TAMKANG JOURNAL OF MATHEMATICS Volume 30, Number 1, Spring 1999

COINCIDENCE THEOREMS IN COMPLETE METRIC SPACES

Y. J. CHO, N. J. HUANG AND L. XIANG

Abstract. The purpose of this paper is to introduce new classes of generalized contractive type set-valued mappings and weakly dissipative mappings and to prove some coincidence theorems for these mappings by using the concept of ω -distances.

1. Introduction

Recently, in [6] and [8], Kada-Suzuki-Takahashi introduced the new concept of ω distances in metric spaces and improved Caristi's fixed point theorem, Ekeland's ε variational principle and the nonconvex minimization theorem in metric spaces.

On the other hand, in [5], Husain-Latif introduced a class of generalized contractive type set-valued mappings in metric spaces and showed the existence of fixed points for these mappings ([3], [4], [9]).

In this paper, we introduce new classes of generalized contractive type set-valued mappings and weakly dissipative mappings in metric spaces and prove some coincidence theorems for these mappings by using the concept of ω -distances. Our main results extend, generalize and improve the results of Caristi ([1]), Nadler ([17]), Kada-Suzuki-Takahashi ([6]) and others ([2]-[5], [9]).

2. Preliminaries

Throughout this paper, let N and R denote the sets of positive integers and real numbers, respectively.

Definition 2.1. ([6]) Let (X, d) be a metric space. A function $p: X \times X \to [0, \infty)$ is called a ω -distance on X if the following conditions are satisfied:

(1) $p(x,z) \le p(x,y) + p(y,z)$ for all $x, y, z \in X$,

(2) for any $x \in X$, $p(x, \cdot) : X \to [0, \infty)$ is lower semicontinuous,

Received April 19, 1996.

Key words and phrases. ω -distance, coincidence point, contractive type set-valued mapping, weakly dissipative mapping.

The first author was supported in part by the Academic Research Fund of Ministry of Education, Korea, 1997, Project No. BSRI-97-1405.

¹⁹⁹¹ Mathematics Subject Classification. 47H10, 54H25, 54C60

(3) for any $\varepsilon > 0$, there exists a number $\delta > 0$ such that $p(z, x) \leq \delta$ and $p(z, y) \leq \delta$ imple $d(x, y) \leq \varepsilon$.

Some examples of ω -distances are given as follows:

Example. ([6]) (1) If X is a metric space with the metric d, then p = d is a ω -distance on X.

(2) If X is a normed linear space with the norm $\|\cdot\|$, then a function $p: X \times X \to [0, \infty)$ defined by $p(x, y) = \|x\| + \|y\|$ for all $x, y \in X$ is a ω -distance on X.

(3) Let (X, d) be a metric space. If T is a continuous mapping from X into itself, then a function $p: X \times X \to [0, \infty)$ defined by $p(x, y) = \max\{d(Tx, y), D(Tx, Ty)\}$ for all, $x, y \in X$ is a ω -distance on X.

(4) Let (X, d) be a metric space and F be a bounded and closed subset of X. If F contains at least two points and C is a constant with $C \ge diam F$, where diam F denotes the diameter of F, then a function $p: X \times X \to [0, \infty)$ defined by

$$p(x,y) = \begin{cases} d(x,y) \text{ for } x, y \in F, \\ C & \text{ for } x \notin F \text{ or } y \notin F \end{cases}$$

is a ω -distance on X.

We need the following lemma for our main theorems:

Lemma 2.1. ([6]) Let (X, d) be a metric space, p be a ω -distance and $\{x_n\}$, $\{y_n\}$ be sequences in X. Let $\{a_n\}$ and $\{\beta_n\}$ be sequences in $[0, \infty)$ converging to 0 and let $x, y, z \in X$. Then we have the following:

- (1) If $p(x_n, y) \leq a_n$ and $p(x_n, z) \leq \beta_n$ for any $n \in N$, then y = z. In particular, if p(x, y) = 0 and p(x, z) = 0, then y = z.
- (2) If $p(x_n, y_n) \leq a_n$ and $p(x_n, z) \leq \beta_n$ for any $n \in N$, then $\{y_n\}$ converges to z.
- (3) If $p(x_n, x_m) \leq a_n$ for any, $n, m \in N$ with m > n, then $\{x_n\}$ is a Cauchy sequence in X.
- (4) If $p(y, x_n) \leq a_n$ for any $n \in N$, then $\{x_n\}$ is a Cauchy sequence in X.

Let 2^X denote the family of all nonempty subsets of a metric space (X, d).

Definition 2.2. Let (X, d) be a metric space and M be a nonempty subset of X. Let p be a ω -distance on X and f be a function from M into X. $J: M \to 2^X$ is said to be a weakly f-contractive type set-valued mapping if, for all $x \in M$ and $u_x \in Jx$, there exists $v_y \in Jy$ for all $y \in M$ such that

$$p(u_x, v_y) \le hp(fx, fy)$$

for some $h \in [0, 1)$.

2

Definition 2.3. ([16]) Let (X, d) be a metric space and p be a ω -distance on X. A set-valued mapping $J: X \to 2^X$ is said to be weakly contractive (or *p*-contractive) if, for any $x_1, x_2 \in X$ and $y_1 \in Jx_1$, there exists $y_2 \in Jx_2$ such that

$$p(y_1, y_2) \le rp(x_1, x_2)$$

for some $r \in [0, 1)$.

Definition 2.4. ([5]) Let (X, d) be a metric space and M be a nonempty subset of X. $J: M \to 2^X$ is called a contractive type set-valued mapping if, for all $x \in M$ and $u_x \in Jx$, there exists $v_y \in Jy$ for all $y \in M$ such that

$$d(u_x, v_y) \le h d(x, y)$$

for some $h \in [0, 1)$.

Remark. It is obvious that a weakly f-contractive type set-valued mapping is more generalized than the weakly contractive type and contractive type set-valued mappings.

Let C(X) denote the family of all nonempty closed subsets of a metric space (X, d)and A be a set-valued mapping from X into C(X).

Definition 2.5. Let p be a ω -distance on X and $f: X \to X$ be a mapping. A function $\phi: X \to [0, +\infty)$ is called a (f, p)-weak entropy of a set-valued mapping $A: X \to C(X)$ if, for all $x \in X$, there exists $y \in Ax$ such that

$$p(fx, fy) \le \phi(x) - \phi(y). \tag{2.1}$$

Definition 2.6. A set-valued mapping $A : X \to C(X)$ is said to be (f, p)-weakly dissipative if there exists a (f, p)-weak entropy of A.

Definition 2.7. A set-valued mapping $A: X \to C(X)$ is said to be upper semicontinuous if

$$\lim_{n \to \infty} H_+(Ax_n, Ax) = 0$$

whenever $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} x_n = x \in X$, where

$$H_+(S,T) = \sup_{y \in Tx \in S} \inf d(x,y)$$

for all $S, T \in C(X)$.

3. Main results

Now, we are ready to give our main theorems.

Y. J. CHO, N. J. HUANG AND L. XIANG

Theorem 3.1. Let (X, d) be a complete metric space, M be a nonempty closed subset of X and p be a ω -distance on X. Let $f : M \to M$ be a function and $J : M \to 2^M$ be a weakly f-contractive type set-valued mapping with closed values. If f(M) = M, then there exists a point $z \in M$ such that $fz \in Jz$.

Proof. Let x_0 be an arbitrary but fixed element of M and choose $y_1 \in J(x_0)$. Since f(M) = M, we can choose $x_1 \in M$ such that $y_1 = fx_1$. Moreover, since J is weakly f-contractive type, there exists $y_2 \in Jx_1$ such that, for some $h \in [0, 1)$,

$$p(y_1, y_2) \le hp(fx_0, fx_1).$$

Since f(M) = M, we can choose again $x_2 \in M$ such that $fx_2 = y_2$. Inductively, we can obtain a sequence $\{fx_n\}$ in M = f(M) such that

$$\begin{cases} fx_{n+1} \in Jx_n, \\ p(fx_n, fx_{n+1}) \le hp(fx_{n-1}, fx_n) \end{cases}$$
(3.1)

for $n = 0, 1, 2, \ldots$ Thus we have

$$p(fx_n, fx_{n+1}) \le hp(fx_{n-1}, fx_n)$$

$$\le \cdots$$

$$< h^n p(fx_0, fx_1).$$
(3.2)

Since $h \in [0, 1)$, it follows from (3.2) and Lemma 2.1 that $\{fx_n\}$ is a Cauchy sequence in M = f(M). Hence, by the completeness of M, $\{fx_n\}$ converges to a point $u \in M$. Since f(M) = M, there exists $z \in M$ such that fz = u.

Furthermore, since $Fx_{n+1} \in Jx_n$ for n = 0, 1, 2, ..., J is weakly *f*-contractive type and f(M) = M, we can choose $fv_n \in Jz$ such that

$$p(fx_{n+1}, fv_n) \le hp(fx_n, fz). \tag{3.3}$$

Since $fx_n \to fz = u$ as $n \to \infty$, by the lower semicontinuity of p, we have

$$p(fx_n, fz) \le \lim_{m \to \infty} p(fx_n, fx_m)$$

$$\le \lim_{m \to \infty} h^{m-n} p(fx_0, fx_1)$$
(3.4)

for all $m, n \in N$ with m > n. Therefore, from (3.3), (3.4) and lemma 2.1, it follows that $fv_n \to fz$ as $n \to \infty$. Since Jz is closed, $fz \in Jz$. This completes the proof.

Remark. If $f = I_X$ (: the identity mapping on X), then we obtain Theorem 2 in [6]. Further, if $f = I_X$ and p = d, then we have Theorem 2.3 in [2] as a corollary.

Next, we need the following lemma for a generalization of Caristi's fixed point theorem. The proof of the following lemma is similar to that of Lemma 1 in [6]:

4

Lemma 3.2. Let (X, d) be a metric space and p be a ω -distance on X. If $p(x_n, x_m) \leq a_{n,m}$ for any $n, m \in N$ with m > n and $a_{n,m} \geq 0$ with $a_{n,m} \rightarrow 0$ as $n, m \rightarrow \infty$, then $\{x_n\}$ is a Cauchy sequence in X.

Proof. Note that, for sufficiently large $m, n \in N$ with $m > n, a_{m,n} \to 0^+$. Let $\varepsilon \ge 0$. By the definition of ω -distance, there exists $\delta > 0$ such that $p(u, v) \le \delta$ and $p(u, z) \le \delta$ imply $d(v, z) \le \varepsilon$. Thus, since $a_{m,n} \to 0^+$ as $n, m \to \infty$, there exists a positive integer $n_0 \in N$ such that $a_{n_0,m} < \delta$ for $n, m \ge n_0$, which implies that $p(x_{n_0}, x_m) < \delta$ and $p(x_{n_0}, x_n) < \delta$. Therefore, $d(x_n, x_m) \le \varepsilon$, i.e., $\{x_n\}$ is a Cauchy sequence in X. This completes the proof.

Theorem 3.3. Let (X, d) be a complete metric space and p be a ω -distance on X. If a function $f : X \to X$ is surjective and a set-valued mapping $A : X \to C(X)$ is (f, p)-weakly dissipative and upper semicontinuous, then there exists $z \in X$ such that $fz \in Az$.

Proof. Let ϕ be a (f, p)-weak entropy of a set-valued mapping $A : X \to C(X)$. By (2.1), we can construct a sequence $\{x_n\}$ in X such that

$$\begin{cases} fx_{n+1} \in Ax_n, \\ p(fx_n, fx_{n+1}) \le \phi(x_n) - \phi(x_{n+1}) \end{cases}$$
(3.5)

for $n = 0, 1, 2, \ldots$ From (3.5), it follows that $\phi(x_n) \ge 0$ for $n = 0, 1, 2, \ldots$ and $\{\phi(x_n)\}$ is nonincreasing.

Suppose that $\phi(x_n) \to a \in [0, \infty)$ as $n \to \infty$. Then, since, for any $i, j \in N$ with i < j, we have

$$p(fx_{i}, fx_{j}) \leq \sum_{n=i}^{j-1} p(fx_{n}, fx_{n+1})$$

$$\leq \sum_{n=i}^{j-1} (\phi(x_{n}) - \phi(x_{n+1}))$$

$$= \phi(x_{i}) - \phi(x_{j}),$$
(3.6)

from Lemma 3.2, it follows that $\{fx_n\}$ is a Cauchy sequence in X. Since (X, d) is complete, $\{fx_n\}$ converges to a point $u \in X$. since f is surjective, there exists $z \in X$ such that fz = u. Furthermore, since $fx_{n+1} \in Ax_n$, we have

$$d(fx_{n+1}, Az) \le H_+(Az, Ax_n). \tag{3.7}$$

Thus, since A is upper semicontinuous, $\lim_{n\to\infty} H_+(Az, Ax_n) = 0$. On the other hand, we have

 $\lim_{n \to \infty} d(fx_{n+1}, Az) = d(fz, Az).$

Therefore, from (3.7), it follows that d(fz, Az) = 0 and so, since Az is closed, $fz \in Az$. This completes the proof. **Remark.** From Theorem 3.3, we have Caristi's fixed point theorem [1] as a corollary.

The following example illustrates our theorem:

Example. Let $X = \{1, 2, 3, 4\}$ and define $d, p : X \times X \to [0, \infty)$ as follows, respectively:

$$d(1,1) = d(2,2) = d(3,3) = d(4,4) = 0,$$

$$d(1,2) = d(2,1) = 1, d(1,3) = d(3,1) = 2,$$

$$d(1,4) = d(4,1) = 3, d(2,3) = d(3,2) = 2,$$

$$d(1,1) = d(4,2) = 3, d(3,4) = d(4,3) = 1$$

and

$$p(1,1) = 1, p(1,2) = 1, p(1,3) = 2, p(1,4) = 3,$$

$$p(2,1) = 2, p(2,2) = 1, p(2,3) = 3, p(2,4) = 2,$$

$$p(3,1) = 2, p(3,2) = 1, p(3,3) = 2, p(3,4) = 1,$$

$$p(4,1) = 1, p(4,2) = 2, p(4,3) = 2, p(4,4) = 2.$$

Clearly d is a metric and p is a ω -distance on X, respectively. Define $f: X \to X$ by

$$f(1) = 2, f(2) = 3, f(3) = 1, f(4) = 4$$

and $\phi: X \to [0, +\infty)$ by

$$\phi(1) = 8, \phi(2) = 4, \phi(3) = 7, \phi(4) = 6.$$

Next, define $A: X \to C(X)$ by

$$A(1) = \{2,3\}, A(2) = \{3,4\}, A(3) = \{1,2\}, A(4) = \{2,4\}.$$

By routine computation, it is easy to check that all the conditions of Theorem 3.3 are satisfied. Moreover, for all $z \in X$, we have $fz \in Az$.

Acknowledgement

The authors would like to express their deep thanks to the referee for his helpful suggestions.

References

- J. Caristi, Fixed Point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215(1976), 241-251.
- [2] S. S. Chang, N. J. Huang and Y. J. Cho, Coincidence and fixed point theorems, Bull. Honam Math. Soc. 12(1995), 153-161.

- [3] T. Husain and E. Tarafdar, Fixed point theorems for multivalued mappings of nonexpansive type, Yokohama Math. J. 28 (1980), 1-6.
- [4] T. Husain and A. Latif, Fixed points of multivalued nonexpansive maps, Math. Japon. 33(1988), 285-391.
- [5] T. Husain and A. Latif, Fixed points of multivalued maps, Internat. J. Math. and Math. Sci. 14 (1991), 421-430.
- [6] O. Kada, T. Suzuki and W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japon. 44(1996), 381-391.
- [7] S. B. Nadler, Jr., Multivalued contraction mappings, Pacific J. Math. 30(1969), 475-488.
- [8] T. Suzuki and W. Takahashi, Fixed point theorems and characterizations of metric completeness, Topological Methods in Nonlinear Analysis 8(1996), 371-382.
- [9] H. K. Xu, On weakly nonexpansive and *-nonexpansive multivalued mappings, Math. Japon. 36(1991), 441-445.

Department of Mathematics, Gyeongsang National University, Chinju 660-701, Korea

Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China