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AN ERROR ANALYSIS FOR THE MIDPOINT METHOD

IOANNIS K. ARGYROS

Abstract. We approximate zeros of nonlinear operator equations m·Banach space setting using
Newton-Kantrorvich assumptions and the majorant theory for the midpoint method.

．I. Introduct10n

Let E1, 瓦 be Banach spaces, and let U(xo, R) denote the closed ball with center
xo E Ei and of radius R > o in E1. Suppose that the nonlinear operator F defined
on an open convex subset D of E1 contammg U(xo, R) with values in E2, is Frechet，
differentiable at every interior point of U(x0, R) and satisfies the condition.

IIF1(x + h) - F1(x)II::; A(r, 11h11), x E U(xo,r), 0::; r::; R, 0::; 11h11::; R- r. (1)

Here A is a nonnegative and contmuous function of two variable such that if one of
the variable is fixed then A is a nondecreasing function of the other on a corresponding
sub-interval of [O, R].

8A(O,t)·Moreover, we assume that at 1s positive, continuous and nondecreasmg on [O, R-

r] with A(O, 0) = 0
Note that by setting A(r, 11h11) = ciihll for all .r, llhll, for some c~0, we obtain the

usual Lipschitz conditions on F1 (see, [1], [3]), whereas for A(r, I閶）= e(r)ilhll, we obtain
some generalized condiitons considered also in [4], [9], [16], [22] but for Newton methods.
Conditions of the form (1) wher also considered in (3) for Newton's method.

Let x。E D be arbitrary and define the midpoint method for all n 2: 0 by

Yn = Xn - F'(xn尸F(x』 (2)

and
Xn+l = Xn - F'(~(Xn 十 y~)) 一 1 F(x吐 (3)

For a background on the midpoint method one can refer to [7], and the references
there.
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Using the rnajorant theory, we will show that under certain Newton-Kantorov1ch
assumptions on the pair (F涇0), the midpoint method converges to a locally unique zero
x* of equation

F(x) = 0. (4)

We also provide upper bounds on the distances \lxn - x* II and IIYn - x* II for all n 2: 0
Finally, we show that our results improve earlier ones [11]-[22].

II. Convergence Analysis

It is convenient to introduce constants

rJ~I丨Yo - xoll, f3~IIF'(xo)-111, to= 0, so~f/, t1 乏 So,
f3A(to, !(to+ so))(so 一 柘）

So :=SQ+ (5)
1 - f3A(O, !(to+ so))

scalar iterations 。Sn+l = tn+l 十 1 - /3A(O, tn+1)
P(tn, Sn), (6)

/3 1tn十:; = Sn+i + A(tn+I, -(tn+l 十 Sn+i))(sn+l - tn+i), (7)
1 - f3A(0, !(tn+l + Sn+I)) 2

P(tn, Sn) = 1 f.l矗 十 －丶［「
1

A(sn, t)dt + A(tn, -(sn - tn))(sn - 旦
tn 2

+『 •A(tn,t)dt+ 1 _flA/0《(t-+s_))A(sn, ~(Sn-山 ）A(tn, ~(Sn - 坏））(sn-tn)]

(8)

for all n > 0

and the function

T(r) = t1 + , a~1n ,,.. 、 (1 _ /3~(0, r) A(r, r) + 1)
．［「 A(r, t)dt + A(r, 与r+

/3 r。 2 1 - BA(O. r) A氕r,2)r].

We can now prove the main results.

(9)

Theorem 1. Let F : D c E1 -+ E2 be a nonlinear operator defined on some open
convex subset D of a Banach space 趴 with values in E2. Assume.

(a) F is Frechet-differentiable on U(xo, R) 旦 D for some x0 E D, R > 0, and satisfies

(b) 闆 ，inverse of the linear operator F'(xo) exists and IIF'(xo)-111 :5 趴 f3 > O;
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(c) there exists a minimum nonnegative number R1, with

T(Rr)~R1;
R1~R,

(10)

(11)

(d) the following estimates are true:

{3A(O, Ri) < 1, (12)

。 R
一 f A(O, t)dt < 1 if R j R1 or {3A(O,.R1) < 1 if R = R1, (13)
R- R1 R1

and
(e) U(xo, R) 戶D

Then
(i) The sequence {tn}(n 2 O) defined by (6)-(7) is monotonically increasing and bounded
above by its limit R1 for all n 2 O;

(ii) Then midpoint method generated by (2)-(3) is well defined, remams m U(xo,R1) for
all n 2 O and converges to a unique zero x* of equation F(x) = 0 in U(xo, R).

Moreover the following estimates are true:

llxn - x*II:::; 凡 －耘，
(14)

and
屿 －式l :S R1 一 Sn for all n 2: 0. (15)

Proof. (i) We will show that sequence { tn} _(n > O) is JnOnotonically increasing and
bounded above by R1 and as such it converges to some R2 with R2 ::; R1 (by (10)). From
(5)-(8) and (10) to ::; so ::; t1 ::; s1 ::; t2. By assuming tk ::; Sk ::; tk+I, k = 0, 1, 2, · · ·, n
we obtain tk+I ::; Sk+I ::; tk+2 from (6)-(8) and (12). Hence, {tn}(n 2: O) is monotonically
increasing. From (5) and (11) t。< t1 < R, and from (7) for n = 0, t2 ::; T(R1) ::; 瓦,,_ .

Let us assume that tk ::; R1 for k = 0, 1, 2, ... , n + 1. Then from (6)-(8)

。 {3 {3
tn+2 = tn+l + [亡 江江 二 十1 - {3A[O, 鬪 (tn+l 十Sn+1)]亡瓦加n+1)

1·A[tn+l, -(tn+l 十 Sn+1)] P(tn, Sn)
2

:', tn+l十三 l1]-』~O, R,/(R1, R1) + 1]P(tn」
::; ... ::; ti十亡 C - Rt{() R,丶A(R1,Ri) + 1)

n+l t;+l
圉f A(R1,t)dt+tA(R,,R,)(s; - 信
j=O Sj j=O
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訌-t; A(R1, t)dt + 1 _』;O, R,) A(R1, R1)2t,的- t;)] S T(R,) SR,
(by(lO)).

Hence, {tn}(n~O)_is bounded above by R1. Moreover we deduce tk :S Sk :S tk+l~R1
for all k~0.
That completes the proof of part (i).
(ii) We will show that if

IIYn - Xnll :S Sn - tn, n~0, (16)
IIF(xn) II :S P(tn-1, Sn-1), n~1, (17)

IIF1(X.n+1)-1 II < 。- 1 - (3A(O, tn+d'
n~0, (18)

1
IIF1(-(xn+Yn))-1il < 。2 一 ~n 矗 I~1 , , . 、、, n~0, (19)

then

llxn+l - Ynll~tn+I - Sn,
IIF(xn+1)II~P(tn, Sn)

(20)

(21)

and
IIYn+l - Xn+i 11 :::; Sn+l - tn+l for all n~0.

From (3), (17) and (19) we obtain for k = 0, ... , n - l,

llxk+2 - Yk+i 11

:::; IIF'(~(xk+I +Yk+1))-1!IIIF'(~(xk+1 +Yk+1))-F'(xk+1)\\IIYk+1-x科 1 II

(3 I
:::;< nAfr.lt, , 丶A(tk+I, 2(tk+I +sk+I)) (sk+1 -tk+1) = tk+2 一 Sk+I·

(22)

Also, by (5) we get

恥 －這 S IIF'(~(xo + Yo))-111·IIF'(~(xo + Yo)) -F'(xo)IIIIYo - xoll

＜
/3A (to, ! (to + so))

一 1 - /3A(O, 吉 (to+ so))
區 －柘）'.S t1 - So.

Hence, (20) is true.
Using (1)-(3), (16)-(20) and the approximation

F(xn+1) =「伊'(Yn + t(x社 1 - 國）- F'(Yn)] (xn+l 一 Yn)dt
o10
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+ /1 伊1 (xn + t(yn - Xn)) - F'(xn)] (Yn - Xn)dt
。

－忙 (~(Xn + Yn)) - F'(xn)]如- Xn) - [F'(yn) - F'(~(Xn + Yn))]

鳴Xn +Yn『
1回2(xn + Yn)) - F'(xn)]如- Xn),

we can obtain by taking norms

IIF(xn+1)II
1~f IIF1(Yn+t(xn+1-Yn))-F1(yn)llllxn+1-Ynlldt
。1
+ f IIF'(xn + t(yn - Xn)) - F1(xn)ll·IIYn 一 Xnlldt
。
尹1 (t(xn + Yn) - F1(xn)l! ·IIYn 一 Xn\l

屯 /(t巳+Yn))-1ll·IIF'(yn)-F'{1(xn +Yn))II

IIF1 (~(Xn 玉 ））- F1(xn)ll·I斯 -xnll
1 1~lo A(sn, (1 - t)sn + ttn+i)dt + lo A(tn, t(sn - tn))(sn - tn)dt

+A(tn, ~倡+ Sn))(sn - tn)
f3 . 1 1

+ 1 - f3A(O, !Ctn+ Sn)) 2
A(sn, -(tn + Sn))A(tn, -(tn + Sn))(sn - 坏）= P(tn,sn),

2

where we have also used estimates

llxn+l 一 ；：co II~llxn+l 一 Yoll + IIYo - xo\l~llxn+l - Ynll + IIYn - Yoll + I\Yo·一 xoll
~"· ~Ctn+l 一 Sn)+ (sn - so)+ So~tn+l~R1, (23)

\IYn+l - xoll~IIYn+l - Yoll + IIY。- xoll~IIYn+l 一 ；：tn+1ll
+\lxn+l - Ynll + IIYn - Yoll + IIYo - xoll

~ " . :三 (sn+l - tn+1) + Ctn+l - Sn)+ (sn - So)~Sn+l~R1, (24)

Hence (21) is true. From (2), (18) and (21)

IIYn+l~Xn+1II .~\\F1(Xn+1)-1\\ IIF(xn+1)II
/3

- 1 /'l A fr. .L
< 、P(tn, Sn) = Sn+l - tn+l, (25)

from which (22) follows.
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Moreover, from (1), (5), (12) and estimate

IIF'(xo)-111·IIF1(xn) - F1(xo)II:::; f3A(O, 柞）:::; f3A(O, Ri) < l, (26)

it follows from the Banach lemma on invertible operators that F1(xn尸 exists and

IIF'(xn)-111 S
IIF'(xo)-111

1 - IF'(xo)-1 II·IIF'(xn) - F'(xo) II
＜

/3
- 1 - /3A(O, tn)

for all n~0

(27)
Furthermore, from the estimate

llxn + Yn - 2xoll ::; llxn - xoll + IIYn - Xoll ::; tn + Sn,

we obtain for all n 2'. 0

IIF1(xo)-1 I·JJF1 (~(xn + Yn)) - F1(xo)JJ ::; /3A(0, ~倡+ Sn)) ::; /3A(O, Ri) < 1. (28)

it now follows that F'(!(xn + Yn))-1 exists and

IIF1 (1(xn + Yn))-l I :S /3 , ·for all n 2". 0. (29)
1 - /3A (0, ! (tn + Sn))

Hence, iterates {xn}(n 2". 0) generated by (2)-(3) are well defined for all n 2". 0. Also, by
(16) and (20)

llxn+l - Xnll'.S llxn+l - Ynll + IIYn - Xnll'.S tn+l - 耘 for all n 2". 0

it now follows from the above estimate and (i) that the sequence {xn}(n 2". 0) is Cauchy
in a Banach space and as such it converges to some x* E U(xo, R1), which by taking the
limit as n-+ oo in (2) becomes a zero of F since F(x*) = 0. Moreover, by (23) and (24)
Xn, Yn E U(x0, R1). The estimates (14) and (15) follow immediately from (i), (20) and
(22).
Finally to show uniqueness, we assume there exists another zero y* of equation (4)

in U(x0, R). Then from (1), (13) and (27), we obtain

II F,(xo)-111·fol 11~,(y* + t(x* -y*)) - F,(xo)jldt

:S IIF1(x0)-1 II /1 A(O, (1- t)llxo - y*II + tjjx* - xoll)dt < 1, by (12) and (13).
。

It now follows from the above inequality that the linear oper_ator
昷 F1 (y* + t(x* - y*))dt is invertible. From this fact, and the approximation

F(x勺- F(y*) = /1 F1(y* + t(x* - y*))(x* - y*)dt
。
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it follows that x* = y*.
That completes the proof of the theorem.

Remarks. (a) Fro~the estimates

\lxn - Yo\l~l\xn - 糾I+區- y0\I~(tn - Sn)+ (sn 一 so)~tn - TJ~R1 - TJ

and

IIYn+l 一 Yoll::; IIYn+1-Xn+1II + 1lxn+1-Ynll + IIYn-Yoll
::; (sn+l -tn+1) + (tn+l 一 Sn)+ (sn 一 so)

~Sn+l - rJ~ 凡- TJ,

it follows that Xn, Yn E U(yo, R1 - TJ) for all n _> O. Note also that R1 is the unique

positive zero of T(r) - r = 0 in (O,R1} (by (10)).
(b) We can use the midpoint method to approximate nonlinear equations with non-

differentiable operators. Indeed, consider the equation

Fi(x) = 0, (30)

where
Fi (x) = F(x) + Q(x),

with F as before and Q satisfying an estimate of the form

IIQ(x + h) - Q(x)II ::; B(r, 11h11), x E U(xo, R), 0::; r ::; R, 0 ::; 11h11 ::; R - r

where B is a nonnegative and continuous function of two variable such that if one of the
variables is fixed then B is a non-decreasing function of the other on a corresponding
subinterval of [O, R]. Note that the differentiability of Q is not assumed here. Moreover
we assume B is linear in the right hand side variable- Replace F in (2) and (3) by Fi
and leave the Frechet-derivatives as they are. Define the sequences {tn} and匡}(n~0)
as the corresponding { tn} and { sn} given (6) and (7) respectively. The change will be
and extra term of the form B(tn, Sn - tn) added in the definition of P(tn, Sn). Define T1
by T in (g) the insert inside the bracket the term B(r, r). Then following the proof of
the above theorem step by step we can show a similar theorem with identical hypotheses
and conclusions, but holding for equation (30). (See, also [4], [9], [10], [22)).

(c)In [7] we showed the result (see also [9]).

Theorem 2. Let F: DC E1-+ 瓦 ，趴 ，E2 be real Banach spaces, and D be an open
convex domain in E1. Assume that F has 2nd order continous Frechet derivatives on D
and that the following conditions are satisfied:

IIF1(x) - F'(y)II::; Illx -yll, IIF'1(x)II::; Nllx -yll,
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for all x,y ED

IIF'(xo)-1 II :S (3, llvo - xo II :S 77

[M戸齎] t :SK,

1
h = K(377 :S 一2

and
U(yo, r1 - rJ) c D.

Moreover, we define

1g(t) = Kt2 l'T/'. ..'.,
2 t+(3 (3'

1-二
rJ百 ＝

h

and

(} = 1-二
1+ 沉－汪'

where r1 is the smallest zero of the equation g(t) = 0. Then the midpoint method (2)- (3)
is convergent. Also Xn, Yn E U(Yo, r1 -1}), for all n E N0. The limit x* is the unique zero
of the equation F(x) = 0 in U(x0,弓），冇 S 弓 < r2 if L = K(or M = K) and 弓 = r2 if
I< K(or M < K).
Moreover, we have the following error estimates and optimal error constants:

llxn -x汀 I ::; 百 ＿片， for all n,
IIYn - x* II ::; r1 - s;, for all n

and
冇 ＿耘 ＝ (1 - 旳n。3n-1

1 - ean

where

吐 ＝吐－
g(且） 1

g'(t~)' t0 = 0

and
tl =s 一

g(t~)
n+l n g'(!(t~+ s~))

for all n 2:: 0.

(d) Several sufficient conditions can be given to show for examples that under the
hypotheses of theorems 1 and 2

Sn - tn :S 吐- t~for all n > 0.
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On such condition can be

二 －［「 A(r, t)dt + A(r 与r+-上 － ＿ ＿ －工
。

'2 1 - BA(O, r)尼 (r, ;)r]~Si tL or~g'(r)

for all r E [O, R].
The details are left to the motivated reader (see, also [4], [9]).

(e) Note that the order of convergence for the midpoint is three, whereas for Newton's
method only 2[1), [9], [13], [16].

db(f) Similar theorems can be proved if 11h11 in C1 is replace ya Holder continuomty
condition of the form llhllP for some p E [O, 1). (See, also [9]).

(g) The function A can be chosen as

庫 因 ）＝土yESi(~。r} IIF'(x + h) - F'(x)\I,
llhll~R-r

or
A(r, 11h11) =「+11hll q(t)dt

T

(31)

where q(r) is a nondecreasing function on the interval [O, R] satisfying

IIF'(x) - F'(y)II~q(r)llx -yll

for all x,y E U(x0,r) (see also [4], [9], [16], [22]).
One can refer to [5], [9] for some applications of these choices to the solution of

nonlinear integral equations of Uryson-type.
(h) Finally, if the right hand side of condition (1) changes to A(r, r + 11h11), a new

theorem similar to Theorem 1 can then esaily follow. Remarks similar to (a)-(g) for the
new condition can we also follow.

III. Applications

(A) In this section we will first give an example for Theorem 2 (similarly we can work
for Theorem 1). We first note that the midpoint is of order three. The most popular
methods of order three are the method of tangent parabolas (or Euler-Chebysheff) and
the method of tangent hyperbolas (or Chebysheff-Halley) [1], [5], (6], [9], [12], (14], (15],
[17], [18], [20], [21]. In all the above references it is assumed that N > 0, which means
that these methods cannot apply to solve quadratic operator equations of the form

P(x) = B(x, x) + L(x) + z,
where B, L are bounded quadratic and linear operators respectively with z fixed in E2.
We then have that P1(x) = 2B(x) +Land P11(x) = 2B. Hence, we get M = 2IIBII
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and N = O. Integral equations that can be formulated in the form P(x) = 0 have bery
important applications in radiative transfer [2), [3), [4), [10).
In this section we use the theorem to suggest new approaches to the solution of

quadratic integral equations of the form

x(s) = y(s) + >.x(s) /1 q(s, t)x(t)dt
。

(32)

in the space 瓦 = C[O, 1] of all functions continuous on the interval [0,1], with norm

llxll = max lx(s)I-o::;圣 1

Here we assume that ,\ is a real number called the "albedo" for scattering and the
kernel q(s, t) is a continuous function of two variable s, t with O < s, t < 1 and satisfy
ing

(i) 0 <q(s,t) < 1, 0 :S s, t'.S 1, q(O,O) = 1;
(ii) q(s, t) + q(t, s) = 1, 0 :S s, t :S 1.

The function y(s) is a given continuous function defined on [O, 1], and finally x(s) is
the unknown function sought in [O, 1].
Equations of this type are closely related with the work of S. Chandrasekhar [10],

(Novel prize of Rhysics, 1983), and arise in the theories of radiative transfer, neutron
transport and in the kinetic theory of gasses, [2], [3], [9], [10].
There exists an extensive literature on equations like (32) under various assumptions

on the kernel q(s, t) and,\ is a real or complex number. One can refer to the recent work
in [2], [3], [9], [10] and the references there. Here we demonstrate that the theorem via
the iterative procedure (2)-(3) provides existence results for (32).
For simplicity (without loss of generality) we will assume that

q(s, t) =二 for all O~s, t~I, q(O,O) = 1.
s+t

Note that q(s, t) so defined satisfies·(i) and (ii) above.
Let us now choose A= .25, y(s) = 1 for alls E (0, l]; and define the operator Pon

趴 by
s

P(x) = >.x(s)丨-x(t)dt - x(s) + l.。s+t
Note that every zero of the equation P(x) = 0 satisfies equation (32).
Set x0(s) = 1, use the definition of the first and second Frechet-derivatives of the

operator P to obtain using the theorem,

K = M = 21>.I max I /1 8 dt = 2IAl ln2 = .34657359,
o::;s9 。s+t

(3 = IIP'(l)-111 = 1.53039421,
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T/ 2: \\P'(l)-1P(l)\l 2: (3Aln 2 = .265197107,

h = .1406_59011 < .5
r1 = .28704852, r2 = 3.4837317

and () = .08239685.

(For detailed computations, see also [2], [3], and [9].)
Therefore according to theorem 2 equation (32) has a solution x* and the two-point

method (2)-(3) converges to x .* Note that, the results obtained in [12], [14], [15], [17],
[18], [20], [21] cannot apply here, since N = 0.

(B) We will complete this study by providing an~xamp e1 that shows how to choose
the constants B, rJ and the functions A and T, where A is chosen as m (31).

Let us assume that 趴 ＝瓦 = C = C{O, 1] the space of continuous functions on [O, 1]
equipped with the usual supremum norm. We consider Uryson-type nonlinear integral

equations of the form

We assume for simplicity that xo = 0, and make use of the following standard result
whose proof can be found for example in (5) or (9).

Theorem 3. The Lipschitz condition (31) /or the Frechet-derivative F'of the oper-
ator (33) holds if and only if the second derivative K~u(t, s, u) exist for all t and almost

alls and u, and

1

F(x)(t) == x(t) - f K(t, s, x(s))ds.
。

(33)

1

sup/ sup \K~u(t,s,u)lds<oo
tE[0,1] O 回夕

(34)

Moreover, the left hand side in relation (34) is then the minimal Lipschitz constant

q(r) in (31).
Moreover, the constants TJ and (3 are given by

1

11 = sup I /1 K(t, s, O)ds + /1 r(t, s) J K(s,p, O)dpdsl
tE[0,1] 0 。 。

(35)

and 1

f3 = l + sup / lr(t, s)lds,
tE(0,1] 0

where r(s, t) is the resolvent kernel of equation

h(t) = j'鷗 (t,s,O)h(s)ds = - j'K(t,s,O)ds.
。 。

(36)

(37)

Let us consider a simple example. Suppose that K(t,s,u) = c1(t)c2(s)c3(u) with two
continuous functions c1 and c2·, and C3 E C2. We set

1 1

d1 = lo。c2 (s) ds, d2 = lo。c1(s)c2(s)ds. (38)
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Then relation (37) becomes

where
h(t) = [鬪d(O) - d1c3(0)]c1(t),

齿＝丨1 令 (s)h(s)ds.
。

(39)

(40)

Substituting relation (39) into (40), one may calculate c4 and hence find the resolvent
kernel r(t, s) in case d這 (0) < 1, to get

and

r(t,s) = c1(t)c2(t)c3(0)
1- d2吒 (0) .

Using relations (34)-(36), we obtain

q(t) = llc1 I丨d1 sup /c~(u)I,
l/u/1::;r

77 = d坪3(0)
一 ＿ 丨

1- 叱 C3(0) ic1 I丨

/3 = l + d図(0)
l-d這 (0) lic1 II.

(41)

(42)

(43)

(44)

Thus, in this case a complete and explicit computat10n of the function T given by
relation (9) is possible. As an example, let us choose

3
C1 (t) = -t C2(s) 2 1

= -s and c3(u) = -u3 1
10' 10 3 十面 u+l

on [O, lJ. Then using relations (38), (41)-(44), (5) and (9) we get

1 2
di= 面 d2 =両 d2c~(0) = 2

" '一·1000 < 1,
30r(t,s)=- 6
499 ts, q(r) =—

100 r, t1 = s~= .030061011，
rt= 旦 ＝巴

499' fl 499·
Relations (11) and (12) become respect1vely

r7 十 .030061011r6 + 229.2釘 1598r5 + 2.918374609r4 - 3141.619606r3
+ 94.44026784r2 - 33888.20112r + 1018. 713654~O

and
R~5.688635222 =徇

That is, the hypotheses of Theorem 1 will be satisfied if we choose

R1 == .030061013 and R =屬
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The conclusions of Theorem 1 can now follow.
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