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ON THE EXISTENCE OF PROJECTIVE AFFINE MOTION IN A
W-RECURRENT FINSLER SPACE

A. KUMAR, H. S. SHULKA AND R. P. TRIPATHI

Abstract. The paper is devoted to study the properties of a W-R F,, space admitting an

infinitesimal point transformation Z° = 2* + v*(z)dt which satisfies the condition L,\s = 0.

1. Introduction

Let us consider an n-dimensional affinely connected Finsler space Fi, [1]1 equipped
with 2n line elements (2%, 4%) and a fundamental metric function F(z, ) positively ho-
mogeneous of degree one in its directional argument. The fundamental metric tensor

Gij (x,ab)d:ef%é}ié}jFQ (:c,:ic)2 of the space is symmetric in its indices 7 and j. Let Tji(:c, )
be any tensor field depending on both the positional and directional arguments. The
covariant derivative of Tj (z,%) with respect to z* in the sense of Berwald is given by

T}y = OkT) — OnT)Gr + T} Gy, — ThGy (1.1)
where G; (2, &) are Berwald’s connection coefficients and satisfy the following relations:

a) O,G'y. =Gy b) G =0 and (1.2)
c) G’;Lk = Gih

The following commutation formulae involving the Berwald’s covariant derivatives are
given by

Ty — (OnT) ) = T; Gopg, — TiGips (1.3)
° i ) T EyT ERag) i 7S
2051 nywyy = =0T Hpy, + T Hopp — TEH iy, (1.4)
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1The numbers in square brackets refer to the references at the end of the paper.

29; = 9/94" and 8; = 9/dx;

32410k = Ank — Agn
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where des
7 .\ e 3 r 7 3 r
(o, 2{0p,Gly, + Ghy Gy, + Gl Gy} (1.5)
are Berwald’s curvature tensor field and satisfies the following relations:

a) H}izjk = _Hfibkja b) H;ijih = H;kv c) Hvr-hj = 2Hp;)
d) Hy;,. = Hpy, e) H = (n—1)H and f) :ij;k =H; (1.6)
The projective deviation tensor field W} ik (z, ) of the space is given by
i . 7 1 i T ER T 7 SIS
which satisfies the following identity:
Wik + Wiresy + Wiejoy =0 (1.8)
If the projective deviation tensor field W ik (x,2) satisfies the condition

Wiins) = AsWijk (1.9)

where A\;(x) means a non-zero covariant recurrence vector, the space is called a W-
recurrent Finsler space or an W-R F,, space.
Let us consider an infinitesimal point transformation

T =’ 4+ o' (x)dt (1.10)

where v¢(z) is any vector field and dt is an infinitesimal point constant. The above
transformation which is considered at each point in the space is called a projective affine
motion, when and only when

L,GY =0 (1.11)

where L,, denotes the well known Lie-derivative with respect to (1.10). The Lie-derivatives
of the tensor field T/ (z, &) and connection coefficient G%, (z, #) in view of (1.10) and the
Berwald’s covariant derivative are given by [2]

L@Tj = T;(h)vh + Tf;v&,) - Tjhvfh) + 0.;1T;U?5)a'cs (1.12)
and
T 1 ) h ) s T
LG, = Uik T Hijppv™ + G vl (1.13)
respectively.

We have the following commutation formulae:

Ly(0eT}) — 9L, T} =0 (1.14)
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and

(LT ) = (Lo Ti) my = T LGl = Tip Lo G, = T LoGiy = 05T, LG (1.16)

(m)

Hence, for an infinitesimal projective affine motion the last relation shows that the two
operators L, and (k) are commutative with each other.
With the help of the equation (1.11) and (1.15), we get

L,H!

In view of the equation (1.6) and the fact that the operations of contraction and
Lie-derivation are commutative the above relation yields

a) L, ik = 0, b) LyHj, =0 and c¢) L,H=0 (1.18)

Taking the Lie-derivative of the each side of (1.7) and using the equations (1.14), (1.17)
and (1.18), we obtain
L,Wi . =0 (1.19)

Applying L, to both sides of (1.9) and using the equations (1.11), (1.16) and (1.19), we
have
(L)W}, =0 (1.20)

Since the space is not an isotropic (i.e. Wéjk #0), we have
LoAs =0 (1.21)

i.e. the recurrence vector \s of the space must be Lie-invariant one.

In what follows, we shall study a W-R F'n space admitting an infinitesimal transfor-
mation T = ¢ + v*(z)dt which satisfies (1.21). We shall call such a restricted space, for
brevity, as S-W R F'n space.

2. The Vanishing of L, W} (z,)
First of all here we shall prove the following lemma:

Lemma 2.1. In an S-WR Fn space if the recurrence vector s is a gradient one,
we have A\sv° = const.

Proof. For brevity, let us put
0 = Ag0° (2.1)

Then, with the help of the equations (1.12) and (1.21), we have

L, = )\s(m)’um + )\mUZZ) =0 (22)
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By virtue of the assumption Ay;n) = Ay () the above equation reduces to
5(m) =0 (2.3)
which completes the proof.

In view of the basic condition (1.12), the Lie-derivative of W}, (2, ) is given by

LUW}’ijk‘ = W’L

o)V Wi + Wikovty) + Wik, vh — Wil + 0. 083" (2.4)

which by virtue of the equation (1.9) and (2.1) reduces to
L W’L = 5W}’i —+ ijv(h) —+ Whékv j) —+ W 'U(k) — Wh kv(é) -+ a 'U(T)I' (25)

hjk hjs

Introducing the commutation formula (1.4) to the tensor field W} (z,4), we get

2W;Uk —0r Wh]kHéeme + W;f]k tom — W;]kHiem - Wéskaem - WZjSHziem
(2.6)
In view of the definition (1.9), the above relation reduces to
(5l(m) _5m(€))W;;]k:_a7W;;]k 5€m$ +W HIL W:ijgﬁm_Wf’isk ;Em WZJSH}:Zm'
(2.7)
Next, let us assume that d,, # const. Then, with the help of the Lemma (2.1), we get
def
Nom ()= (So(m) = Om(e)) # 0 (2.8)
Let us take
’Uzh) = I{;’qu‘7 (29)

for a suitable non-symmetric tensor ¢/*, then multiplying (2.7) by ¢/™ and summing over
1 and m, we obtain

NgmqemWij = 8 W;L]k (s )ZCS + Wfi]kvzs) — Wij‘ (h) — thk'l](]) Wﬁjsvfk‘) (210)

Comparing the last equation with (2.5), we get

LWy = (6 = ¢"" New) Wi, (2.11)

The above equation shows that LUW,i ik vanishes when and only 6§ = 4" Nom
For § # const. and Ny, # 0, from (2.5) and (2.7), we can construct the following
identity
NlvaW;i]'-k = Wffjk(aHz@m - Nlm”%é)) - Wé]k(éHhEm Nem0(yy)
_szsk(éH;Z Ngm’U ) Wh]s(éHklm Ngm’()fk)) (212)
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Thus, for LUWéjk = 0, the above equation yields [6]:
§H = Nemv{, (2.13)

where v® does not mean a parallel vector.
We define

Definition 2.1. A S-W R F'n space satisfying \,,v" # const. is called a special one
of the first kind.

Next, let us go back to the case, \,,v™ = const. of the foregoing Lemma (2.1). Then,
(2.7) is replaced by

— Wi

A 7 T .S s 7 i s i
=Wy s Hpm @™ + Wiy Hopmy = Wy Hyom — Wi, hjs

sj j@m Hli@m =0 (2'14)

Transvecting it by ¢!™ and remembering the equation (2.9) we get

787’W}’.L;jk'l}zns)i's + }fjk;v,(b.s) — szkvfh) — W;Lék'l)(sj) — W}’ijsv(sk‘) =0 (215)

Substituting the above equation into the right hand side of (2.5), we obtain

LWy =Wy (2.16)
Therefore, when the arbitrary constant ¢ vanishes, we have
LWy =0 (2.17)

We put the

Definition. An S-WR Fn space is called a special one of the second kind when
Am ™ = const. holds good.

Then, summarizing the above results, we have the following theorems.

Theorem 2.1. In a special S-W R Fn space of the first kind, if the space has the
resolved curvature Hijk of the form (2.13), LUWéjk = 0 holds good.

Theorem 2.2. In a special S-W R Fn space of the second kind, if the arbitrary
constant Ay, v vanishes, we have LvWﬁjk = 0. From the last theorem, if A\, = 0, then
with the help of the equation (1.9), we have

Wik =0 (2.18)
Thus, we have

Corollary 2.1. In a symmetric Finsler space, Lva;jk = 0, is satisfied identically.
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3. Complete Condition

In this section we shall find the necessary and sufficient condition for (2.13). From
the assumption (1.21), we have

LyAm = An()0" + (Am0°) (m) — Ag(m)v® =0 (3.1)
By virtue of (2.1) and (2.8), the last equation reduces to
O(m) + Nmsv® =0 (3.2)
In view of the equation (1.12), the Lie-derivative of Ny, (x) is given by
LyNem = Nopys)v® + Nsmv(se) + Ngsvfm) (3.3)
Remembering the commutation formula (1.16), we have
Lo(Am(s) = (Lodm)(s) = —ArLoGhs (3.4)
With the help of the equation (1.2¢), (1.21) and (2.8), the above relation reduces to
L,Ngp, = 0. (3.5)

Differentiating (2.7), convariantly with respect to ™ and using the equations (1.3), (1.9),
(2.7) and (2.8), we obtain

Nemm)Wha = W,

nirNem + Hign (Wi Gy = W G = Wi G — Wi Gii)

srn sjk S hrn jrn hjsTkrn
(3.6)
Transvecting it by 2™ and noting the equations (1.2b), we get after a little simplification:
Nem(ny = AnNem (3.7)
Thus, by virtue of the equations (3.3), (3.5) and (3.7), we get
6Nem + Nemv(yy + Nesv(p) =0 (3.8)
Next, from the equation (3.2), we have
S(m)(n) = Omy(m) = = (Nmsv*)(n) + (Nnsv®) (m) (3.9)
being § a non-constant scalar function, the above equation reduces to
Nmsv(sn) — Nsnv(sm) = M Npps¥® + Ay Nppsv® (3.10)

where, we have used (3.7) and N,,s = —Ngp,. Substituting the last equation into the left
hand side of (3.8), we get
ONpn = 7)\n5(m) + )\md(n) (311)
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In an affinely connected space the identify (1.8) reduces to

WZ]'-W) + W}lzké(j) + Wﬁej(k) =0 (3.12)

which in view of the definition (1.9) reduces to
SWije = MW 0° = A Wi 0° (3.13)

Where, we have used (2.1) and W}, = =W}, .. Hence, from (3.11) and (3.13), we can
make the following identity:

Consequently (2.13) follows when and only when, we have
0w ;0" + 050y = Ay @ (3.15)

where Qlﬁ means a suitable tensor. Transvecting the above equation by v/ and summing
over j by virtue of Wj ,v7v" = 0 and §(;yv/ = 0 derived from (3.2), we get

5Qi =0 (3.16)

where we have used (2.1). Since § # 0, therefore, the last relation yields Q}'L = 0. Thus,
from (3.15), we have

W’L'

hjsvs + 5jvéh) =0, (6; = 0(5/90) (3.17)

In this way, we have the

Theorem 3.1. In order that we have (2.13), (3.17) is necessary and sufficient.

Now the equation (3.17) suggests the concrete form of the tensor ¢!™ used in the first
half of §2. In fact if §,, # 0 there exists a suitable vector p™ such that

Omp™ =1 (3.18)
Then transvecting (3.17) by p/ and noting the above relation, we get
’uéh) = 5WZS]-.vspj (3.19)
If, we introduce
¢m = oltp™ (3.20)

then Njp¢'™ = Nypvtp™ = Smyp™ = 0 - 8pp™ = 0 That is from (3.17) and (2.13), we
have
§ = Nipmg™ (3.21)

straightway. Therefore, we can take (3.20) concretely. Hence in order to have the concrete
form of g™, (3.17) should be taken as a basic condition in our theory. If this is done, we
are able to have (2.13) always, so L, W}, = 0 holds good.

Thus, we have

Theorem 3.2. If we introduce ’uéh) by (3.17), vazjk = 0 is satisfied identically.
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