ON THE DIOPHANTINE EQUATION $px^2 + 3^n = y^p$

FADWA S. ABU MURIEFAH

Abstract. Let p be a prime. In this paper we prove that: (1) the equation $px^2 + 3^{2m} = y^p$, $p \not\equiv 7 \pmod{8}$ has no solutions in positive integers (x, y, p) with gcd(3, y) = 1. (2) if 3|y then the equation has at most one solution when p = 3 and for p > 3 it may have a solution only when $p \equiv 2 \pmod{3}$ and gcd(p, m) = 1. (3) the equation $px^2 + 3^{2m+1} = y^p$, $p \not\equiv 5 \pmod{8}$, has a solution only when p = 3, and this solution exists only when m = 3 + 3M, and is given by $x = 46.3^{3M+1}$, $y = 13.3^{2M+1}$.

1. Introduction

Let Z, Q, N be the sets of integers, rational numbers and positive integers respective. Let p be an odd prime, in [5] Maohua proved two theorems concerning the equation $px^2+2^n = y^p$. In this paper we consider the same kind of diophantine equation $px^2+3^n = y^p$. In the beginning we will consider n even, say n = 2m, where $m \in N$ and we prove the following two results:

Theorem 1. The diophantine equation

$$px^2 + 3^{2m} = y^p, \qquad p \not\equiv 7 \pmod{8} \tag{1}$$

has no solution with gcd(3, y) = 1.

Theorem 2. Equation (1) has at most one solution when p = 3 and this solution exists only when 2m = 8 + 6M, and then $x = 10.3^{3M+1}$, $y = 7.3^{2M+1}$. If p > 3 then equation (1) may have a solution only when $3|y, p = 2 \pmod{3}$ and gcd(p,m) = 1.

For n odd we get the following result

Theorem 3. The diophantine equation

$$px^2 + 3^{2m+1} = y^p, \qquad p \not\equiv 5 \pmod{8}, \quad m \in N$$
 (2)

has a solution only when p = 3 and m = 3 + 3M, and this solution is given by $x = 46.3^{3M+1}$, $y = 13.3^{2M+1}$.

1991 Mathematics Subject Classification. 11D41.

Key words and phrases. Diophantine equation, Legendre symbol.

Received February 24, 1999; revised November 11, 1999.

2. Lemmas

Lemma 1 (Nagell [6]). Let n be an odd integer ≥ 3 , and let $A \in N$, be an odd square free. If the class number of the field $Q(\sqrt{-A})$ is not divisible by n, then the diophantine equation $Ax^2 + 1 = y^n$, has no solutions in positive integers x and y for y odd.

Lemma 2 (Arif and Abu Muriefah [1]). The diophantine equation $x^2 + 3^k = y^n$, where k is odd and $n \ge 3$, has only one solution given by k = 5 + 6K, $x = 10.3^{3K}$, $y = 7.3^{2K}$ and n = 3.

Lemma 3 (Abu Muriefah and Arif [2]). The diophantine equation $x^2 + 3^{2k} = y^n$, where $n \ge 3$, has only one solution give by k = 2 + 3K, $x = 46.3^{3K}$, $y = 13.3^{2K}$ and n = 3.

3. Proofs

Proof of Theorem 1. By Lemma 1, it is sufficient to prove the case $m \in N$. Let (x, y, p) be a solution of (1) with gcd(y, 3) = 1, then p > 3. If y is even then from (1) we get $p \equiv 7 \pmod{8}$, so we conclude that y is odd. Since the class number of the field $Q(\sqrt{-p})$ is less than p, we factorize equation (1) to obtain

$$\sqrt{-p}x + 3^m = (a + b\sqrt{-p})^p,$$

where $a, b \in Z$ and $y = a^2 + pb^2$ is odd, so a and b have opposite parity. On equating the real parts we get

$$3^{m} = a \sum_{r=0}^{\frac{p-1}{2}} {p \choose 2r} a^{p-2r-1} (-pb^{2})^{r}$$
(3)

From (3) we deduce that $a|3^m$.

If $a = \pm 1$, then $y = 1 + pb^2$, but gcd(3, y) = 1, so $pb^2 \equiv 0, 1 \pmod{3}$. If $pb^2 \equiv 0 \pmod{3}$ then equation (3) is impossible modulo 3. So $pb^2 \equiv 1 \pmod{3}$ and since $a^2 \equiv 1 \pmod{3}$ therefore the right hand side in (3) becomes

$$\sum_{r=0}^{\frac{p-1}{2}} {p \choose 2r+1} (-1)^r = \frac{(1+i)^p - (1-i)^p}{2i} = 2^{p/2} \sin \frac{p\pi}{4} \neq 0$$

where the left hand side is congruent to 0 modulo 3, which is a contradiction. So $a = \pm 3^{j}$, $0 < j \leq m$, and gcd(3, b) = 1, where b is even. Then considering (3) modulo 3 we get j = m, hence equation (3) becomes

$$\pm 1 = \sum_{r=0}^{\frac{p-1}{2}} {p \choose 2r} 3^{m(p-2r-1)} (-pb^2)^r.$$

Then $1 \equiv 3^{m(p-1)} \pmod{p}$ and so the lower sign is impossible. That is

$$1 = \sum_{r=0}^{\frac{p-1}{2}} {p \choose 2r} 3^{m(p-2r-1)} (-pb^2)^r, \tag{4}$$

Now considering (4) modulo 3 we get $p \equiv 1 \pmod{12}$, say $p = 1+3^k u$, where gcd(u, 3) = 1, 4|u and $k \ge 1$. Then from (4) we obtain

$$\begin{split} 1 &\equiv \binom{p}{3} 3^{2m} (-pb^2)^{\frac{p-3}{2}} + pb^{p-1} (-p)^{\frac{p-1}{2}} (\text{mod } 3^{k+1}) \\ &\equiv \frac{p(p-2)}{2} \cdot 3^{k+2m-1} u (-pb^2)^{\frac{p-3}{2}} + pb^{p-1} (-p)^{\frac{p-1}{2}} (\text{mod } 3^{k+1}), \end{split}$$

since $m \ge 1$, therefore $k + 2m - 1 \ge k + 1$, so from the above we obtain

$$1 \equiv pb^{p-1}(-p)^{\frac{p-1}{2}} \pmod{3^{k+1}}.$$

Hence $p \equiv 1 \pmod{3^{k+1}}$ which is a contradiction.

Proof of Theorem 2. Let p = 3, then of course m > 1, and 3 divides both x and y, say x = 3x' and y = 3y' then dividing (1) by 27, we get

$$x'^2 + 3^{2m-3} = y'^3, (5)$$

from Lemma 2, equation (5) has a unique solution given by 2m-3 = 5+6M, $x' = 10.3^{3M}$ and $y' = 7.3^{2M}$.

So when p = 3, equation (1) has a solution only if 2m = 8 + 6M and the unique solution is given by $x = 10.3^{3M+1}$, $y = 7.3^{2M+1}$.

Now let p > 3, then from Theorem 1, it is sufficient to suppose 3|y, so let $x = 3^u X$, $y = 3^{\nu} Y$ where u > 0, $\nu > 0$ and gcd(3, X) = gcd(3, Y) = 1. Then (1) becomes

$$p(3^{u}X)^{2} + 3^{2m} = 3^{\nu p}Y^{p} \tag{6}$$

We have three cases:-

1- $p\nu > 2u = 2m$. Then cancelling 3^{2m} in (6) we get

$$pX^2 + 1 = 3^{\nu p - 2m} Y^p \tag{7}$$

equation (7) implies that $p \equiv 2 \pmod{3}$. Let $p \mid m$, then (7) becomes

$$pX^2 + 1 = (3^{\nu - 2m'}Y)^p$$

and this equation is known to have no solution (Lemma 1).

2- $2u > 2m = \nu p$. Then cancelling 3^{2m} in (6) we get $p(3^{u-m}X)^2 + 1 = Y^p$. This equation from lemma 1 has no solution.

3- $3m > 2u = p\nu$. Then

$$pX^2 = 3^{2(m-u)} = Y^p.$$

and this equation has no solution from Theorem 1.

Summarizing the above two theorems we get

Conclusion

The diophantine equation $px^2 + 3^{2m} = y^p$, p > 3 may have a solution only when $p \equiv 23 \pmod{24}$, gcd(p,m) = 1 and 3|y.

Proof of Theorem 3. Let (x, y, p) be a solution of (2) with gcd(y, 3) = 1, then p > 3. If y even then $p \equiv 5 \pmod{8}$, so we conclude that y is odd. Since the class number of the field $Q(\sqrt{-3p})$ is less than p. Then, according to the analysis in [4], we have

$$\sqrt{-p}x + 3^m\sqrt{3} = (a\sqrt{3} + b\sqrt{-p})^p,$$

where $a, b \in Z$ and $y = 3a^2 + pb^2$ is odd, so a and b have opposite parity. On equating the coefficient of $\sqrt{3}$ in both sides, we get

$$3^{m} = a \sum_{r=0}^{\frac{p-1}{2}} {p \choose 2r} (3a^{2})^{\frac{p-2r-1}{2}} (-pb^{2})^{r}$$
(8)

From (8) we deduce that $a = \pm 3^m$, hence gcd(3, b) = 1, and b even. So dividing (8) by 3^m we get

$$\pm 1 = \sum_{r=0}^{\frac{p-1}{2}} {p \choose 2r} (3^{2m+1})^{\frac{p-2r-1}{2}} (-pb^2)^r$$
(9)

If the negative sign holds in (9), then

$$-1 = \sum_{r=0}^{\frac{p-1}{2}} {p \choose 2r} (3^{2m+1})^{\frac{p-2r-1}{2}} (-pb^2)^r$$
(10)

Now considering (10) modulo 4, we get $-1 \equiv (3^{2m+1})^{\frac{p-1}{2}} \pmod{4}$, so $p \equiv 3 \pmod{4}$. Also modulo p we get $-1 \equiv (3^{2m+1})^{\frac{p-1}{2}} \pmod{p}$, that is $-1 \equiv (3)^{\frac{p-1}{2}} \pmod{p}$. But Legendre symbol (3/p) = -1 if and only if $p \equiv 5,7 \pmod{12}$, and since $p \equiv 3 \pmod{4}$, we get $p \equiv 7 \pmod{12}$. Now let $p = 1 + 2.3^k u$, where $\gcd(u, 6) = 1$ and $k \ge 1$, then from (10) we get

$$-1 \equiv pb^{p-1}(-p)^{\frac{p-1}{2}} (\text{mod } 3^{k+1}).$$

But gcd(3,b) = 1, so $-1 \equiv p(-p)^{\frac{p-1}{2}} \pmod{3^{k+1}}$ hence $1 \equiv (p)^{\frac{p+1}{2}} \pmod{3^{k+1}}$, squaring this equation we get $1 \equiv (p)^{2+2\cdot3^k u} \pmod{3^{k+1}}$ and this is implies that $1 \equiv p^2 \pmod{3^{k+1}}$, which is a contradiction.

82

So in eq. (9) only the positive sign holds, that is

$$1 = \sum_{r=0}^{\frac{p-1}{2}} {p \choose 2r} (3^{2m+1})^{\frac{p-2r-1}{2}} (-pb^2)^r$$
(11)

considering eq. (11) modulo 4, we obtain $p \equiv 1 \pmod{4}$. Also modulo p, eq (11) implies $1 \equiv (3)^{\frac{p-1}{2}} \pmod{p}$. But Legendre symbol (3/p) = 1 if and only if $p \equiv 1, 11 \pmod{12}$. Since $p \equiv 1 \pmod{4}$ we conclude that $p \equiv 1 \pmod{12}$, and by much the same argument as the proof of Theorem 1, eq. (11) is impossible. So eq. (2) has no solution when gcd(3, y) = 1.

Let p = 3, then of course 3 divides both x and y, say x = 3x' and y = 3y' then dividing (2) by 27, we get

$$x'^{2} + 3^{2(m-1)} = {y'}^{3}, (12)$$

If m = 1, eq. (12) has no solution [3]. So m > 1, and from Lemma 3, equation (12) has a unique solution given by m - 1 = 2 + 3M, $x' = 46.3^{3M}$ and $y' = 13.3^{2M}$. So when p = 3, equation (2) has a solution only if m = 3 + 3M and the unique solution is given by $x = 46.3^{3M+1}$, $y = 13.3^{2M+1}$.

Now let p > 3, and suppose 3|y, so $x = 3^u X$, $y = 3^{\nu} Y$ where u > 0, $\nu > 0$ and gcd(3, X) = gcd(3, Y) = 1. Then (2) becomes

$$p(3^u X)^2 + 3^{2m+1} = 3^{\nu p} Y^p \tag{13}$$

We have three cases:-

1- $2m + 1 = \min(p\nu, 2u, 2m + 1)$. Then cancelling 3^{2m+1} in (13) we get

$$3p(3^{u-m-1}X)^2 + 1 = 3^{\nu p - 2m-1}Y^p \tag{14}$$

equation (14) modulo 3, implies $p\nu - 2m - 1 = 0$, so $3p(3^{u-m-1}X)^2 + 1 = Y^p$, and this equation is known to have no solution (Lemma 1).

- **2-** $2u = \min(p\nu, 2u, 2m + 1)$. Then cancelling 3^{2u} in equation (13) we get $pX^2 + 3^{2(m-u)+1} = 3^{p\nu-2uY^p}$. Considering this equation modulo 3, we get $p\nu 2u = 0$, then $pX^2 + 3^{2(m-u)+1} = Y^p$, with gcd(3, Y) = 1 and this equation has no solution from the first part of this proof.
- **3-** $p\nu = \min(p\nu, 2u, 2m+1)$. Then

$$p3^{2u-p\nu}X^2 + 3^{2m+1-p\nu} = Y^p,$$

and this equation is possible only if $2u - p\nu = 0$ or $2m + 1 - p\nu = 0$, and these two cases have been discussed before.

FADWA S. ABU MURIEFAH

References

- [1] S. A. Arif and Fadwa S. Abu Muriefah, The diophantine equation $x^2 + 3^m = y^n$, Inter. J. Math. and Math. Sci. Vol., **21**(1998), 619-620.
- [2] Fadwa S. Abu Muriefah and S. A. Arif, On a diophantine equation, Bull. Austral. Math. Soc., 57(1998), 189-198.
- [3] V. A. Lebesgue, Sur l'impossibilities en nombres entieers de l'equation $x^m = 1 + y^2$, Von. Ann. Des. Math., **9**(1850), 178-181.
- [4] W. Ljunggren, On a diophantine equation, Norske. Vid. Selsk. Forh. Trondheim, 18(1945), 125-128.
- [5] L. Maohua, On the diophantine equation $px^2 + 2^n = y^p$, Proc. of the Amer. Math. Soc., **123**(1995), 321-326.
- [6] T. Nagell, Contributions to the theory of a category of diophantine equations of the second degree with two unknowns, Nova. Acta Soc. Sci. Upsal. Ser 4, 16(1955), 1-38.

Mathematics Department, Girls College of Education, P. O. Box 60561, Riyadh-11555, Saudi Arabia.