ON THE DIOPHANTINE EQUATION $p x^{2}+3^{n}=y^{p}$

FADWA S. ABU MURIEFAH

Abstract

Let p be a prime. In this paper we prove that: (1) the equation $p x^{2}+3^{2 m}=y^{p}$, $p \not \equiv 7(\bmod 8)$ has no solutions in positive integers (x, y, p) with $\operatorname{gcd}(3, y)=1$. (2) if $3 \mid y$ then the equation has at most one solution when $p=3$ and for $p>3$ it may have a solution only when $p \equiv 2(\bmod 3)$ and $\operatorname{gcd}(p, m)=1$. (3) the equation $p x^{2}+3^{2 m+1}=y^{p}, p \not \equiv 5(\bmod 8)$, has a solution only when $p=3$, and this solution exists only when $m=3+3 M$, and is given by $x=46.3^{3 M+1}, y=13.3^{2 M+1}$.

1. Introduction

Let Z, Q, N be the sets of integers, rational numbers and positive integers respective. Let p be an odd prime, in [5] Maohua proved two theorems concerning the equation $p x^{2}+2^{n}=y^{p}$. In this paper we consider the same kind of diophantine equation $p x^{2}+3^{n}=$ y^{p}. In the begining we will consider n even, say $n=2 m$, where $m \in N$ and we prove the following two results:

Theorem 1. The diophantine equation

$$
\begin{equation*}
p x^{2}+3^{2 m}=y^{p}, \quad p \not \equiv 7(\bmod 8) \tag{1}
\end{equation*}
$$

has no solution with $\operatorname{gcd}(3, y)=1$.
Theorem 2. Equation (1) has at most one solution when $p=3$ and this solution exists only when $2 m=8+6 M$, and then $x=10.3^{3 M+1}, y=7.3^{2 M+1}$. If $p>3$ then equation (1) may have a solution only when $3 \mid y, p=2(\bmod 3)$ and $\operatorname{gcd}(p, m)=1$.

For n odd we get the following result
Theorem 3. The diophantine equation

$$
\begin{equation*}
p x^{2}+3^{2 m+1}=y^{p}, \quad p \not \equiv 5(\bmod 8), \quad m \in N \tag{2}
\end{equation*}
$$

has a solution only when $p=3$ and $m=3+3 M$, and this solution is given by $x=$ $46.3^{3 M+1}, y=13.3^{2 M+1}$.

Received February 24, 1999; revised November 11, 1999.
1991 Mathematics Subject Classification. 11D41.
Key words and phrases. Diophantine equation, Legendre symbol.

2. Lemmas

Lemma 1 (Nagell [6]). Let n be an odd integer ≥ 3, and let $A \in N$, be an odd square free. If the class number of the field $Q(\sqrt{-A})$ is not divisible by n, then the diophantine equation $A x^{2}+1=y^{n}$, has no solutions in positive integers x and y for y odd.

Lemma 2 (Arif and Abu Muriefah [1]). The diophantine equation $x^{2}+3^{k}=y^{n}$, where k is odd and $n \geq 3$, has only one solution given by $k=5+6 K, x=10.3^{3 K}$, $y=7.3^{2 K}$ and $n=3$.

Lemma 3 (Abu Muriefah and Arif [2]). The diophantine equation $x^{2}+3^{2 k}=y^{n}$, where $n \geq 3$, has only one solution give by $k=2+3 K, x=46.3^{3 K}, y=13.3^{2 K}$ and $n=3$.

3. Proofs

Proof of Theorem 1. By Lemma 1, it is sufficient to prove the case $m \in N$. Let (x, y, p) be a solution of (1) with $\operatorname{gcd}(y, 3)=1$, then $p>3$. If y is even then from (1) we get $p \equiv 7(\bmod 8)$, so we conclude that y is odd. Since the class number of the field $Q(\sqrt{-p})$ is less than p, we factorize equation (1) to obtain

$$
\sqrt{-p} x+3^{m}=(a+b \sqrt{-p})^{p}
$$

where $a, b \in Z$ and $y=a^{2}+p b^{2}$ is odd, so a and b have opposite parity. On equating the real parts we get

$$
\begin{equation*}
3^{m}=a \sum_{r=0}^{\frac{p-1}{2}}\binom{p}{2 r} a^{p-2 r-1}\left(-p b^{2}\right)^{r} \tag{3}
\end{equation*}
$$

From (3) we deduce that $a \mid 3^{m}$.
If $a= \pm 1$, then $y=1+p b^{2}$, but $\operatorname{gcd}(3, y)=1$, so $p b^{2} \equiv 0,1(\bmod 3)$. If $p b^{2} \equiv 0(\bmod 3)$ then equation (3) is impossible modulo 3 . So $p b^{2} \equiv 1(\bmod 3)$ and since $a^{2} \equiv 1(\bmod 3)$ therefore the right hand side in (3) becomes

$$
\sum_{r=0}^{\frac{p-1}{2}}\binom{p}{2 r+1}(-1)^{r}=\frac{(1+i)^{p}-(1-i)^{p}}{2 i}=2^{p / 2} \operatorname{Sin} \frac{p \pi}{4} \neq 0
$$

where the left hand side is congruent to 0 modulo 3 , which is a contradiction. So $a= \pm 3^{j}$, $0<j \leq m$, and $\operatorname{gcd}(3, b)=1$, where b is even. Then considering (3) modulo 3 we get $j=m$, hence equation (3) becomes

$$
\pm 1=\sum_{r=0}^{\frac{p-1}{2}}\binom{p}{2 r} 3^{m(p-2 r-1)}\left(-p b^{2}\right)^{r}
$$

Then $1 \equiv 3^{m(p-1)}(\bmod p)$ and so the lower sign is impossible. That is

$$
\begin{equation*}
1=\sum_{r=0}^{\frac{p-1}{2}}\binom{p}{2 r} 3^{m(p-2 r-1)}\left(-p b^{2}\right)^{r} \tag{4}
\end{equation*}
$$

Now considering (4) modulo 3 we get $p \equiv 1(\bmod 12)$, say $p=1+3^{k} u$, where $\operatorname{gcd}(u, 3)=1$, $4 \mid u$ and $k \geq 1$. Then from (4) we obtain

$$
\begin{aligned}
1 & \equiv\binom{p}{3} 3^{2 m}\left(-p b^{2}\right)^{\frac{p-3}{2}}+p b^{p-1}(-p)^{\frac{p-1}{2}}\left(\bmod 3^{k+1}\right) \\
& \equiv \frac{p(p-2)}{2} \cdot 3^{k+2 m-1} u\left(-p b^{2}\right)^{\frac{p-3}{2}}+p b^{p-1}(-p)^{\frac{p-1}{2}}\left(\bmod 3^{k+1}\right)
\end{aligned}
$$

since $m \geq 1$, therefore $k+2 m-1 \geq k+1$, so from the above we obtain

$$
1 \equiv p b^{p-1}(-p)^{\frac{p-1}{2}}\left(\bmod 3^{k+1}\right)
$$

Hence $p \equiv 1\left(\bmod 3^{k+1}\right)$ which is a contradiction.
Proof of Theorem 2. Let $p=3$, then of course $m>1$, and 3 divides both x and y, say $x=3 x^{\prime}$ and $y=3 y^{\prime}$ then dividing (1) by 27 , we get

$$
\begin{equation*}
x^{\prime 2}+3^{2 m-3}=y^{\prime 3} \tag{5}
\end{equation*}
$$

from Lemma 2, equation (5) has a unique solution given by $2 m-3=5+6 M, x^{\prime}=10.3^{3 M}$ and $y^{\prime}=7.3^{2 M}$.
So when $p=3$, equation (1) has a solution only if $2 m=8+6 M$ and the unique solution is given by $x=10.3^{3 M+1}, y=7.3^{2 M+1}$.
Now let $p>3$, then from Theorem 1, it is sufficient to suppose $3 \mid y$, so let $x=3^{u} X$, $y=3^{\nu} . Y$ where $u>0, \nu>0$ and $\operatorname{gcd}(3, X)=\operatorname{gcd}(3, Y)=1$. Then (1) becomes

$$
\begin{equation*}
p\left(3^{u} X\right)^{2}+3^{2 m}=3^{\nu p} Y^{p} \tag{6}
\end{equation*}
$$

We have three cases:-
1- $p \nu>2 u=2 m$. Then cancelling $3^{2 m}$ in (6) we get

$$
\begin{equation*}
p X^{2}+1=3^{\nu p-2 m} Y^{p} \tag{7}
\end{equation*}
$$

equation (7) implies that $p \equiv 2(\bmod 3)$. Let $p \mid m$, then (7) becomes

$$
p X^{2}+1=\left(3^{\nu-2 m^{\prime}} Y\right)^{p}
$$

and this equation is known to have no solution (Lemma 1).
2- $2 u>2 m=\nu p$. Then cancelling $3^{2 m}$ in (6) we get $p\left(3^{u-m} X\right)^{2}+1=Y^{p}$. This equation from lemma 1 has no solution.

3- $3 m>2 u=p \nu$. Then

$$
p X^{2}=3^{2(m-u)}=Y^{p}
$$

and this equation has no solution from Theorem 1.
Summarizing the above two theorems we get

Conclusion

The diophantine equation $p x^{2}+3^{2 m}=y^{p}, p>3$ may have a solution only when $p \equiv 23(\bmod 24), \operatorname{gcd}(p, m)=1$ and $3 \mid y$.

Proof of Theorem 3. Let (x, y, p) be a solution of (2) with $\operatorname{gcd}(y, 3)=1$, then $p>3$. If y even then $p \equiv 5(\bmod 8)$, so we conclude that y is odd. Since the class number of the field $Q(\sqrt{-3 p})$ is less than p. Then, according to the analysis in [4], we have

$$
\sqrt{-p} x+3^{m} \sqrt{3}=(a \sqrt{3}+b \sqrt{-p})^{p}
$$

where $a, b \in Z$ and $y=3 a^{2}+p b^{2}$ is odd, so a and b have opposite parity. On equating the coefficient of $\sqrt{3}$ in both sides, we get

$$
\begin{equation*}
3^{m}=a \sum_{r=0}^{\frac{p-1}{2}}\binom{p}{2 r}\left(3 a^{2}\right)^{\frac{p-2 r-1}{2}}\left(-p b^{2}\right)^{r} \tag{8}
\end{equation*}
$$

From (8) we deduce that $a= \pm 3^{m}$, hence $\operatorname{gcd}(3, b)=1$, and b even. So dividing (8) by 3^{m} we get

$$
\begin{equation*}
\pm 1=\sum_{r=0}^{\frac{p-1}{2}}\binom{p}{2 r}\left(3^{2 m+1}\right)^{\frac{p-2 r-1}{2}}\left(-p b^{2}\right)^{r} \tag{9}
\end{equation*}
$$

If the negative sign holds in (9), then

$$
\begin{equation*}
-1=\sum_{r=0}^{\frac{p-1}{2}}\binom{p}{2 r}\left(3^{2 m+1}\right)^{\frac{p-2 r-1}{2}}\left(-p b^{2}\right)^{r} \tag{10}
\end{equation*}
$$

Now considering (10) modulo 4, we get $-1 \equiv\left(3^{2 m+1}\right)^{\frac{p-1}{2}}(\bmod 4)$, so $p \equiv 3(\bmod 4)$. Also modulo p we get $-1 \equiv\left(3^{2 m+1}\right)^{\frac{p-1}{2}}(\bmod p)$, that is $-1 \equiv(3)^{\frac{p-1}{2}}(\bmod p)$. But Legendre symbol $(3 / p)=-1$ if and only if $p \equiv 5,7(\bmod 12)$, and since $p \equiv 3(\bmod 4)$, we get $p \equiv 7(\bmod 12)$. Now let $p=1+2.3^{k} u$, where $\operatorname{gcd}(u, 6)=1$ and $k \geq 1$, then from (10) we get

$$
-1 \equiv p b^{p-1}(-p)^{\frac{p-1}{2}}\left(\bmod 3^{k+1}\right)
$$

But $\operatorname{gcd}(3, b)=1$, so $-1 \equiv p(-p)^{\frac{p-1}{2}}\left(\bmod 3^{k+1}\right)$ hence $1 \equiv(p)^{\frac{p+1}{2}}\left(\bmod 3^{k+1}\right)$, squaring this equation we get $1 \equiv(p)^{2+2.3^{k} u}\left(\bmod 3^{k+1}\right)$ and this is implies that $1 \equiv p^{2}\left(\bmod 3^{k+1}\right)$, which is a contradiction.

So in eq. (9) only the positive sign holds, that is

$$
\begin{equation*}
1=\sum_{r=0}^{\frac{p-1}{2}}\binom{p}{2 r}\left(3^{2 m+1}\right)^{\frac{p-2 r-1}{2}}\left(-p b^{2}\right)^{r} \tag{11}
\end{equation*}
$$

considering eq. (11) modulo 4 , we obtain $p \equiv 1(\bmod 4)$. Also modulo p, eq (11) implies $1 \equiv(3)^{\frac{p-1}{2}}(\bmod p)$. But Legendre symbol $(3 / p)=1$ if and only if $p \equiv 1,11(\bmod 12)$. Since $p \equiv 1(\bmod 4)$ we conclude that $p \equiv 1(\bmod 12)$, and by much the same argument as the proof of Theorem 1, eq. (11) is impossible. So eq. (2) has no solution when $\operatorname{gcd}(3, y)=1$.
Let $p=3$, then of course 3 divides both x and y, say $x=3 x^{\prime}$ and $y=3 y^{\prime}$ then dividing (2) by 27 , we get

$$
\begin{equation*}
x^{\prime^{2}}+3^{2(m-1)}=y^{\prime 3} \tag{12}
\end{equation*}
$$

If $m=1$, eq. (12) has no solution [3]. So $m>1$, and from Lemma 3, equation (12) has a unique solution given by $m-1=2+3 M, x^{\prime}=46.3^{3 M}$ and $y^{\prime}=13.3^{2 M}$. So when $p=3$, equation (2) has a solution only if $m=3+3 M$ and the unique solution is given by $x=46.3^{3 M+1}, y=13.3^{2 M+1}$.
Now let $p>3$, and suppose $3 \mid y$, so $x=3^{u} X, y=3^{\nu} . Y$ where $u>0, \nu>0$ and $\operatorname{gcd}(3, X)=\operatorname{gcd}(3, Y)=1$. Then (2) becomes

$$
\begin{equation*}
p\left(3^{u} X\right)^{2}+3^{2 m+1}=3^{\nu p} Y^{p} \tag{13}
\end{equation*}
$$

We have three cases:-
1- $2 m+1=\min (p \nu, 2 u, 2 m+1)$. Then cancelling $3^{2 m+1}$ in (13) we get

$$
\begin{equation*}
3 p\left(3^{u-m-1} X\right)^{2}+1=3^{\nu p-2 m-1} Y^{p} \tag{14}
\end{equation*}
$$

equation (14) modulo 3 , implies $p \nu-2 m-1=0$, so $3 p\left(3^{u-m-1} X\right)^{2}+1=Y^{p}$, and this equation is known to have no solution (Lemma 1).
2- $2 u=\min (p \nu, 2 u, 2 m+1)$. Then cancelling $3^{2 u}$ in equation (13) we get $p X^{2}+$ $3^{2(m-u)+1}=3^{p \nu-2 u Y^{p}}$. Considering this equation modulo 3 , we get $p \nu-2 u=0$, then $p X^{2}+3^{2(m-u)+1}=Y^{p}$, with $\operatorname{gcd}(3, Y)=1$ and this equation has no solution from the first part of this proof.
3- $p \nu=\min (p \nu, 2 u, 2 m+1)$. Then

$$
p 3^{2 u-p \nu} X^{2}+3^{2 m+1-p \nu}=Y^{p}
$$

and this equation is possible only if $2 u-p \nu=0$ or $2 m+1-p \nu=0$, and these two cases have been discussed before.

References

[1] S. A. Arif and Fadwa S. Abu Muriefah, The diophantine equation $x^{2}+3^{m}=y^{n}$, Inter. J. Math. and Math. Sci. Vol., 21(1998), 619-620.
[2] Fadwa S. Abu Muriefah and S. A. Arif, On a diophantine equation, Bull. Austral. Math. Soc., 57(1998), 189-198.
[3] V. A. Lebesgue, Sur I'impossibilities en nombres entieers de I'equation $x^{m}=1+y^{2}$, Von. Ann. Des. Math., 9(1850), 178-181.
[4] W. Ljunggren, On a diophantine equation, Norske. Vid. Selsk. Forh. Trondheim, 18(1945), 125-128.
[5] L. Maohua, On the diophantine equation $p x^{2}+2^{n}=y^{p}$, Proc. of the Amer. Math. Soc., 123(1995), 321-326.
[6] T. Nagell, Contributions to the theory of a category of diophantine equations of the second degree with two unknowns, Nova. Acta Soc. Sci. Upsal. Ser 4, 16(1955), 1-38.

Mathematics Department, Girls College of Education, P. O. Box 60561, Riyadh-11555, Saudi Arabia.

