TAMKANG JOURNAL OF MATHEMATICS Volume 30, Number 1, Spring 1999

EXISTENCE OF SOLUTIONS OF SEMILINEAR DIFFERENTIAL EQUATIONS WITH NONLOCAL CONDITIONS IN BANACH SPACES

K. BALACHANDRAN AND M. CHANDRASEKARAN

Abstract. The aim of this paper is to prove the existence and uniquencess of local, strong and global solutions of a nonlocal Cauchy problem for a differential equation. The method of analytic semigroups and the contraction mapping principle are used to establish the results.

1. Introduction

The problem of existence of solutions of evolution equation with nonlocal conditions ir. Banach space has been studied first by Byszewski [5]. In that paper he has establised the existence and uniqueness of mild, strong and classical solutions of the following nonlocal Cauchy problem:

$$\frac{du(t)}{dt} + Au(t) = f(t, u(t)), \qquad t \in (t_0, t_0 + a]$$
(1)

$$u(t_0) + g(t_1, t_2, \dots, t_p, u(\cdot)) = u_0$$
(2)

where -A is the infinitesimal generator of a C_0 semigroup $T(t), t \ge 0$, in a Banach space $X, 0 \le t_0 < t_1 < \cdots < t_p \le t_0 + a, a > 0, u_0 \in X$ and $f : [t_0, t_0 + a] \times X \to X$, $g : [t_0, t_0 + a]^p \times X \to X$ are given functions. Subsequently he has investigated the same type of problem to a different class of evolution equations in Banach spaces [3-7]. Here the symbol $g(t_1, \ldots, t_p, u(\cdot))$ is used in the sense that in the place of '.' we can substitute only elements of the set $\{t_1, \ldots, t_p\}$.

The purpose of this paper is to prove the existence and uniqueness of local, strong and global solutions for a semilinear differential equation with nonlocal conditions of the form:

$$\frac{du(t)}{dt} + Au(t) = f(u(t)), \qquad t \in (0, b]$$
(3)

$$u(0) + g(t_1, t_2, \dots, t_p, u(t_1), \dots, u(t_p)) = u_0$$
(4)

where $0 \le t_0 < t_1 < \cdots < t_p \le b$. For example,

$$g(t_1, t_2, \dots, t_p, u(t_1), \dots, u(t_p)) = c_1 u(t_1) + \dots + c_p u(t_p)$$

Received April 9, 1997.

1991 Mathematics Subject Classification. 34G20, 47H15.

Key words and phrases. Existence of solution, semilinear equation, nonlocal conditions.

where $c_i(i = 1, ..., p)$ are constants. In this case, equation (4) allows the measurements at $t = 0, t_1, ..., t_p$ rather than just at t = 0.

Here we assume that -A is the infinitesimal generator of a bounded analytic semigroup of linear operator T(t), $t \ge 0$, in a Banach space X. The operator A^{α} can be defined for $0 \le \alpha < 1$ and A^{α} is a closed linear invertible operator with domain $D(A^{\alpha})$ dense in X. The closedness of A^{α} implies that $D(A^{\alpha})$ endowed with the graph norm of A^{α} , that is the norm $||x|| = ||x|| + ||A^{\alpha}x||$, is a Banach space. Sine A^{α} is invertible its graph norm $|| \cdot ||$ is equivalent to the norm $||x||_{\alpha} = ||A^{\alpha}x||$. Thus, $D(A^{\alpha})$ equipped with the norm $|| \cdot ||_{\alpha}$, is a Banach space which we denote by X_{α} . From the definition it is clear that $0 < \alpha < \beta$ implies $X_{\alpha} \supset X_{\beta}$ and that the imbedding of X_{β} in X_{α} is continuous. Throughout the paper we shall use the symbol J = [0, b]. The nonlinear operators $f: X_{\alpha} \to X$, $g(t_1, \ldots, t_p, u(t_1), \ldots, u(t_p)): J^p \times X^p_{\alpha} \to Y$ are given functions.

The motivation for an abstract theory such as this comes from the following partial differential equation:

$$\begin{aligned} v_t(x,t) - v_{xx}(x,t) &= \sigma(v(x,t))_x, & 0 < x < 1 \\ v(0,t) &= v(1,t) = 0 & t > 0 \\ v(x,0) &= v(x,1) + s(x) & 0 < x < 1 \end{aligned}$$

It is not true in general that $\frac{\partial}{\partial x} = A^{1/2}$, however [13] there exist a bounded linear operator B from X into itself such that $A^{1/2}B = \frac{\partial}{\partial x}$. Letting $G = B\sigma$ we can fit the above equations into the abstract theory developed in this paper.

The abstract theory one can find in the books [8, 9, 12] handles partial differential equations of the above forms, however the theory illustrated in these works does not distinguish between the problems of the form

$$v_t(x,t) - v_{xx}(x,t) = v(x,t)|v(x,t)|^{\beta-1}$$

with nonlocal conditions and the above equations but with right hand side $\frac{\partial}{\partial x}[v(x,t)|^{\beta-1}]$

As in [1-3, 7, 8, 10, 11] the nonlocal condition (4) can be applied in physics with better effect than the classical condition $u(0) = u_0$ since condition (4) is usually more precise for physical measurements than the classical condition.

2. Preliminaries

It is known that equations (3) - (4) are related to the integral equation

$$u(t) = T(t)u_0 - T(t)g(t_1, \dots, t_p, u(t_1), \dots, u(t_p)) + \int_0^t T(t-s)f(u(s))ds, \quad t \ge 0 \quad (5)$$

where T(t) is the semigroup of operators generated by -A. The solution u(t) of equation (5) is called a mild solution of equations (3) - (4) and is not necessarily a solution of equations (3) - (4).

Definition 1. A function u(t) is a mild solution of equations (3) - (4) on [0, b) if $u \in C([0, b); X_{\alpha}), u(0) = u_0 - g$, and u(t) satisfies the integral equation (5) on [0, b).

Definition 2. A function u(t) is a strong solution of equations (3) - (4) if $u \in C([0,b); X_{\alpha})) \cap C^1([0,b); X)$, $u(0) = u_0 - g$, and u(t) satisfies (3) - (4) on [0,b).

3. Existence of Solutions

We shall make the following assumptions on the operator A and the nonlinear operators f and g:

- (i) -A is the infinitesimal generator of a bounded analytic semigroup of linear operator T(t), t > 0, in X.
- (ii) There exist real constants M and δ such that $||T(t)|| \leq M e^{\delta t}$ for t > 0.
- (iii) For $0 \le \alpha < 1$, the fractional power A^{α} satisfies $||A^{\alpha}T(t)|| \le C_{\alpha}t^{-\alpha}$ for t > 0 where C_{α} is a real constant.

We shall assume $X_{\alpha} \subseteq Y \subseteq X$ so that $T(t) : X \to Y$ for all t > 0 is a bounded linear operator and

- (iv) $A^{\beta}T(t): X \to Y$ for t > 0 and $||A^{\beta}T(t)|| \in L^{1}(0, r)$ for $\beta \in [\alpha, \alpha + d]$ for some d > 0and every r > 0.
- (v) The function f maps X_{α} into X, and satisfies: there exists $G: Y \to X$ such that $||G(u) - G(v)|| \le K||u - v||$ where K is a constant, $G: X_{\alpha} \to X_{\alpha}$ and for each $u(0) \in X_{\alpha}$, $f(u(0)) = A^{\alpha}G(u(0))$
- (vi) The function $g(t_1, \ldots, t_p, u(t_1), \ldots, u(t_p))$ maps $J^p \times X^p_{\alpha}$ into Y and satisfies: there exist $h(t_1, \ldots, t_p, u(t_1), \ldots, u(t_p)) : J^p \times X^p \to X$ and a constant $K_1 > 0$ such that

$$||h(t_1, \ldots, t_p, u(t_1), \ldots, u(t_p)) - h(t_1, \ldots, t_p, v(t_1), \ldots, v(t_p))|| \le K_1 ||u - v||,$$

 $h: J^p \times X^p_{\alpha} \to X_{\alpha} \text{ and } g = A^{\alpha} h.$

Theorem 1. If the assumptions (i) to (vi) hold, then for each $u(0) \in Y$ there exists $a \ b > 0$ and a unique continuous function $u : [0, b) \to Y$ such that

$$u(t) = T(t)u_0 - T(t)A^{\alpha}h(t_1, \dots, t_p, u(t_1), \dots, u(t_p)) + \int_0^t A^{\alpha}T(t-s)G(u(s))ds, \quad t \ge 0$$
(6)

Proof. Define the set $S = \{u : [0,t] \to Y : u(t) \text{ and } g \in Y \text{ are continuous, } u(0) = u_0 - g \text{ and } ||u(t) - u(0)|| \le R\}$. Choose 'b' such that for

$$\begin{aligned} \|(T(t) - I)\|(\|u_0\| + \|g(t_1, \dots, t_p, u(t_1), \dots, u(t_p))\|) \\ + Cb^{(1-\alpha)}/(1-\alpha)\{\|G(u(0))\| + KR\} \le R \\ \text{and} \qquad \{\|A^{\alpha}T(t)\|K_1 + Kb^{(1-\alpha)}/(1-\alpha)\} < 1 \end{aligned}$$

Moreover, define the mapping P on S by

$$(Pu)(t) = T(t)u_0 - T(t)g(t_1, \dots, t_p, u(t_1), \dots, u(t_p)) + \int_0^t A^{\alpha} T(t-s)G(u(s))ds, \quad t \ge 0$$

First note that for $u \in S$, P is well defined since

$$\begin{aligned} \int_0^t \|A^{\alpha}T(t-s)G(u(s))\|ds &\leq \{\int_0^t A^{\alpha}T(t-s)\|ds\} \cdot \{\|G(u(0)) + G(u(t)) - G(u(0))\|\} \\ &\leq \{\int_0^t \|A^{\alpha}T(t-s)\|ds\} \cdot \{\|G(u(0))\| + KR\} \end{aligned}$$

For $u \in S$, we have

$$\begin{aligned} \|(Pu)(t) - u(0)\| &= \|T(t)u_0 - T(t)g(t_1, \dots, t_p, u(t_1), \dots, u(t_p)) \\ &+ \int_0^t A^{\alpha} T(t-s)G(u(s))ds - (u_0 - g)\| \\ &\leq \|(T(t) - I)\|(\|u_0\| + \|g(t_1, \dots, t_p, u(t_1), \dots, u(t_p))\|) \\ &+ Cb^{(1-\alpha)}/(1-\alpha)\{\|G(u(0))\| + KR\} \\ &\leq R \end{aligned}$$

This implies that $P(S) \subseteq S$. Therefore, P maps S into itself. Let $u, v \in S$, then we have

$$\begin{aligned} &||(Pu)(t) - (Pv)(t)|| \\ &\leq ||T(t)A^{\alpha}(h(t_{1}, \dots, t_{p}, u(t_{1}), \dots, u(t_{p})) - h(t_{1}, \dots, t_{p}, v(t_{1}), \dots, v(t_{p})))|| \\ &+ ||\int_{0}^{t} A^{\alpha}T(t-s)[G(u(s)) - G(v(s))]ds|| \\ &\leq ||A^{\alpha}T(t)||K_{1}||u-v|| + \{K\int_{0}^{t} ||A^{\alpha}T(s)||ds\}||u-v|| \\ &\leq \{||A^{\alpha}T(t)||K_{1} + K\int_{0}^{t} ||A^{\alpha}T(s)ds||\}||u-v|| \\ &\leq \{||A^{\alpha}T(t)||K_{1} + Kb^{1-\alpha}/1 - \alpha)\}||u-v|| \end{aligned}$$

By the contraction mapping theorem P has a unique fixed point $u \in S$.

Lemma 1. Let assumptions (i) - (vi) be satisfied, then all $\theta > 0$ and $t, t + h \in [\theta, a]$ there exist σ such that $||u(t+h) - u(t)|| \le C(\theta)h^{\sigma}, 0 < \sigma < 1$.

Proof. Now

$$\begin{aligned} \|u(t+h) - u(t)\| &\leq \|(T(h) - I)T(t)u_0)\| + \|(T(h) - I)A^{\alpha}T(t)h(t_1, \dots, t_p, u(t_1), \dots, u(t_p))\| \\ &+ \|\int_0^t A^{\alpha}\{(T(h) - I)T(t-s)\}G(u(s))ds\| \end{aligned}$$

$$\begin{split} &+ || \int_{t}^{t+h} A^{\alpha} T(t+h-s) G(u(s)) ds || \\ &\leq ||A^{\alpha} T(t)(T(h)-I)A^{-\alpha} u_{0}|| \\ &+ ||A^{\alpha} T(t)(T(h)-I)h(t_{1},\ldots,t_{p},u(t_{1}),\ldots,u(t_{p}))|| \\ &+ ||(T(h)-I)\int_{0}^{t} A^{\alpha} T(t-s) G(u(s)) ds || \\ &+ || \int_{t}^{t+h} A^{\alpha} T(t+h-s) G(u(s)) ds || \\ &\leq C \theta^{-\tau} ||(T(h)-I)A^{-\alpha} u_{0}|| \\ &+ C \theta^{-\tau} ||T(h)-I)A^{-\alpha} A^{\alpha} T(t) h(t_{1},\ldots,t_{p},u(t_{1}),\ldots,u(t_{p}))|| \\ &+ || \int_{0}^{t} A^{\alpha+\epsilon} T(t-s)(T(h)-I)A^{-\epsilon} G(u(s)) ds || \\ &+ \int_{t}^{t+h} A^{\alpha} T(t+h-s) ds \cdot \{||G(u(0))|| + KR\} \\ &\leq C \theta^{-\tau} ||u_{0}||h^{\alpha} + C \theta^{-\tau} ||A^{\alpha} T(t) h(t_{1},\ldots,t_{p},u(t_{1}),\ldots,u(t_{p}))||h^{\alpha} \\ &+ [C(||G(u(0))|| + KR) \int_{0}^{t} ||A^{\alpha+\epsilon} T(s)||ds\} h^{\epsilon} + C\{||G(u(0))|| + KR\} h^{1-\tau} \end{split}$$

Taking $\sigma = \min\{\alpha, 1 - \tau, \varepsilon\}$, where $0 < \varepsilon < \sigma$, hence the Lemma.

This establishes that a solution of equation (6) is locally Holder continuous on (0, b]. If the solution u(t) of equation (6) is in X_{α} and if it is also Holder continuous in the X_{α} norm we can show that u(t) is a solution of (3) - (4) if f and g are locally Lipschitz continuous from X_{α} into X and $J^p \times X^p_{\alpha}$ into Y respectively.

Lemma 2. Let assumptions of Lemma 1 be hold. Then the solution u(t) of equation (6) is in $X_{1-\alpha}$ for $t \in (0, b]$.

Proof. Let $\mu > 0$, then the solution u(t) of equation (6) satisfies

$$u(t) = T(t - \mu)u_0 - T(t - \mu)A^{\alpha}h(t_1, \dots, t_p, u(t_1), \dots, u(t_p)) + \int_{\mu}^{t} A^{\alpha}T(t - s)G(u(s))ds$$

and

$$u(t) = T(t-\mu)u_0 - T(t-\mu)A^{\alpha}h(t_1, \dots, t_p, u(t_1), \dots, u(t_p)) + \int_{\mu}^{t} A^{\alpha}T(t-s)G(u(t))ds + \int_{\mu}^{t} A^{\alpha}T(t-s)[G(u(s)) - G(u(t))]ds$$

Since $T(t-\mu)u_0$, $T(t-\mu)A^{\alpha}h(t_1,\ldots,t_p,u(t_1),\ldots,u(t_p)) \in D(A)$ for all $t > \mu$ and $\int_{\mu}^{t} A^{\alpha}T(t-s)G(u(t))ds = A^{\alpha-1}[G(u(t)) - T(t-\mu)G(u(t))]$ for all $t \ge \mu$. We have only

١

. to show that

$$\int_{\mu}^{t} A^{\alpha} T(t-s) [G(u(s)) - G(u((t)))] ds$$

is in $X_{1-\alpha}$. Note that

$$\|A^{1-\alpha} \int_{\mu}^{t} A^{\alpha} T(t-s) [G(u(s)) - G(u(t))] ds\| = \|\int_{\mu}^{t} A T(t-s) [G(u(s)) - u(t)] ds\|$$

$$\leq CK \int_{\mu}^{t} (t-s)^{-1} (t-s)^{\sigma} ds$$

$$= CK (t-\mu)^{\sigma} / \sigma.$$

By Lemma 1, the last inequality is true.

Lemma 3. Let the assumptions of the previous Lemma holds and that $X_{1-\alpha} \subseteq X_{\alpha}$, the imbedding being continuous, then the solution u(t) of equation (6) is a mild solution of equations (3) - (4) and is locally Holder continuous into X_{α} .

Proof. From Lemma 2 and assuption $X_{1-\alpha} \subseteq X_{\alpha}$ implies that $u(t) \in X_{\alpha}$ for all t > 0. Thus for $\mu > 0$ and $t > \mu/2$ we have

$$u(t) = T(t - \mu/2)u_0 - T(t - \mu/2)g(t_1, \dots, t_p, u(t_1), \dots, u(t_p)) + \int_{\mu/2}^t T(t - s)f(u(s))ds$$
(7)

Since u(t) is continuous into $X_{1-\alpha}$ and $X_{1-\alpha}$ is continuously imbedded into X_{α} , u(t) is continuous into X_{α} . Now we show that u(t) is locally Holder continuous into X_{α} . Let $\mu > 0$ and t + h, $t \in [\mu, b]$, then

$$\begin{split} \|u(t+h) - u(t)\| &\leq \|A^{\alpha}(T(h) - I)T(t - \mu/2)u_0\| \\ &+ \|A^{\alpha}(T(h) - I)T(t - \mu/2)g(t_1, \dots, t_p, u(t_1), \dots, u(t_p))\| \\ &+ \|\int_{\mu/2}^{t} A^{\alpha}T(t - s)(T(h) - I)f(u(s))ds\| \\ &+ \|\int_{t}^{t+h} A^{\alpha}T(t + h - s)f(u(s))ds\| \\ &\leq C \|u_0\|h^{\alpha} + C\|g(t_1, \dots, t_p, u(t_1), \dots, u(t_p))\|h^{\alpha} \\ &+ \{C\int_{\mu/2}^{t} \|A^{\alpha+\varepsilon}T(t - s)\|ds\} \sup \|f(u(s))\|h^{\varepsilon} \\ &+ C/(1 - \alpha) \sup \|f(u(t))\|h^{1-\alpha} \end{split}$$

where ε is chosen so that $\alpha + \varepsilon < 1$. Thus there exist a C > 0 and a $0 < \theta < 1$ such that $||u(t+h) - u(t)|| \le Ch^{\theta}$ for $t, t+h, \in [\mu, b]$.

Theorem 2. If the conditions (i)-(vi) and the assumptions of Lemma 3 are satisfied, and f and g are locally Lipshitz from X_{α} into X and $J^p \times X^p_{\alpha}$ into Y respectively, then any solution of equation (6) is also a strong solution of equations (3) - (4).

Proof. Since f and g are locally Lipshitz and u(t) is locally Holder continuous into X_{α} , the fuctions f and g are locally Holder continuous on $[\mu, b]$ for any $\mu > 0$. Thus the theory of analytic semigroups of linear operators [12] gives the desired result.

Theorem 3. Let the assumptions of Lemma 1 be satisfied, then u(t) may be extended to a maximum interval of existence I = [0, c), where $c = \max b$. If $b < \infty$ then

$$\lim_{t \to c} \int_{0}^{t} ||A^{\alpha}T(t-s)|| \ ||G(u(s))||ds = \infty$$
(8)

$$\lim_{t \to c} \|u(t)\| = \infty \tag{9}$$

Proof. Suppose $c < \infty$. For every $t \in I$, u(t) satisfies the integral equation (6). Claim $\lim_{t\to c} \sup ||u(t)|| \leq C$ for all $t \in I$ and some C > 0. This gives

$$||u(t)|| \le ||T(t)\mu_0|| + ||T(t)A^{\alpha}h(t_1,\dots,t_p,u(t_1),\dots,u(t_p))|| + \{\int_0^c ||A^{\alpha}T(t-s)||ds\}.\{\sup_{t\in I} ||G(u(t))||\}$$

For $0 < \tau < t < c$, we have

$$\begin{split} &\|u(t) - u(\tau)\| \\ &\leq \|A^{\alpha}T(\tau)[T(t-\tau) - I]A^{-\alpha}u_0\| \\ &+ \|A^{\alpha}T(\tau)[T(t-\tau) - I]A^{-\alpha}A^{\alpha}h(t_1, \dots, t_p, u(t_1), \dots, u(t_p))\| \\ &+ \|\int_0^{\tau} A^{\alpha+\epsilon}T(\tau-s)[T(t-\tau) - I]A^{-\epsilon}G(u(s))\|ds + \|\int_{\tau}^{t} A^{\alpha}T(t-s)G(u(s))\|ds \\ &\leq C\tau^{-\epsilon}\|u_0\|(t-\tau)^{\alpha} + C\tau^{-\epsilon}\|A^{\alpha}h(t_1, \dots, t_p, u(t_1), \dots, u(t_p))\|(t-\tau)^{\alpha} \\ &+ C(t-\tau)^{\epsilon}\{\int_0^{\tau} \|A^{\alpha+\epsilon}T(s)ds\|\} \cdot \{\sup_{t\in I}\|G(u(t))\|\} \\ &+ \{\int_{\tau}^{t} \|A^{\alpha}T(s)ds\|\} \cdot \{\sup_{t\in I}\|G(u(t))\| \end{split}$$

Thus we have $||u(t) - u(\tau)|| = 0$ as $t, \tau \to c$, contradicting the maximality of c.

If $\lim_{t\to c} ||u(t)|| \neq \infty$ then there exist numbers r > 0 and d > 0 with d arbitrarily large and sequences $\tau_n \to c$, $t_n \to c$ as $n \to \infty$ and such that $\tau_n < t_n < c$. $||u(\tau_n)|| = r$, $||u(t_n)|| = r + d$ and $||u(t)|| \leq r + d$ for $t \in [\tau_n, t_n]$. We have

$$||u(t_{n}) - u(\tau_{n})|| \leq ||[T(t_{n} - \tau_{n}) - I]u(\tau_{n})|| + ||A^{\alpha}[T(t_{n} - \tau_{n}) - I]h(t_{1}, \dots, t_{p}, u(t_{1}), \dots, u(t_{p}))|| + ||\int_{\tau_{n}}^{t_{n}} A^{\alpha}T(t_{n} - s)G(u(s))||$$
(10)

The right hand side of (10) approaches zero as τ_n and t_n approach c while the left hand side of (10) is bounded below by d > 0. This contradiction gives the result and (8) follows from (9).

References

- K. Balachandran and S. Ilamaran, Existence and uniqueness of mild and strong solutions of a semilinear evolution equation with nonlocal conditions, Indian J. Pure Appl. Math. 25 (1994), 411-418.
- [2] K. Balchandran and M. Chandrasekaran, Existence of solution of a delay differential equation with nonlocal conditions, Indian J. Pure Appl. Math. 27 (1996), 443-449.
- [3] L. Byszewski, Existence and uniqueness of solutions of nonlocal problems for hyperbolic equation $u_{xt} = F(x, t, u, u_x)$, J. Math. Stoch. Anal., 3 (1990), 163-168.
- [4] L. Byszewski, Theorem about existence and uniqueness of continuous solution of nonlocal problem for nonlinear hyperbolic equation, Appl. Anal. 40 (1991), 173-180.
- [5] L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl. 162 (1991), 494-506.
- [6] L. Byszewski, Existence of approximate solution to abstract nonlocal Cauchy problem, J. Appl. Math. Stoch. Anal. 5 (1992), 363-374.
- [7] L. Byszewski, Uniquness criterion for solution of abstract nonlocal Cauchy problem, J. Appl. Math. Stoch. Anal. 6 (1993), 49-54.
- [8] A. Friedman, Partial Differential Equations, Renehart and Winston, New York, 1969.
- [9] D. Henry, Geometric Theory of Semilinear Parabolic Equation, Springer-Vertag, New York, 1981.
- [10] D. Jackson, Existence and uniqueness of solutions to semilinear nonlocal parabolic equations, J. Math. Anal. Appl. 172 (1993), 256-265.
- [11] Y. Lin and J. H. Liu, Semilinear integrodifferential equations with nonlocal Cauchy problem, Nonlinear Analysis, Theory, Method and Appl. 26 (1996), 1023-1033.
- [12] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
- [13] S. M. Rankin III, Semilinear evolution equations in Banach spaces with application to parabolic partial differential equations, Trans. Amer. Math. Soc. 336 (1993), 523-535.

Department of Mathematics, Bharathiar University, Coimbatore 641 046, India.

28