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EXISTENCE OF SOLUTIONS OF SEMILINEAR DIFFERENTIAL
EQUATIONS WITH NONLOCAL CONDITIONS IN BANACH SPACES

K. BALACHANDRAN AND M. CHANDRASEKARAN

Abstract. The aim of this paper is to prove the existence and uniquencess of local, strong and
global solutions of a nonlocal Cauchy problem for a differential equation. The method of analytic
semigroups and the contraction mapping principle are used to establish the results.

1. Introduction

The problem of existence of solutions of evolution equation with nonlocal conditions ir
Banach space has been studied first by Byszewski [5]. In that paper he has establised the
existence and uniqueness of mild, strong and classical solutions of the following nonlocal
Cauchy problem:

13

du(t)

- T Au(®) = f(t,u(t),  tE (to,to+a] (1)

’u(to) +g(t1,t2,...,tp,u(-)) = Up (2)

where —A is the infinitesimal generator of a Cj semigroup T'(¢), ¢t > 0, in a Banach space
X, 0<to<thh <--<ty,<ty+a,a>0, ug € X and f : [to,to+a] x X = X,
g: [to,to+a)’ x X — X are given functions. Subsequently he has investigated the same
type of problem to a different class of evolution equations in Banach spaces [3-7]. Here
the symbol g(t1,...,t,,u(-)) is used in the sense that in the place of -’ we can substitute
only elements of the set {t;,...,¢,}.

The purpose of this paper is to prove the existence and uniqueness of local, strong
and global solutions for a semilinear differential equation with nonlocal conditions of the
form:

di;(tt) +Au(t) = fu(®), te (0,8 3)
U(U) + g(tl, tz, . ,tp, U(tl), 5518 ,u(tp)) = Up (4)

where 0 <tp <) < --- < t, <b. For example,

91, ta, .y tp,ultn), ., u(ty) = cru(t) + - + cpulty)
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where ¢;(i = 1,...,p) are constants. In this case, equation (4) allows the measurements
at t =0,t1,...,tp rather than just at ¢ = 0.

Here we assume that —A is the infinitesimal generator of a bounded analytic semi-
group of linear operator T'(t), t > 0, in a Banach space X. The operator A% can be
defined for 0 < @ < 1 and A% is a closed linear invertible operator with domain D(A®)
dense in X. The closedness of A® implies that D(A®) endowed with the graph norm

of A%, that is the norm ||z|]| = ||z|| + ||A%z]|, is a Banach space. Sine A% is invertible
its graph norm || - || is equivalent to the norm ||z||o = ||[A%z||. Thus, D(A%) equipped
with the norm || - ||, is a Banach space which we denote by X,. From the definition

it is clear that 0 < a < (3 implies X, D X and that the imbedding of Xp in X, is
continuous. Throughout the paper we shall use the symbol J = [0,b]. The nonlinear
operators f : Xo = X, g(t1,...,tp,u(t1),...,u(tp)) : JP x XE =Y are given functions.

The motivation for an abstract theory such as this comes from the following partial
differential equation:

vz, t) — vge (2, 1) = o(v(2,1))s, 0K L1
0(0,8) =v(l,t) =0 - t>0
v(z,0) = v(z,1) +5(z) Gzl

It is not true in general that 2 = A'/2, however [13] there exist a bounded linear
operator B from X into itself such that Al2B = a%' Letting G = Bo we can fit the
above equations into the abstract theory developed in this paper.

The abstract theory one can find in the books [8, 9, 12] handles partial differential
equations of the above forms, however the theory illustrated in these works does not
distinguish between the problems of the form

vi(2,1) — vz (2, 1) = v(z, t)|v(z, t)]P 1

with nonlocal conditions and the above equations but with right hand side 2 [v(z,t)

Oz
|v(z, )[P~]
As in [1-3, 7, 8, 10, 11] the nonlocal condition (4) can be applied in physics with
better effect than the classical condition u(0) = ug since condition (4) is usually more
precise for physical measurements than the classical condition.

2. Preliminaries

It is known that equations (3) — (4) are related to the integral equation

t
w(t) = T(E)uo — TR)g(tr, - .- tyyults)s - - - ulty)) +/O T(t— s)f(u(s))ds, t>0 (5)

where T'(t) is the semigroup of operators generated by —A. The solution u(t) of equation
(5) is called a mild solution of equations (3) — (4) and is not necessarily a solution of
equations (3) — (4).
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Definition 1. A function u(t) is a mild solution of equations (3) — (4) on [0, b) if
u € C([0,b); Xa), u(0) = uo — g, and u(t) satisfies the integral equation (5) on [0, b).

Definition 2. A function u(t) is a strong solution of equations (3) — (4) if v €
C([0,0); Xa)) N C'([0,); X), u(0) = up — g, and u(t) satisfics (3) — (4) on [0, b).

3. Existence of Solutions

We shall make the following assumptions on the operator A and the nonlinear oper-
ators f and g:

(i) —A is the infinitesimal generator of a bounded analytic semigroup of linear operator
T(t),t>0,in X.
(i) There exist real constants M and d such that ||T'(¢)|| < Me% for ¢ > 0.
(iii) For 0 < a < 1, the fractional power A% satisfies ||A%T'(t)|| < Cut™* for ¢ > 0 where
C, is a real constant.

We shall assume X, CY C X so that T'(t) : X — Y for all ¢ > 0 is a bounded linear
operater and

(iv) APT(t): X - Y for t > 0 and ||A°T(t)|| € L'(0,r) for B € [a,  + d] for some d > 0
and every r > 0.

(v) The function f maps X, into X, and satisfies:
there exists G : ¥ — X such that ||G(u) — G(v)|| < K||u— v|| where K is a constant,
G : X4 = X4 and for each u(0) € X4, f(u(0)) = A*G(u(0))

(vi) The function g(t1,...,tp, u(t1),...,u(tp)) maps J? x X2 into Y and satisfies:
there exist h(t1,...,tp, u(t1),...,u(tp)) : JP x XP = X and a constant K; > 0 such
that

AL, - tpulte), - u(tp)) — Aty ... tp, (1), - .- u(tp)]| < Killu — vl
h:J? x X? -+ X, and g = A®h.

Theorem 1. If the assumptions (i) to (vi) hold, then for each u(0) € Y there exists
ab>0 and a unique continuous function u : [0,b) = Y such that

t
u(t) = T(t)uo — T(E)A%h(t1, - . ., tp, ulty), - . ., ulty)) + / AT (t — $)G(u(s))ds, t>0
JO

(6)
Proof. Define the set S = {u : [0,t] = Y : u(t) and g € Y are continuous, u(0) =
up — g and |[u(t) — u(0)|| < R}. Choose ‘b’ such that for

T @) = Dol + llg(ts, - - - s tp, ultr), - -, ulty)))
+C0~ /(1 - a){||G(w(0)[| + KR} < R
and {lAT )| K1 + Kb3=¥ /(1 —a)} < 1
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Moreover, define the mapping P on S by
(Pu)(t) = T(t)uo — T(£)g(t1,- -y tp,ults), ..., u(ty)) + /: AT (t — s)G(u(s))ds, t>0
First note that for u € S, P is well defined since
[ 1477~ atutslas < [ 47T - s)lds} - (IG((0) + Gluto) ~ GO}
< ([ 14°T (- 9)ds} - TGO + KR)

For u € S, we have
|(Pu)(t) — w(O)|| = [T (t)uo — T'(t)g(ta, - - -, tp, ultr),- - -, u(ty))

/ ATt~ 5)G(u(s))ds — (uo — g)l

<T@ = Dllluoll + llg(t1, - - - tpy ultn), - - -, ulEp))])
+Cb ) /(1 — 2){lIG(u(0))|| + KR}
<R

This implies that P(S) C S. Therefore, P maps S into itself. Let u,v € S, then we have

1(Pu)(t) — (Pv)(@)l
<T@ A*(A(ty, . - . tp,ults), - ultp)) = h(ta, . . - tp, u(t1), - - ., v(Ep))|

t
Al / AT (¢ — 5)[G(u(s)) — Clu(s)))ds]
L
< ST @) Kyl — o + {K / 14°T (s) ds} [ — o]

t
<AIATOIK + K [ 14T (s} o]
< A|A°T (t)|| K1 + Kb' /1 — a)}||lu — v||

By the contraction mapping theorem P has a unique fixed point u € S.

Lemma 1. Let assumptions (i) — (vi) be satisfied, then all > 0 and t, t + h € [0, a]
there exist o such that ||u(t + h) —u(t)|| < CO)R’,0< 0 < 1.

Proof. Now
lu(t + h)—w(OI (T (h) = DT ()uo)|[+(T(R) =) AT (t)h(t1, .. ., tp, ults), - - ., ulty))|l

i /0 A*{(T(h) - )T (¢ — 5)}G (u(s))ds]
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t+h
+|| /t AT (t + h — s)G(u(s))ds||

<|IACT @)(T(R) — I) A~ %u|
HIACT (@) (T (h) = Dhltr, - -, tpyults), - ., uty))|

(TR - 1) /0 AT (¢ — 5)G(u(s))ds]|

t+h
+|| AT (t+ h — )G (u(s))ds||

<SCOTI(T(h) — I)A™%ug|
+00~7 || T () —T) A AT R(Bis « conbprtilla Yy , WG]

Hl [ AT = )T 0) - DAGlu(e))as]

t+h
+/ AT (t+ h — s)ds - {||G(u(0))|| + KR}
t
SCO™7|luol[h™ + COTT|| AT () h(t1, - - -, tp, ultn), - - ., ulty))||h®

t
+[C(|IG(U(0))H+KR)/ |A°F<T () ||ds}he+C |G (u(0))|+K R}h*
0
Taking 0 = min{a, 1 — 7,¢}, where 0 < € < o, hence the Lemma.
This establishes that a solution of equation (6) is locally Holder continuous on (0, b].
If the solution u(t) of equation (6) is in X, and if it is also Holder continuous in the

X norm we can show that u(t) is a solution of (3) — (4) if f and g are locally Lipschitz
continuous from X, into X and JP x X? into Y respectively.

Lemma 2. Let assumptions of Lemma 1 be hold. Then the solution u(t) of equation
(6) is in X1, for t € (0,8)].

Proof. Let > 0, then the solution u(t) of equation (6) satisfies
u(t) =Tt — p)uo — T(t — p)A%h(t1, . .., tp,u(ty),... ,u(tp))
t
+ / AST(t — 5)C(u(s))ds
n
and
u(t) =T(t — puo — T'(t — p)A%h(t1, ..., tp,u(t1),. .. ,u(tp))

+/ AT (t — )G (u(t))ds + / AT (t — 5)[G(u(s)) — G(u(t))]ds

Since T'(t — p)ug, T(t — p)A%h(t1, ... tp,u(ty),. .., u(ty)) € D(A) for all ¢ > p and
]: AT (t - s)G(u(t))ds = A* LG (u(t)) — T(t — p)G(u(t))] for all ¢ > . We have only
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. to show that

[ AeT(e - s)iG(uts)) - Glu(@)lds

is in X;..o. Note that
t t
ar [ AT - 9)[Gue) - Clu)ldsl = [ ATt~ s)iEtu(s) - s

t
< CK/ (t—s)"1(t - s)7ds
u
=CK(t—p)/o.
By Lemma 1, the last inequality is true.

Lemma 3. Let the assumptions of the previous Lemma holds and that X1, C Xq,
the imbedding being continuous, then the solution u(t) of equation (6) is a mild solution
of equations (3) — (4) and is locally Holder continuous into Xe.

Proof. From Lemma 2 and assuption X;_o, C X, implies that u(t) € X, for all
t > 0. Thus for x> 0 and t > /2 we have

u(t) = T(t — p/2)uo — T(t — p/2)g(t1, . - - tp, ults), - - -, ultp))

t

+/ T(t — s)f(u(s))ds (7)
12

Since u(t) is continuous into Xj_o and X;_4 is continuously imbedded into X, u(t) is

continuous into X,. Now we show that u(t) is locally Holder continuous into X,. Let

p>0andt+h,te[u,b], then

l[u(t + k) = u@®)ll < |A*(T () = DT (t = 1/2)uoll

HAX(T(h) — DTt = p/2)g(t1,- - - tp, ultr), - - - ultp))ll
+|l 5 AT (t = s)(T(h) — I)f(u(s))ds||
”t-{-h

+| AT (t+ h — s) f(u(s))ds||
t
S C”U()“ha e C”g(tla R atpvu(t1)7 o ;u(tp))”h'a

+{C [ |[A*TT(t - 5)llds} sup [|f (u(s))[|h*

n/2

+C/(1 — a) sup || f (u(t))||h'~*

where € is chosen so that a+ & < 1. Thus there exist a C > 0 and a 0 < 6 < 1 such that
llu(t + R) — u()]| < Ch? for t,t + k, € [, b]-
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Theorem 2. If the conditions (i) — (vi) and the assumptions of Lemma 3 are satisfied,
and f and g are locally Lipshitz from X, into X and JP x XP into Y respectively, then
any solution of equation (6) is also a strong solution of equations (3) — (4).

Proof. Since f and g are locally Lipshitz and u(t) is locally Holder continuous into
Xa, the fuctions f and g are locally Holder continuous on [u, b] for any g > 0. Thus the
theory of analytic semigroups of linear operators [12] gives the desired result.

Theorem 3. Let the assumptions of Lemma 1 be satisfied, then u(t) may be extended
to a mazimum interval of existence I = [0,c), where ¢ = maxb. If b < co then

i [ 14°T( - o)l G (w(s)lds = o ®
lm Jlu(#)]] = oo (9)
Proof. Suppose ¢ < oo. For every t € I, u(%) satisfies the integral equation (6).
Claim lim;_,. sup ||u(t)|| < C for all ¢ € I and some C > 0. This gives
lu@Il < ITE)poll + IT(#)A%A(ts, - . ., tp, u(tr), - - -, ulty))l
+{[ 14T - 9)lds}.fsup G}

For 0 < 7 <t < ¢, we have

llu(?) — u(r)]]
<|A*T(7)[T(t — 7) — I]A™%uo|

+HIAYT(r)[T'(t —r) — JA™*A%h(t1, . .., tp, u(tr), . . ., u(ty)) |l

—1-||/0 A““T(T—S)[T(t—r)—I]A“G(u(s))llds-{-”/ AT (t—s)G(u(s))||ds
< C17¢|uol|(t — 7)* + CT7¢||A%R(ty, . . . ytp u(ti), ..., u(tp))||(t — 1)

+C(t - T)E{/OT |A*T€T (s)ds]|} - {StlEIIIJ G (u(@)I}

+ / 14T (s)ds]]} - {sup |G (u(®))]
T tel

Thus we have [[u(t) — u(7)|| = 0 as ¢,7 — ¢, contradicting the maximality of c.

If lim; . ||u(t)|| # oo then there exist numbers r > 0 and d > 0 with d arbitrarily
large and sequences 7,, — ¢, t, — ¢ as n — co and such that 7,, < ¢, < c. lslmll =
lu(tn)ll = 7 + d and ||u(t)|| < r +d for t € [y, t,]. We have

l[u(tn) = uw(ma)ll < T (tn = ) — Lu(m)|
HANT (tn — ) — TTA(t1, - -, tpy ul(t), - ., u(tp))]

] / " AT (t, — )G (u(s))|| (10)
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The right hand side of (10) approaches zero as 7, and t, approach ¢ while the left hand
side of (10) is bounded below by d > 0. This contradiction gives the result and (8) follows
from (9).
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