]

d) Hr
hjr = Hhj, e) Hi

i = (n − 1)H and f) ẋjHi
jk = Hi

k (1.6)

The projective deviation tensor field W i
hjk(x, ẋ) of the space is given by

W i
hjk(x, ẋ) = Hi

hjk +
1

(n + 1)

{

δi
hHr

rkj + ẋi∂̇hHr
rkj + 2δi

[j(H(h)k] + ∂̇k]∂̇hH)
}

(1.7)

which satisfies the following identity:

W i
hjk(ℓ) + W i

hkℓ(j) + W i
hℓj(k) = 0 (1.8)

If the projective deviation tensor field W i
hjk(x, ẋ) satisfies the condition

W i
hjk(s) = λsW

i
hjk (1.9)

where λs(x) means a non-zero covariant recurrence vector, the space is called a W -

recurrent Finsler space or an W -R Fn space.

Let us consider an infinitesimal point transformation

xi = xi + vi(x)dt (1.10)

where vi(x) is any vector field and dt is an infinitesimal point constant. The above

transformation which is considered at each point in the space is called a projective affine

motion, when and only when

LvG
i
jk = 0 (1.11)

where Lv denotes the well known Lie-derivative with respect to (1.10). The Lie-derivatives

of the tensor field T i
j (x, ẋ) and connection coefficient Gi

jk(x, ẋ) in view of (1.10) and the

Berwald’s covariant derivative are given by [2]

LvT
i
j = T i

j(h)v
h + T i

hvh

(j̇)
− T h

j vi
(h) + ∂̇hT i

jv
h
(s)ẋ

s (1.12)

and

LvG
i

j̇k
= vi

(j̇)(k)
+ Hi

jkhvh + Gi

sj̇k
vs
(r)ẋ

r (1.13)

respectively.

We have the following commutation formulae:

Lv(∂̇ℓT
i
j ) − ∂̇ℓLvT

i
j = 0 (1.14)

(LvG
i
jh)(k) − (LvG

i
kh)(j̇) = LvH

i

hj̇k
+ 2ẋsGi

rh[jLvG
r
k]s (1.15)
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and

(LvT
i
j̇k(m)

)−(LvT
i
jk)(m) = T s

jkLvG
i
sm−T i

skLvG
s
j̇m

−T i
jsLvG

s
km− ∂̇sT

i
jkLvG

s
rmẋr (1.16)

Hence, for an infinitesimal projective affine motion the last relation shows that the two

operators Lv and (k) are commutative with each other.

With the help of the equation (1.11) and (1.15), we get

LvH
i

hj̇k
= 0 (1.17)

In view of the equation (1.6) and the fact that the operations of contraction and

Lie-derivation are commutative the above relation yields

a) LvH
r
rj̇k

= 0, b) LvHjk = 0 and c) LvH = 0 (1.18)

Taking the Lie-derivative of the each side of (1.7) and using the equations (1.14), (1.17)

and (1.18), we obtain

LvW
i
hjk = 0 (1.19)

Applying Lv to both sides of (1.9) and using the equations (1.11), (1.16) and (1.19), we

have

(Lvλs)W
i

hj̇k
= 0 (1.20)

Since the space is not an isotropic (i.e. W i
hjk 6= 0), we have

Lvλs = 0 (1.21)

i.e. the recurrence vector λs of the space must be Lie-invariant one.

In what follows, we shall study a W -R Fn space admitting an infinitesimal transfor-

mation xi = xi + vi(x)dt which satisfies (1.21). We shall call such a restricted space, for

brevity, as S-WR Fn space.

2. The Vanishing of LvW
i
hjk(x, ẋ)

First of all here we shall prove the following lemma:

Lemma 2.1. In an S-WR Fn space if the recurrence vector λs is a gradient one,

we have λsv
s = const.

Proof. For brevity, let us put

δ = λsv
s (2.1)

Then, with the help of the equations (1.12) and (1.21), we have

Lvλs = λs(m)v
m + λmvm

(s) = 0 (2.2)
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By virtue of the assumption λs(m) = λm(s) the above equation reduces to

δ(m) = 0 (2.3)

which completes the proof.

In view of the basic condition (1.12), the Lie-derivative of W i
hjk(x, ẋ) is given by

LvW
i
hjk = W i

hj̇k(s)
vs +W i

sjkvs
(h) +W i

hskvs
(j) +W i

hjsv
s
(k) −W s

hjkvi
(s) + ∂̇sW

i
hjkvs

(r)ẋ
r (2.4)

which by virtue of the equation (1.9) and (2.1) reduces to

LvW
i

hj̇k
= δW i

hj̇k

+ W i
sjkvs

(h) + W i
hskvs

(j̇)
+ W i

hj̇s
vs
(k) − W s

hj̇k
vi
(s) + ∂̇sW

i

hj̇k
vs
(r)ẋ

r. (2.5)

Introducing the commutation formula (1.4) to the tensor field W i
hjk(x, ẋ), we get

2W i

hj̇k[(ℓ)(m)]
= −∂̇rW

i

hj̇k
Hr

sℓmẋs + W s

hj̇k
Hi

sℓm − W i

sj̇k
Hs

hℓm − W i
hskHs

jℓm − W i

hj̇s
Hs

kℓm.

(2.6)

In view of the definition (1.9), the above relation reduces to

(δℓ(m) − δm(ℓ))W
i
hj̇k

=−∂̇rW
i
hj̇k

Hr
sℓmẋs+W s

hj̇k
Hi

sℓm−W i
sj̇k

Hs
hℓm−W i

hskHs
jℓm−W i

hj̇s
Hs

kℓm.

(2.7)

Next, let us assume that δm 6= const. Then, with the help of the Lemma (2.1), we get

Nℓm(x)
def
= (δℓ(m) − δm(ℓ)) 6= 0 (2.8)

Let us take

vi
(h) = Hi

hj̇k
qjk. (2.9)

for a suitable non-symmetric tensor qjk, then multiplying (2.7) by qlm and summing over

1 and m, we obtain

NℓmqℓmW i
hjk = −∂̇rW

i

hj̇k
vr
(s)ẋ

s + W s
hjkvi

(s) − W i

sj̇k
vs
(h) − W i

hskvs

(j̇)
− W i

hjsv
s
(k) (2.10)

Comparing the last equation with (2.5), we get

LvW
i

hj̇k
= (δ − qℓmNℓm)W i

hjk (2.11)

The above equation shows that LvW
i
hjk vanishes when and only δ = qlmNℓm.

For δ 6= const. and Nℓm 6= 0, from (2.5) and (2.7), we can construct the following

identity

NℓmLvW
i

hj̇k
= W s

hjk(δH i
sℓm − Nℓmvi

(s)) − W i
sjk(δHs

hℓm − Nℓmvs
(h))

−W i
hsk(δHs

jℓm − Nℓmvs

(j̇)
) − W i

hjs(δH
s
kℓm − Nℓmvs

(k)) (2.12)



ON THE EXISTENCE OF PROJECTIVE AFFINE MOTION 75

Thus, for LvW
i
hjk = 0, the above equation yields [6]:

δH i
sℓm = Nℓmvi

(s) (2.13)

where vi does not mean a parallel vector.

We define

Definition 2.1. A S-WR Fn space satisfying λmvm 6= const. is called a special one
of the first kind.

Next, let us go back to the case, λmvm = const. of the foregoing Lemma (2.1). Then,

(2.7) is replaced by

−∂̇rW
i

hj̇k
Hr

sℓmẋs + W s

hj̇k
Hi

sℓm − W i

sj̇k
Hs

hℓm − W i
hskHs

jℓm − W i

hj̇s
Hs

kℓm = 0 (2.14)

Transvecting it by qlm and remembering the equation (2.9) we get

−∂̇rW
i
hjkvr

(s)ẋ
s + W s

hj̇k
vi
(s) − W i

sjkvs
(h) − W i

hskvs
(j) − W i

hj̇s
vs
(k) = 0 (2.15)

Substituting the above equation into the right hand side of (2.5), we obtain

LvW
i

hj̇k
= δW i

hj̇k
(2.16)

Therefore, when the arbitrary constant δ vanishes, we have

LvW
i
hj̇k

= 0 (2.17)

We put the

Definition. An S-WR Fn space is called a special one of the second kind when

λmvm = const. holds good.

Then, summarizing the above results, we have the following theorems.

Theorem 2.1. In a special S-WR Fn space of the first kind, if the space has the

resolved curvature Hi
hjk of the form (2.13), LvW

i
hjk = 0 holds good.

Theorem 2.2. In a special S-WR Fn space of the second kind, if the arbitrary

constant λmvm vanishes, we have LvW
i
hjk = 0. From the last theorem, if λm = 0, then

with the help of the equation (1.9), we have

W i
hik(r) = 0 (2.18)

Thus, we have

Corollary 2.1. In a symmetric Finsler space, LvW
i
hjk = 0, is satisfied identically.
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3. Complete Condition

In this section we shall find the necessary and sufficient condition for (2.13). From

the assumption (1.21), we have

Lvλm = λm(s)v
s + (λmvs)(m) − λs(m)v

s = 0 (3.1)

By virtue of (2.1) and (2.8), the last equation reduces to

δ(m) + Nmsv
s = 0 (3.2)

In view of the equation (1.12), the Lie-derivative of Nlm(x) is given by

LvNℓm = Nℓm(s)v
s + Nsmvs

(ℓ) + Nℓsv
s
(m) (3.3)

Remembering the commutation formula (1.16), we have

Lv(λm(s) − (Lvλm)(s) = −λrLvG
r
ms (3.4)

With the help of the equation (1.2c), (1.21) and (2.8), the above relation reduces to

LvNsm = 0. (3.5)

Differentiating (2.7), convariantly with respect to xn and using the equations (1.3), (1.9),

(2.7) and (2.8), we obtain

Nℓm(n)W
i

hj̇k
=λnW i

hj̇k
Nℓm + Hr

aℓmẋa(W s

hj̇k
Gi

srn − W i

sj̇k
Gs

hrn − W i
hskGs

jrn − W i

hj̇s
Gs

krn)

(3.6)

Transvecting it by ẋn and noting the equations (1.2b), we get after a little simplification:

Nℓm(n) = λnNℓm (3.7)

Thus, by virtue of the equations (3.3), (3.5) and (3.7), we get

δNℓm + Nsmvs
(ℓ) + Nℓsv

s
(m) = 0 (3.8)

Next, from the equation (3.2), we have

δ(m)(n) − δ(n)(m) = −(Nmsv
s)(n) + (Nnsv

s)(m) (3.9)

being δ a non-constant scalar function, the above equation reduces to

Nmsv
s
(n) − Nsnvs

(m) = −λnNmsv
s + λmNnsv

s (3.10)

where, we have used (3.7) and Nms = −Nsm. Substituting the last equation into the left

hand side of (3.8), we get

δNmn = −λnδ(m) + λmδ(n) (3.11)
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In an affinely connected space the identify (1.8) reduces to

W i

hj̇k(ℓ)
+ W i

hkℓ(j̇)
+ W i

hℓj(k) = 0 (3.12)

which in view of the definition (1.9) reduces to

δW i
hjk = λkW i

hj̇ℓ
vℓ − λj̇W

i
hksv

s (3.13)

Where, we have used (2.1) and W i
hjk = −W i

hkj . Hence, from (3.11) and (3.13), we can
make the following identity:

δ(δW i

hj̇k
− Njkvs

(h)) = λk(δW i

hj̇s
vs + δ(j̇)v

i
(h)) − λj(δW

i
hksv

s + δ(k)v
i
(h)) (3.14)

Consequently (2.13) follows when and only when, we have

δwi

hj̇s
vs + δ(j̇)v

i
(h) = λj̇Q

i
h (3.15)

where Qi
h means a suitable tensor. Transvecting the above equation by vj and summing

over j by virtue of W i
hjkvjvk = 0 and δ(j)v

j = 0 derived from (3.2), we get

δQi
h = 0 (3.16)

where we have used (2.1). Since δ 6= 0, therefore, the last relation yields Qi
h = 0. Thus,

from (3.15), we have

W i

hj̇s
vs + δjv

i
(h) = 0, (δj̇ ≡ δ(j)/δ) (3.17)

In this way, we have the

Theorem 3.1. In order that we have (2.13), (3.17) is necessary and sufficient.

Now the equation (3.17) suggests the concrete form of the tensor qlm used in the first
half of §2. In fact if δm 6= 0 there exists a suitable vector ρm such that

δmρm = 1 (3.18)

Then transvecting (3.17) by ρj and noting the above relation, we get

vi
(h) = δW i

hsj̇
vsρj (3.19)

If, we introduce
qlm = vlρm (3.20)

then Nlmqlm = Nlmvlρm = δ(m)ρ
m = δ · δmρm = δ That is from (3.17) and (2.13), we

have
δ = Nlmqlm (3.21)

straightway. Therefore, we can take (3.20) concretely. Hence in order to have the concrete
form of qlm, (3.17) should be taken as a basic condition in our theory. If this is done, we
are able to have (2.13) always, so LvW

i
hjk = 0 holds good.

Thus, we have

Theorem 3.2. If we introduce vi
(h) by (3.17), Lvw

i
hjk = 0 is satisfied identically.
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