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Solving unconstrained optimization problems

with some three-term conjugate gradient methods

Ladan Arman, Yuanming Xu, Mohammad Reza Bayat, Long Liping

Abstract. In this paper, based on the efficient Conjugate Descent (CD) method,

two generalized CD algorithms are proposed to solve the unconstrained optimization

problems. These methods are three-term conjugate gradient methods which the

generated directions by using the conjugate gradient parameters and independent

of the line search satisfy in the sufficient descent condition. Furthermore, under the

strong Wolfe line search, the global convergence of the proposed methods are proved.

Also, the preliminary numerical results on the CUTEst collection are presented to

show effectiveness of our methods.

Keywords. Conjugate gradient method, unconstrained optimization, global convergence,
strong Wolfe line search

1 Introduction

Consider the following unconstrained optimization problem

min
x∈Rn

f(x), (1.1)

where f : Rn → R is a continuously differentiable function and its gradient g := 5f is available.
Conjugate Gradient (CG) methods are effective iterative methods for solving (1.1), especially for
large-scale problems. The important properties of these methods are the use only first-order
derivatives, little storage and computation requirements, and strong local and global convergence
properties [1, 9, 18, 24]. Starting from an initial guess x0 ∈ Rn, the CG methods generate a
sequence {xk}k≥0 as

xk+1 = xk + αkdk, (1.2)

where αk > 0 is step-length and usually obtained using some inexact line search. Furthermore,
dk is the search direction calculated by

dk =

{
−gk, k = 0,

−gk + βkdk−1, k ≥ 1,
(1.3)
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in which gk = g(xk) and βk is a scalar. There are many variants of CG methods, which are
obtained with different choices for the parameter βk. The most important CG methods pro-
posed by Fletcher–Reeves (FR) [16], Hestenes–Stiefel (HS) [19], Conjugate Descent (CD)
by Fletcher [15], Polak–Ribiére–Polyak (PRP) [24, 25], Dai-Yuan (DY) [10] and Hager-
Zhang (HZ) [17] are defined by

βFRk =
‖gk‖2

‖gk−1‖2
, βHSk =

gTk yk−1
dTk−1yk−1

, βCDk = − ‖gk‖2

gTk−1dk−1
, (1.4)

βPRPk =
gTk yk−1
‖gk−1‖2

, βDYk =
‖gk‖2

dTk−1yk−1
, βHZk =

(
yk−1 − 2dk−1

‖yk−1‖2

dTk−1yk−1

)T gk
dTk−1yk−1

,

(1.5)

in which ‖·‖ is the Euclidean norm and yk−1 = gk−gk−1. These methods are the identical where
the objective function f is quadratic and exact line search is used [23], but for general objective
functions the behavior of these methods is different. CG methods are used in many applications
problems such as image denoising and image deblurring in image processing, see [20].

Generally, in the iterative methods, we need the search direction dk satisfy the descent
condition

gTk dk < 0, ∀k ≥ 0. (1.6)

In order to guarantee the global convergence of CG methods, the direction dk must satisfy the
sufficient descent condition

gTk dk ≤ −c‖gk‖2, ∀k ≥ 0, (1.7)

in which c is a positive constant. There are many CG methods which satisfy (1.7), see [3, 17, 22].

In practical the step-length αk is determined by inexact line search. Some inexact line search
techniques have been provided in [23]. The standard Wolfe conditions are [26]

f(xk + αkdk)− f(xk) ≤ c1αkgTk dk, (1.8)

gTk+1dk ≥ c2gTk dk, (1.9)

where 0 < c1 < c2 < 1. To convergence analysis and numerical implementations of the CG

methods, the step-length αk is often obtained from the strong Wolfe line search [27] by

f(xk + αkdk)− f(xk) ≤ c1αkgTk dk, (1.10)∣∣∣gTk+1dk

∣∣∣ ≤ −c2gTk dk. (1.11)

Furthermore, the generalized Wolfe conditions for 0 < c1 < c3 < 1 and c4 ≥ 0 are as follows:

f(xk + αkdk)− f(xk) ≤ c1αkgTk dk, (1.12)

c3g
T
k dk ≤ gTk+1dk ≤ −c4gTk dk. (1.13)

For the first time, the general three-term conjugate gradient (TTCG) methods were proposed
by Beale [7] to solve the unconstrained optimization problems. In this approaches, the search
direction dk is

dk = −gk + βkdk + γkdt, (1.14)

where βk = βFRk , βHSk , βDYk . Furthermore, dt is a restart direction and

γk =

0, k = t+ 1,

gTk yt
dTt yt

, k > t+ 1.
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However, TTCG methods are obtained to improve traditional conjugate gradient methods and
different choices for three-term conjugate gradient parameters lead to different TTCG methods.
Further efforts have been made to develop the TTCG methods with the sufficient descent property
[2, 6, 28], the descent and conjugacy properties [4, 11] and the sufficient descent and conjugacy
properties [13, 14]. A comparison between some TTCG methods is reported for solving uncon-
strained optimization problems, see [5].

In this paper, we introduce two three-term conjugate gradient methods based on CD algo-
rithm. Also, the generated search directions satisfy the sufficient descent property, independent
of line search. The global convergence of the new methods are proven for general functions under
mild assumptions. Also, numerical experiments confirm that our methods are efficient to solve
unconstrained optimization problems in compared to some conjugate gradient method.

The structure of this paper is as follows. In Section 2, we propose two generalize of CD

algorithm which are TTCG methods. The sufficient descent property of generated directions and
the global convergence of the proposed algorithms are established in Section 3. In Section 4, we
provide some numerical experiments to demonstrate the efficiency of our methods. Finally, some
conclusions are given in Section 5.

2 Motivation and the new algorithms

In this section, we introduce two three-term conjugate gradient algorithms to solve unconstrained
optimization problem (1.1) based on CD method. Fletcher in [15] proposed the CD conjugate
gradient method which is closely related to the FR method. Note that to obtain the step-length
αk, we should solve the following one-dimensional optimization problem

αk = argmin
α>0

f(xk + αdk). (2.1)

The CD conjugate gradient method is equal to FR conjugate gradient method when the exact line
search is uesd. The exact line search implies gTk+1dk = 0. Therefore, from (1.3), we get

gTk−1dk−1 = gTk−1
(
− gk−1 + βk−1dk−2

)
= −‖gk−1‖2 + βk−1g

T
k−1dk−2 = −‖gk−1‖2.

Hence

βFRk =
‖gk‖2

‖gk−1‖2
= − ‖gk‖2

gTk−1dk−1
= βCDk .

On the other hand, the generated directions by CD method satisfy the sufficient descent condition
with strong Wolfe line search [18]. Also, from the generalized Wolfe condition with c3 < 1 and
c4 = 0, we obtain 0 ≤ βCDk ≤ βFRk . Hence, the global convergence of CD method will be obtained
by Theorem 2.2 in [1]. Now, we generalize the CD method to obtain a new three-term conjugate
gradient method (NTTCD) where the direction dk is calculated by

dk =

{
−gk, k = 0,

−gk + βCDk dk−1 + θkgk, k ≥ 1,
(2.2)

where the parameter θk is to grantee the sufficient descent condition and defined by

θk =
gTk dk−1
gTk−1dk−1

. (2.3)
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We will show that the search direction (2.2) satisfy gTk dk = −‖gk‖2, independent of the line
search and the objective function convexity. Furthermore, using the exact line search NTTCD

method is reduced to CD method . To augment the efficiency of NTTCD method, we consider the
following modification of this method. Hence, we get MNTTCD method while the search direction
is generated by

dk =

{
−gk, k = 0,

−gk + βCDk dk−1 + tkθkgk, k ≥ 1,
(2.4)

in which

tk =


max

{
1,min

{
η1,

gTk dk−1
max{ζ1, ‖yk−1‖‖dk−1‖}

}}
, gTk dk−1 > 0,

max
{
η2,

gTk dk−1
max{ζ2, ‖yk−1‖‖dk−1‖}

}
, gTk dk−1 ≤ 0,

(2.5)

where η2 < 0 < η1 and ζ1, ζ2 > 0 are constant and are selected to increase the numerical efficiency
and guarantee global convergence of the new algorithm. Note that for tk = 0 and tk = 1 the
MNTTCD method reduces to CD and NTTCD methods, respectively. Now, we present the structure
of new three-term conjugate gradient algorithms as follows:

Algorithm 1: The new three-term conjugate gradient method (NTTCD)

Step 0: Choose positive constant ε, 0 < c1 < c2 < 1 and an initial point x0 ∈ Rn. Set k = 0,
d0 = −g0.
Step 1: Terminate the algorithm once ‖gk‖ ≤ ε holds.
Step 2: Find the step-length αk satisfying the strong Wolfe condition (1.10)-(1.11).
Step 3: Generate the new iterate by xk+1 = xk + αkdk.
Step 4: Calculate gk+1 and the conjugate parameter βCDk+1 by (1.4).
Step 5: Obtain the parameter θk+1 with (2.3) and the new search direction dk+1 by (2.2).
Step 6: Set k = k + 1 and go to Step 1.

Algorithm 2: The modification of new three-term conjugate gradient method
(MNTTCD)

Step 0: Choose positive constants ε, ζ1, ζ2, η2 < 0 < η1, 0 < c1 < c2 < 1 and an initial point
x0 ∈ Rn. Set k = 0, d0 = −g0.
Step 1: Terminate the algorithm once ‖gk‖ ≤ ε holds.
Step 2: Find the step-length αk satisfying the strong Wolfe condition (1.10)-(1.11).
Step 3: Generate the new iterate by xk+1 = xk + αkdk.
Step 4: Calculate gk+1 and the conjugate parameter βCDk+1 by (1.4).
Step 5: Obtain the parameters θk+1 with (2.3), tk by (2.5) and the new direction dk+1 by (2.4).
Step 6: Set k = k + 1 and go to Step 1.
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3 Convergence analysis

In this section, the sufficient descent property and the global convergence of the new algorithms
are established. To this aim, we make some assumptions on the objective function as follows:

Assumption 3.1 The level set L(x0) = {x ∈ Rn|f(x) ≤ f(x0)} is bounded, i.e., there exists a
constant M > 0 such that

‖x‖ ≤M, ∀x ∈ L(x0). (3.1)

Assumption 3.2 In some neighborhood Ω ⊆ L(x0), the gradient of the objective function f is
Lipschitz continuous, i.e., there exists a constant L > 0 such that

‖g(x)− g(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Ω. (3.2)

Lemma 3.1. Suppose that {dk}k≥0 is generated by NTTCD algorithm. Then, we have

gTk dk = −‖gk‖2. (3.3)

Proof. By multiplying (2.2) in gTk , using (1.4) and (2.3), we obtain

gTk dk = −‖gk‖2 + βCDk gTk dk−1 + θk‖gk‖2

= −‖gk‖2 −
‖gk‖2

gTk−1dk−1
gTk dk−1 +

gTk dk−1
gTk−1dk−1

‖gk‖2

= −‖gk‖2 < 0.

Therefore, the proof is complete.

Lemma 3.2. Let {dk}k≥0 be generated direction by MNTTCD algorithm. Then, {dk}k≥0 satisfy
the sufficient descent condition (1.7) with c = 1, i.e.

gTk dk ≤ −‖gk‖2. (3.4)

Proof. We prove this lemma in two following cases.

Case(1): Let gTk dk−1 > 0. From (1.4), (2.3) and (2.4), we get

gTk dk = −‖gk‖2 −
‖gk‖2

gTk−1dk−1
gTk dk−1 + tk

gTk dk−1
gTk−1dk−1

‖gk‖2. (3.5)

Using (2.5), there are two choices for parameter tk.

(i) For tk = 1, we have

gTk dk = −‖gk‖2 −
‖gk‖2

gTk−1dk−1
gTk dk−1 +

gTk dk−1
gTk−1dk−1

‖gk‖2

= −‖gk‖2 < 0.

(ii) If tk = min
{
η1,

gTk dk−1
max{ζ1, ‖yk−1‖‖dk−1‖}

}
> 1, then we use induction over k to prove this

item. Now, induction hypothesis implies gTk−1dk−1 ≤ −‖gk−1‖2 < 0. Therefore, we have

gTk dk−1
gTk−1dk−1

‖gk‖2 < 0.
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Hence

tk
gTk dk−1
gTk−1dk−1

‖gk‖2 <
gTk dk−1
gTk−1dk−1

‖gk‖2. (3.6)

So, (3.5) and (3.6) give us

gTk dk ≤ −‖gk‖2 −
‖gk‖2

gTk−1dk−1
gTk dk−1 +

gTk dk−1
gTk−1dk−1

‖gk‖2

= −‖gk‖2 < 0.

Therefore, for this case dk satisfy the sufficient descent condition.

Case(2): If gTk dk−1 ≤ 0, then

tk = max
{
η2,

gTk dk−1
max{ζ2, ‖yk−1‖‖dk−1‖}

}
≤ 0.

Similar to Case (1), using induction over k, we have gTk−1dk−1 ≤ −‖gk−1‖2 < 0. Hence

gTk dk−1
gTk−1dk−1

‖gk‖2 ≥ 0, (3.7)

yielding

tk
gTk dk−1
gTk−1dk−1

‖gk‖2 ≤ 0. (3.8)

Finally, from (3.5), (3.7) and (3.8), we obtain

gTk dk ≤ −‖gk‖2 < 0.

So, we obtain desired result.

Lemma 3.3. Let {dk}k≥0 be a sufficient descent direction and the step-length αk satisfies the
strong Wolfe line search (1.10)-(1.11). Then, based on Assumptions 3.1 and 3.2, we have

+∞∑
k=0

(gTk dk)2

‖dk‖2
< +∞. (3.9)

Proof. Since dk is the sufficient descent direction, the proof is similar to [30].

Lemma 3.4. Under strong Wolfe line search (1.10)-(1.11), the parameter θk satisfies

−1 ≤ θk ≤ 1. (3.10)

Proof. From (1.11), it is clear that

c2g
T
k−1dk−1 ≤ gTk dk−1 ≤ −c2gTk−1dk−1. (3.11)

Since gTk−1dk−1 ≤ −‖gk−1‖2 < 0, we get

θk =
gTk dk−1
gTk−1dk−1

≤
c2g

T
k−1dk−1

gTk−1dk−1
= c2 < 1,
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and

θk =
gTk dk−1
gTk−1dk−1

≥ −
c2g

T
k−1dk−1

gTk−1dk−1
= −c2 > −1.

Hence
−1 ≤ θk ≤ 1.

Theorem 3.1. Let {dk}k≥0 be a sufficient descent direction and {xk}k≥0 be the generated se-
quence by NTTCD algorithm. Moreover, suppose that the Assumptions 3.1 and 3.2 hold. Then

lim
k→∞

inf ‖gk‖ = 0. (3.12)

Proof. By contradiction there exists ε1 > 0 such that ‖gk‖ > ε1 for any k. So

1

‖gk‖2
≤ 1

ε21
. (3.13)

From (2.2), we get
dk = (θk − 1)gk + βCDk dk−1.

Now, (1.4), (2.3) and (3.3) imply

‖dk‖2 = (θk − 1)2‖gk‖2 + (βCDk )2‖dk−1‖2 + 2(θk − 1)βCDk gTk dk−1

= (θk − 1)2‖gk‖2 +
‖gk‖4

(gTk−1dk−1)2
‖dk−1‖2 − 2(θk − 1)

‖gk‖2

gTk−1dk−1
gTk dk−1

= (θk − 1)2‖gk‖2 +
‖gk‖4

‖gk−1‖4
‖dk−1‖2 − 2θk

‖gk‖2

gTk−1dk−1
gTk dk−1 + 2

‖gk‖2

gTk−1dk−1
gTk dk−1

= (θk − 1)2‖gk‖2 +
‖gk‖4

‖gk−1‖4
‖dk−1‖2 − 2

‖gk‖2

(gTk−1dk−1)2
(gTk dk−1)2 + 2

‖gk‖2

gTk−1dk−1
gTk dk−1

≤ (θk − 1)2‖gk‖2 +
‖gk‖4

‖gk−1‖4
‖dk−1‖2 + 2

‖gk‖2

gTk−1dk−1
gTk dk−1.

The above inequality along with (3.11) result

‖dk‖2 ≤ (θk − 1)2‖gk‖2 +
‖gk‖4

‖gk−1‖4
‖dk−1‖2 + 2c2

‖gk‖2

gTk−1dk−1
gTk−1dk−1

= (θk − 1)2‖gk‖2 +
‖gk‖4

‖gk−1‖4
‖dk−1‖2 + 2c2‖gk‖2. (3.14)

By dividing both sides of this inequality in (gTk dk)2 and using (3.3), we have

‖dk‖2

(gTk dk)2
≤ (θk − 1)2‖gk‖2

(gTk dk)2
+
‖gk‖4‖dk−1‖2

‖gk−1‖4(gTk dk)2
+

2c2‖gk‖2

(gTk dk)2

=
(θk − 1)2‖gk‖2

‖gk‖4
+
‖gk‖4‖dk−1‖2

‖gk−1‖4‖gk‖4
+

2c2‖gk‖2

‖gk‖4

=
(θk − 1)2

‖gk‖2
+
‖dk−1‖2

‖gk−1‖4
+

2c2
‖gk‖2

.
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By Lemma 3.4, −2 ≤ θk − 1 ≤ 0 and 0 ≤ (θk − 1)2 ≤ 4. Hence

‖dk‖2

(gTk dk)2
≤ ‖dk−1‖2

(gTk−1dk−1)2
+

ω1

‖gk‖2
, (3.15)

in which ω1 := 2(c2 + 2). By applying (3.13) and (3.15), we can result

‖dk‖2

(gTk dk)2
≤ ‖dk−1‖2

(gTk−1dk−1)2
+

ω1

‖gk‖2
≤ ‖dk−2‖2

(gTk−2dk−2)2
+

ω1

‖gk−1‖2
+

ω1

‖gk‖2
≤ · · · ≤

k∑
i=0

ω1

‖gi‖2
≤ kω1

ε21
.

Therefore
(gTk dk)2

‖dk‖2
≥ ε21
ω1

1

k
.

Finally
+∞∑
k=0

(gTk dk)2

‖dk‖2
≥ ε21
ω1

+∞∑
k=0

1

k
= +∞,

which contradicts with Lemma 3.3.

Now, we investigate the convergence of MNTTCD algorithm in three cases. For tk = 1, this
method reduces to NTTCD algorithm which its convergence established in Theorem 1. Therefore,
we prove other cases in the following theorem.

Theorem 3.2. Let {dk}k≥0 be a sufficient descent direction and {xk}k≥0 be the generated se-
quence by MNTTCD algorithm. Then

lim
k→∞

inf ‖gk‖ = 0. (3.16)

Proof. We use contradiction to proof this theorem. Hence, there exists a constant ε2 > 0 such
that ‖gk‖ > ε2 for any k and

1

‖gk‖2
≤ 1

ε22
. (3.17)

Now, (2.4) implies
dk = (tkθk − 1)gk + βCDk dk−1.

By substituting (1.4) and (2.3) in above equality, we get

‖dk‖2 = (tkθk − 1)2‖gk‖2 + (βCDk )2‖dk−1‖2 + 2(tkθk − 1)βCDk gTk dk−1

= (tkθk − 1)2‖gk‖2 +
‖gk‖4

(gTk−1dk−1)2
‖dk−1‖2 − 2(tkθk − 1)

‖gk‖2

gTk−1dk−1
gTk dk−1

= (tkθk − 1)2‖gk‖2 +
‖gk‖4

(gTk−1dk−1)2
‖dk−1‖2 − 2tkθk

‖gk‖2

gTk−1dk−1
gTk dk−1 + 2

‖gk‖2

gTk−1dk−1
gTk dk−1.

(3.18)

We consider two following cases:

Case (i): If gTk dk−1 > 0, then 1 < tk ≤ η1. Also, Lemma 3.3 implies

1

(gTk dk)2
≤ 1

‖gk‖4
. (3.19)
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Now, Lemma 3.4 along with (2.3) give us −1 ≤ θk < 0. From (3.18), we have

‖dk‖2 ≤ (tkθk − 1)2‖gk‖2 +
‖gk‖4

(gTk−1dk−1)2
‖dk−1‖2.

We divide both sides of this inequality in (gTk dk)2 and use (3.19). Hence

‖dk‖2

(gTk dk)2
≤ (tkθk − 1)2‖gk‖2

(gTk dk)2
+

‖gk‖4

(gTk−1dk−1)2(gTk dk)2
‖dk−1‖2

≤ (tkθk − 1)2‖gk‖2

‖gk‖4
+

‖gk‖4

(gTk−1dk−1)2‖gk‖4
‖dk−1‖2

=
(tkθk − 1)2

‖gk‖2
+

‖dk−1‖2

(gTk−1dk−1)2
. (3.20)

Since 1 < tk ≤ η1, we have

1 < tk ≤ η1 =⇒ θkη1 ≤ tkθk < θk < 0

=⇒ θkη1 − 1 ≤ tkθk − 1 < −1

=⇒ −η1 − 1 ≤ tkθk − 1 < −1

=⇒ (tkθk − 1)2 ≤ (η1 + 1)2 := ω2.

This inequality and (3.20) result

‖dk‖2

(gTk dk)2
≤ ‖dk−1‖2

(gTk−1dk−1)2
+

ω2

‖gk‖2
.

Case (ii): If gTk dk−1 ≤ 0, then η2 ≤ tk ≤ 0. Also, Lemma 3.4 give us

0 ≤ gTk dk−1
gTk−1dk−1

≤ 1.

Now, from (3.18), we have

‖dk‖2 ≤ (tkθk − 1)2‖gk‖2 +
‖gk‖4

(gTk−1dk−1)2
‖dk−1‖2 − 2tkθ

2
k‖gk‖2 + 2‖gk‖2.

By dividing both sides of this inequality in (gTk dk)2 and using (3.19)

‖dk‖2

(gTk dk)2
≤ (tkθk − 1)2‖gk‖2

(gTk dk)2
+

‖gk‖4

(gTk−1dk−1)2(gTk dk)2
‖dk−1‖2 +

2(1− tk)

(gTk dk)2
‖gk‖2

≤ (tkθk − 1)2 + 2(1− tk)

‖gk‖2
+

‖dk−1‖2

(gTk−1dk−1)2
. (3.21)

Since 0 ≤ θk ≤ 1, we get

(tkθk − 1)2 + 2(1− tk) = t2kθ
2
k − 2tkθk − 2tk + 3 ≤ t2k − 4tk + 3 = (tk − 2)2 − 1,

and

η2 ≤ tk ≤ 0 =⇒ η2 − 2 ≤ tk − 2 ≤ −2
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=⇒ (tk − 2)2 ≤ (η2 − 2)2

=⇒ (tk − 2)2 − 1 ≤ (η2 − 2)2 − 1 := ω3.

By subsuiting this inequality to (3.21), we obtain

‖dk‖2

(gTk dk)2
≤ ‖dk−1‖2

(gTk−1dk−1)2
+

ω3

‖gk‖2
.

Hence, in both cases similar to Theorem 3.1, we have

‖dk‖2

(gTk dk)2
≤ ‖dk−1‖2

(gTk−1dk−1)2
+

ωj
‖gk‖2

≤ ‖dk−2‖2

(gTk−2dk−2)2
+

ωj
‖gk−1‖2

+
ωj
‖gk‖2

≤ · · · ≤
k∑
i=0

ωj
‖gi‖2

≤ kωj
ε22

, j = 2, 3.

Hence
(gTk dk)2

‖dk‖2
≥ ε22
ωj

1

k
j = 2, 3.

Finally
+∞∑
k=0

(gTk dk)2

‖dk‖2
≥ ε22
ωj

+∞∑
k=0

1

k
= +∞, j = 2, 3.

Therefore, by this contradicts, the proof is complete.

4 Numerical experiments

In this section, we express numerical results on a set of some nonlinear unconstrained optimization
test functions on the CUTEst collection [8] which are given in Table 1. The dimensions of test
functions are from 2 to 12005 while the initial points are standard ones proposed in CUTEst. We
apply the following algorithms to solve these test functions:

• FR: Fletcher-Reeves conjugate gradient method [16],

• HS: Hestenes-Stiefel conjugate gradient method [19],

• DY: Dai-Yuan conjugate gradient method [10],

• CD: Conjugate Descent conjugate gradient method [15],

• NTTCD: New three-term conjugate gradient method,

• MNTTCD: Modification of the new three-term conjugate gradient method.

All algorithms are implemented in Matlab 2011 programming environment on a 2.3Hz Intel
core i3 processor laptop and 4GB of RAM with the double precision data type in Linux operations
system. The iterations stop whenever the inequality

‖gk‖ ≤ 10−6,

be satisfied or the total number of iterates exceeds 10000. Furthermore, we choose the parameters
ζ1 = 100, ζ2 = 50, η1 = 15, η2 = −10, c1 = 10−3 and c2 = 0.95.
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Here, we use the performance profiles of Dolan and Moré [12] to compare the performance
of the algorithms on the test functions. We consider P as designates the percentage of problems
which are solved within a factor τ of the best solver. The horizontal axis of the figure gives the
percentage of the test functions for which a method is the fastest (efficiency), while the vertical
axis gives the percentage of the test functions that were successfully solved by each method
(robustness).

Figures 1-3 show the performance of all algorithms to solve the unconstrained optimization
problems. In these figures, P (τ) is designates the percentage of problems which are solved within
a factor τ of the best solver. Figure 1 shows that the MNTTCD method wins about 32% of test
problems with the smallest number of iterations. We conclude from Figure 2 that the NTTCD

method is the most effective for most test functions in total number of function evaluations
about 39%. From figure 3, we can see that NTTCD method is better than other methods about
26% of the most wins in terms of CPU times.
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Figure 1: The Dolan-Moré performance profiles for the total number of iterations.

5 Conclusion

In this work, we propose two three-term conjugate gradient directions based on CD conjugate
gradient method. It is shown that the proposed directions always fulfills the sufficient descent
property, independent of the line search. Under standard assumptions, we prove the conver-
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Table 1: Test functions taken from CUTEst collection
No. Test function Dim No. Test function Dim No. Test function Dim
1 3PK 30 49 DQDRTIC 10000 97 NONDIA 5000
2 AIRCRFTB 8 50 DQRTIC 5000 98 NONDQUAR 5000
3 ALLINIT 4 51 EDENSCH 100 99 OSCIPANE 5000
4 ALLINITU 4 52 EG2 1000 100 OSCIPATH 10
5 ARGLINA 500 53 EG3 10000 101 OSLBQP 8
6 ARGLINB 200 54 EIGENA 2000 102 PALMER1C 8
7 ARWHEAD 5000 55 ENGVAL1 100 103 PALMER1D 7
8 BARD 3 56 ENGVAL2 3 104 PALMER2C 8
9 BDQRTIC 100 57 ERRINROS 50 105 PALMER3C 8
10 BEALE 2 58 EXPFIT 2 106 PALMER4C 8
11 BIGGS6 6 59 EXTROSNB 1000 107 PALMER5C 6
12 BIGGSB1 5000 60 FLETCBV2 10000 108 PALMER6C 9
13 BOX2 3 61 FLETCHCR 500 109 PALMER7C 8
14 BOX3 3 62 FMINSRF2 5625 110 PALMER8A 6
15 BRKMCC 2 63 FMINSURF 5625 111 PALMER8C 8
16 BROWNDEN 4 64 FREUROTH 2 112 PENALTY1 100
17 BROYDN3D 5000 65 GENHUMPS 5000 113 PENALTY2 50
18 BROYDN7D 500 66 GENROSE 500 114 POWELLBC 1000
19 BROYDNBD 5000 67 GROWTHLS 3 115 POWELLSG 5000
20 BRYBND 500 68 GULF 3 116 QR3DLS 610
21 CHAINWOO 1000 69 HAIRY 2 117 QUARTC 25
22 CHNROSNB 50 70 HATFLDD 3 118 ROSENBR 2
23 CLIFF 2 71 HATFLDF 3 119 S308 2
24 COSINE 1000 72 HATFLDFL 3 120 SCHMVETT 100
25 CRAGGLVY 1000 73 HEART6LS 6 121 SENSORS 100
26 CUBE 2 74 HEART8LS 3 122 SINEVAL 2
27 CUBENE 2 75 HELIX 3 123 SINVALNE 2
28 DALLASM 196 76 HILBERTA 10 124 SISSER 2
29 DALLASS 46 77 HILBERTB 10 125 SNAIL 2
30 DECONVU 63 78 HIMMELBA 2 126 SPARSINE 1000
31 DENSCHNA 2 79 HIMMELBC 2 127 SPARSQUR 10000
32 DENSCHNB 2 80 HIMMELBF 4 128 SPMSRTLS 4999
33 DENSCHNC 2 81 HIMMELBG 2 129 SROSENBR 1000
34 DENSCHNF 2 82 HIMMELBH 2 130 TAME 2
35 DIXMAANA 9000 83 HUMPS 2 131 TESTQUAD 100
36 DIXMAANB 3000 84 JENSMP 2 132 TOINTGOR 50
37 DIXMAANC 3000 85 KOWOSB 4 133 TOINTGSS 10000
38 DIXMAAND 3000 86 LIARWHD 5000 134 TOINTPSP 50
39 DIXMAANE 3000 87 LOGHAIRY 2 135 TOINTQOR 50
40 DIXMAANF 3000 88 MANCINO 100 136 TQUARTIC 500
41 DIXMAANG 3000 89 MATRIX2 6 137 TRIDIA 5000
42 DIXMAANH 3000 90 METHANOL 12005 138 VAREIGVL 500
43 DIXMAANI 3000 91 MODBEALE 2 139 VIBRBEAM 8
44 DIXMAANJ 3000 92 MOREBV 5000 140 WATSON 12
45 DIXMAANK 3000 93 MSQRTALS 1024 141 WEEDS 3
46 DIXMAANL 3000 94 MSQRTBLS 1024 142 WOODS 100
47 DIXON3DQ 1000 95 MINE5D 10733 143 YFITU 3
48 DJTL 2 96 NONCVXU2 1000 144 ZANGWIL2 2
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Figure 2: The Dolan-Moré performance profiles for the total number of function eval-
uations.

gence properties of the new schemes. The preliminary numerical experiment on a set of the test
functions collection indicates that the new algorithms are effective.
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